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Abstract. Consider a complete communication network on n nodes, each of which is
a state machine. In synchronous 2-counting, the nodes receive a common clock pulse
and they have to agree on which pulses are “odd” and which are “even”. We require
that the solution is self-stabilising (reaching the correct operation from any initial state)
and it tolerates f Byzantine failures (nodes that send arbitrary misinformation). Prior
algorithms are expensive to implement in hardware: they require a source of random
bits or a large number of states.

This work consists of two parts. In the first part, we use computational techniques
(often known as synthesis) to construct very compact deterministic algorithms for the
first non-trivial case of f = 1. While no algorithm exists for n < 4, we show that as few
as 3 states per node are su�cient for all values n � 4. Moreover, the problem cannot
be solved with only 2 states per node for n = 4, but there is a 2-state solution for all
values n � 6.

In the second part, we develop and compare two di↵erent approaches for synthesising
synchronous counting algorithms. Both approaches are based on casting the synthesis
problem as a propositional satisfiability (SAT) problem and employing modern SAT-
solvers. The di↵erence lies in how to solve the SAT problem: either in a direct fashion, or
incrementally within a counter-example guided abstraction refinement loop. Empirical
results suggest that the former technique is more e�cient if we want to synthesise
time-optimal algorithms, while the latter technique discovers non-optimal algorithms
more quickly.
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1 Introduction

Synchronous Counting. In the synchronous C-counting problem, n nodes have to
count clock pulses modulo C. Starting from any initial configuration, the system has
to stabilise so that all nodes agree on the counter value. Put otherwise, eventually all
nodes have to consistently label each clock pulse with values incrementing modulo C.

clock

node 3
node 2
node 1
node 0

stabilisation 2-counting

In this work, we consider a fully-connected synchronous communication network
of n nodes with identifiers from the set {0, 1, . . . , n � 1}. Each node is a finite state
machine with s states, and after every state transition, each node broadcasts its current
state to all other nodes—e↵ectively, each node can see the current states of all other
nodes. An algorithm specifies (1) the new state for each observed state, and (2) how to
map the internal state of a node to its output.

Byzantine Fault Tolerance. In a fault-free system, the C-counting problem is
trivial to solve. For example, we can designate node 0 as a leader, and then all nodes
(including the leader itself) can follow the leader: if the current state of the leader is c,
the new state is c+ 1 mod C. This algorithm will stabilise in time t = 1, and we only
need s = C di↵erent states.

However, we are interested in algorithms that tolerate Byzantine failures. Some
number f of the nodes may be faulty. A faulty node may send arbitrary misinformation
to non-faulty nodes, including di↵erent information to di↵erent nodes within the same
round. For example, if we have nodes 0, 1, 2, 3 and node 2 is faulty, node 0 might observe
the state vector (0, 1, 1, 1), while node 1 might observe the state vector (0, 1, 0, 1).

Our goal is to design an algorithm with the following guarantee: even if we have up
to f faulty nodes, no matter what the faulty nodes do, the system will stabilise so that
after t rounds all non-faulty nodes start to count clock pulses consistently modulo C.
We will give a formal problem definition in Section 4.

clock

node 3
node 2
node 1
node 0

stabilisation 2-counting

Synchronous counting can be used as a fault-tolerant co-ordination primitive in
systems where a synchronous clock signal is available, but the clock pulses have not
been labelled in any manner, for example, there is no distinction between even and
odd clock pulses. In general, a C-counter can be used as a fault-tolerant round counter
that assigns explicit round numbers for each clock pulse.
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t = 3 4 5 6 7 8 9

n = 4 4 4 3 3 3

5 3 3 3 3 3 3

6 3 3 3 2 2 2 2

7 3 3 3 2 2 2 2

8 3 2 2 2 2 2 2

9 3 2 2 2 2 2 2

Figure 1: Time–space tradeo↵s in our computer-designed algorithms. The figure shows
s (the number of states) for each combination of n (the number of node) and t (the
stabilisation time).

State of the Art. Both randomised and deterministic algorithms for synchronous
counting (often also referred to as digital clock synchronisation) have been presented
in the literature (see Section 2). However, prior algorithms tend to be expensive to
implement in hardware: they require a source of random bits or complicated circuitry.

In this work, we use a single parameter s, the number of states per node, to capture
the complexity of an algorithm. If one resorts to randomness, it is possible to solve
2-counting with the trivially optimal number of s = 2 states—at the cost of a slow
stabilisation time (see Sections 2 and 5). However, it is not at all clear whether a small
number of states su�ces for deterministic algorithms.

Contributions. We employ computational techniques to design deterministic 2-
counting algorithms that have the smallest possible number of states. Our contributions
are two-fold:

1. we present new algorithms for the synchronous counting problem,

2. we develop new computational techniques for constructing self-stabilising Byzan-
tine fault-tolerant algorithms.

Our focus is on the first non-trivial case of f = 1. The case of n = 1 is trivial, and
by prior work it is known that there is no algorithm for 1 < n < 4. We give a detailed
analysis of 2-counting for n � 4:

• there is no deterministic algorithm for f = 1 and n = 4 with s = 2 states,
• there is a deterministic algorithm for f = 1 and n � 4 with s = 3 states,
• there is a deterministic algorithm for f = 1 and n � 6 with s = 2 states.

Overall, we develop more than a dozen di↵erent algorithms with di↵erent characteristics,
each of which can be also generalised to a larger number of nodes. See Figure 1 for an
overview of the time–space tradeo↵s that we achieve with our algorithms.

With very few states per node, our algorithms are easy to implement in hardware.
For example, a straightforward implementation of our algorithm for f = 1, n = 4,
and s = 3 requires just 2 bits of storage per node, and a lookup table with 34 = 81
entries. All of our computer-designed algorithms are freely available online [1] in a
machine-readable format. While our algorithms are synchronous 2-counters, they can
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be easily composed to construct synchronous 2b-counters for any positive integer b (see
Section 3 for details).

This work can be seen as a case study of applying synthesis techniques in the
area of distributed algorithms. We demonstrate that the synthesis of non-trivial
self-stabilising Byzantine fault-tolerant algorithms is indeed possible with the help of
modern propositional satisfiability (SAT) solvers [6, 26]. We describe two complementary
approaches for the synthesis of synchronous 2-counting algorithms and give an empirical
comparison of their relative performance:

1. a direct encoding as SAT,
2. a SAT-based counter-example guided abstraction refinement (CEGAR) [13, 14]

approach.

Both approaches make it possible to use modern SAT solvers and to benefit from the
steady progress in SAT solver technology. As we will see, the former approach is typically
more e�cient for tightly-specified problems (e.g., synthesising both space-optimal and
time-optimal algorithms), while the latter is more promising for more relaxed problems
(e.g., synthesising space-optimal algorithm regardless of the stabilisation time).

Structure. Section 2 covers related work and Section 3 discusses applications of
synchronous 2-counters. Section 4 gives a formal definition of the problem, and Section 5
gives two examples of human-designed algorithms. Section 6 gives a graph-theoretic
interpretation that is helpful in the analysis of counting algorithms. In Section 7 we
show that (1) we can increase n for free, without a↵ecting the parameters f , s, or t;
this enables us to focus on small values of n, and (2) we can generalise the algorithms
to a larger class of network topologies with a slight cost in stabilisation time. Section 8
presents an overview of the use of computers in algorithm design and highlights the
new results for synchronous counting. Section 9 describes a direct formulation of the
synthesis problem for synchronous counting algorithms as propositional satisfiability.
Section 10 describes the SAT-based counter-example guided abstraction refinement
synthesis technique. Finally, Section 11 overviews the results of the empirical evaluation
of the two di↵erent synthesis techniques, suggesting a tradeo↵ between establishing the
existence of any algorithm and finding optimal algorithms.

2 Related Work

Randomised Algorithms for Synchronous Counting. Randomised algorithms
for synchronous 2-counting are known, with di↵erent time–space tradeo↵s.

The algorithm by Dolev and Welch [23] requires only s = 3 states, but the expected
stabilisation time is 2O(n�f). On the other hand, it is possible to attain short stabilisation
times using randomisation. For example, the algorithm by Ben-Or et al. [3] stabilises
in expected constant time. However, it requires ⌦(2f ) states and private channels (i.e.,
the adversary has limited information on the system’s state).

Deterministic Algorithms for Synchronous Counting. The fastest known de-
terministic algorithm is due to Dolev and Hoch [20], with a stabilisation time of O(f).
However, the algorithm is not well suited for a hardware implementation. It uses as
a building block several instances of algorithms that solve the Byzantine consensus
problem—a non-trivial task in itself. The number of states is also large, as some storage
is needed for each Byzantine consensus instance.
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Consensus Lower Bounds for Synchronous Counting. Binary consensus is a
classical problem that has been studied in the context of Byzantine fault tolerance; see,
e.g., the textbook by Lynch [44] for more information. In brief, the problem is defined
as follows. Each node has a binary input, and all non-faulty nodes have to produce
the same binary output, 0 or 1. If all inputs are equal to 0, the common output has to
be 0, and if all inputs are equal to 1, the common output has to be 1; otherwise the
common output can be either 0 or 1. It is easy to show that synchronous 2-counting is
at least as di�cult to solve as binary consensus.

Lemma 1. If we have a 2-counting algorithm A that stabilises in time t, we can design
an algorithm that solves binary consensus in time t, for the same parameters n and f .

Proof. Let x(0) and x(1) be some configurations that may occur during the correct
operation of A after it has stabilised, so that in configuration x(a) all nodes output a.
More specifically:

• For any a = 0, 1 and j = 0, 1, 2, . . . , if we initialise the system with configuration
x(a) and run A for j rounds, all non-faulty nodes output (a+ j) mod 2.

First assume that t is even. Each node i receives its input a for the binary consensus
problem. We use the element i of x(a) to initialise the state of node i. Then we run A for
t rounds. Finally, the output of algorithm A forms the output of the binary consensus
instance. To see that the algorithm is correct, we make the following observations:
(1) All non-faulty nodes produce the same output at time t, regardless of the input.
(2) If all inputs had the same value a, we used x(a) to initialise all nodes, and hence
the final output is a.

For an odd t, we can use the same approach if we complement the inputs. In
summary, A can be used to solve binary consensus in time t.

Now we can invoke the familiar lower bounds related to the consensus problem:

• no algorithm can tolerate f � n/3 failures [51],
• no deterministic algorithm can solve the problem in t < f + 1 rounds [32].

Pulse Synchronisation. Both 2-counting and pulse synchronisation [3, 16, 19, 23]
have a superficially similar goal: produce well-separated, (approximately) synchronised
clock pulses in a distributed system in a fault-tolerant manner. However, there are
also many di↵erences: in pulse synchronisation the task is to construct a clock pulse
without any external reference, while in 2-counting we are given a reference clock and
we only need to label each clock pulse as “even” or “odd”, or put otherwise, construct
a clock that ticks at a slower rate. In general, once pulse synchronisation has been
solved, a C-counting algorithm can be used to generate explicit round numbers in a
fault-tolerant manner. Also the models of computation for the two problems di↵er—for
pulse synchronisation, a relevant model is an asynchronous network with some bounds
on propagation delays and clock drifts. For further discussion on this topic, see a recent
survey by Dolev et al. [19].

In summary, a 2-counting algorithm does not solve the pulse synchronisation
problem, and a pulse synchronisation algorithm does not solve the 2-counting problem.
However, if one is designing a distributed system that needs to produce synchronised
clock ticks in a fault-tolerant manner, either of the approaches may be applicable.
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Computational Algorithm Design. The computational element of our work can
be interpreted as a form of algorithm synthesis. In synthesis, the task is to algorithmi-
cally find an algorithm or a protocol that satisfies a given specification. The idea of
synthesising circuits was proposed by e.g. Church [11] already in the 1960s and there
exists a vast body of work related to synthesis.

Classic work on model checking [12, 45] consider algorithms for synthesis of both
shared-memory and message-passing protocols by solving the satisfiability of certain
temporal logic formulas. Unfortunately, synthesis of distributed systems is often
intractable both in theory and practice—distributed synthesis problems are often
either of high complexity or undecidable [30, 50, 52]. However, despite the hardness of
synthesis—or because of it—several techniques have been proposed to make synthesis
tractable [29, 31, 37].

In contrast to applying general synthesis techniques, that is, algorithms for synthesis-
ing a general class of problems, combinatorial search algorithms have also been applied
to solve specific synthesis problems. For example, SAT solvers have been used for, e.g.,
circuit synthesis [7, 34, 35, 41, 42], synthesis from safety specifications [8], controller
synthesis [47], program sketching [54], synthesising sorting networks [10, 15, 48], and
synthesising local graph algorithms [36, 53].

3 Applications

Counters as Frequency Dividers. We can visualise a C-counter as an electronic
circuit that consists of n components (nodes); see Figure 2. Each node i has a register
xi that stores its current state—one of the values 0, 1, . . . , s � 1. There is a logical
circuit g that maps the current state to the output, and another logical circuit Ai that
maps the current states of all nodes to the new state of node i. At each rising edge of
the clock pulse, register xi is updated.

node 0

node 1

x0
input 0

gA0

x1 gA1

output 0

input 1

output 1

Figure 2: A 2-counter for n = 2, viewed as an electronic circuit.

If the clock pulses are synchronised, regardless of the initial states of the registers,
after t clock pulses the system has stabilised so that the outputs are synchronised and
they are incremented (modulo C) at each clock pulse.

In particular, if we have an algorithm for 2-counting, it can be used as a frequency
divider : given synchronous clock pulses at rate 1, it produces synchronous clock pulses
at rate 1/2.

From 2-Counters to C-Counters. Given a 2-counting algorithm, it is also possible
to devise C-counters for larger values of C > 2. For example, we can compose b layers
of 2-counters to build a clock that counts modulo 2b; see Figure 3. In a synchronous
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system, a composition of self-stabilising algorithms is self-stabilising [22]. For the
purposes of the analysis, we can wait until layer i� 1 stabilises, use this as the initial
state of layer i, and then argue that the nodes on layer i receive a synchronous clock
pulse and hence they will eventually stabilise. In a similar fashion, it is possible to
compose two 2b-counters to attain 22b-counters, and so on [3].

2-counter

clock rate 1 clock rate 1/2

2-counter

clock rate 1/4

Figure 3: Composition of 2-counters.

Moreover, recent work [43] shows how to devise a C-counter for any C > 1 by
first constructing a suitable O(f)-counter. The O(f)-counter is used to provide round
numbers for a modified consensus protocol. Using the consensus protocol, it is possible
to attain a C-counter for any C > 1. For the case f = 1, the required O(f)-counter can
be constructed by composing only constantly many 2-counters. Thus, starting from
just 2-counters, it is possible to construct C-counters for any C > 1.

Counters in Mutual Exclusion. With a C-counter we can implement mutual
exclusion and time division multiple access in a fairly straightforward manner. If we
have C = n nodes and one shared resource (e.g., a transmission medium), we can
let node i to access the resource when its own counter has value i. Care is needed
with the actions of faulty nodes, though—for further information on achieving fault-
tolerant mutual exclusion, see, e.g., Moscibroda and Oshman [49]. Again 2-counting
is of particular interest, as it may be leveraged by more complex mutual exclusion
algorithms.

4 Problem Formulation

We will now formalise the C-counting problem and the synthesis problem, and introduce
the definitions that we will use in this work. Throughout this work, we will follow the
convention that nodes, states, and time steps are indexed from 0. We use the notation
[k] = {0, 1, . . . , k � 1}.

Intuitively, the model of computing is as follows. The system consists of a fully-
connected message-passing network of n nodes where all nodes have unique identifiers
from the set [n]. All nodes first broadcast their state to all other nodes in the network
along the communication links. Moreover, the communication links are labelled so that
nodes know from which node a message originated. Thus, after broadcasting, each
node receives a vector of messages which the node uses to decide on a new state.

Simplifications. As our focus is primarily on 2-counters, we will now fix C = 2; the
definitions are straightforward to generalise.

In prior work, algorithms have made use of a function that maps the internal state
xi of a node to its output g(xi). However, in this work we synthesise algorithms that do
not need any such mapping: for our positive results, an identity mapping is su�cient,
and for the negative result, we study the case of s = 2 which never benefits from a
mapping. Hence we will now give a formalisation that omits the output mapping.
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Algorithms. Fix the following parameters:

• n = the number of nodes,
• f = the maximum number of faulty nodes,
• s = the number of internal states.

An algorithm A specifies a state transition function Ai : [s]n ! [s] for each node i 2 [n].
Here [s]n is the set of observed configurations of the system.

Projections. Let F ✓ [n], |F |  f be the set of faulty nodes. We define the projection
⇡F as follows: for any observed configuration u 2 [s]n, let ⇡F (u) be a vector x such
that xi = ⇤ if i 2 F and xi = ui otherwise. For example,

⇡{2,4}((0, 1, 0, 1, 1)) = (0, 1, ⇤, 1, ⇤).

This gives us the set VF = ⇡F ([s]n) of actual configurations. Two actual configurations
are particularly important:

0F = ⇡F ((0, 0, . . . , 0)) and 1F = ⇡F ((1, 1, . . . , 1)).

Note that since non-faulty nodes do not know the set F , they cannot uniquely determine
the actual configuration from any observed configuration.

Executions. Let x,y 2 VF . We say that configuration y is reachable from x if for
each non-faulty node i /2 F there exists some observed configuration ui 2 [s]n satisfying
⇡F (ui) = x and Ai(ui) = yi. Intuitively, the faulty nodes can feed such misinformation
to node i that it chooses to switch to state yi. We emphasise that ui may be di↵erent
for each i; the misinformation need not be consistent.

An execution of an algorithm A for given set of faulty nodes F is an infinite sequence
of actual configurations X = (x0,x1,x2, . . . ) such that xr+1 is reachable from xr for
all r.

Stabilisation. For an execution X = (x0,x1,x2, . . . ), define its t-tail

X[t] = (xt,xt+1,xt+2, . . . ).

We say that X stabilises in time t if one of the following holds:

X[t] = (0F ,1F ,0F , . . . ) or X[t] = (1F ,0F ,1F , . . . ).

Synchronous Counters. We say that an algorithm A stabilises in time t if for any
set of faulty nodes F with |F |  f , all executions of A stabilise in time t. An algorithm
A solves synchronous 2-counting if A stabilises in time t for some finite t; we refer to
such algorithms as 2-counting algorithms.

The Synthesis Problem. Now that we have formally defined what a 2-counting
algorithm is, we can give the definition for the synthesis problem of counting algorithms.
First, the decision version of the problem is the realisability problem. Given an instance
(n, f, s, t), the task is to decide whether there exists a 2-counting algorithm for a network
with n nodes satisfying the following properties:

1. the algorithm tolerates f failures,
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1. If more than (n+ f)/2 entries in u are 0:

· Switch to state 1.

2. Otherwise, if more than (n+ f)/2 entries in u are 1:

· Switch to state 0.

3. Otherwise:

· Flip the coin to get a random bit b 2 {0, 1}.
· Switch to state b.

Figure 4: A randomised 2-counting algorithm. All nodes follow the same algorithm.

2. each node uses at most s states,
3. the algorithm stabilises in at most t steps.

If such an algorithm exists, we say that the instance (n, f, s, t) is realisable. The
synthesis problem is to output an algorithm A if the instance is realisable or state that
no algorithm exists.

5 Human-Designed Algorithms

Before moving on to computer-designed algorithms using SAT-based techniques, in
this section we illustrate a few human-designed algorithms. First, we show that
randomisation helps when it comes to designing small-state (but slow) algorithms. This
is followed by a deterministic algorithm that solves the counting problem in the general
case with a large number of internal states.

Randomised Algorithms. We extend our model to randomised algorithms by
equipping each node with a private coin. Now in a single synchronous round, every
node can flip its coin to access one random bit. Thus, node i can decide on its new
state using the random bit b 2 {0, 1} and the observed configuration u 2 [s]n. Here we
call bit 1 heads. In contrast to the randomised algorithm by Dolev and Welch [23], the
following algorithm only uses two states.

Let n � 4, f < n/3, and s = 2. We can solve the 2-counting problem with the
algorithm of Figure 4.

Lemma 2. Let p be the probability that out of n� f � 1 fair coin flips, more than (n+
f)/2� 1 flips have the same value. Then the randomised algorithm solves synchronous
2-counting in 1/p+ 1 rounds in expectation.

Proof. Observe that no two distinct non-faulty nodes apply rules 1 and 2 during the
same round: if a node i sees the value 0 more than (n + f)/2 times, then any node
j must see value 0 at least (n � f)/2 times, and thus, j sees the value 1 fewer than
(n + f)/2 times. Moreover, if more than (n + f)/2 non-faulty nodes have the same
output, then the system will stabilise in the next round as all non-faulty nodes switch
to the same state.
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Next we argue that with probability at least p, more than (n+f)/2 non-faulty nodes
have the same state. We have three cases. In the first case, at least one non-faulty node
applies rule 1. Then in the worst case all other nodes flip their coins, so the system
stabilises with probability at least p. The second case, where at least one non-faulty
node applies rule 2, is symmetrical. Finally, the third case consists of all nodes flipping
their coins simultaneously. In this case, fix the output of a single non-faulty node and
repeat the analysis of the previous two cases.

The number of rounds before we stabilise follows a geometric distribution, so in
expectation, we get a successful streak of coin flips in 1/p rounds and stabilise during
the next round.

Theorem 1. For all n � 4 and f  n/3, the expected stabilisation time of the
randomised algorithm is bounded by

min{22f+2 + 1, 2O(f2/n)}.

Proof. We bound the probability p in Lemma 2 from which the expected stabilisation
time follows.

For the first bound, it su�ces to analyse the event where the first 2f + 1 non-faulty
nodes and at least half of the remaining non-faulty nodes all flip heads at the same
round, as 2f + 1� (n� f � 2f � 1)/2 > (n+ f)/2. Now observe that the probability
of 2f + 1 coin flips all being heads is 2�2f�1 and the probability that at least half of
out of N coin flips are heads is at least 1/2. Combining these observations gives us the
first bound: the probability of the analysed event is at least 2�2f�2 and the number
of trials for the first success follows a geometric distribution, and thus, the expected
number of trials is at most 22f+2.

For the second bound, if f = ⇥(n) then the second bound trivially follows from the
first. Suppose f = o(n). We use the fact [28, 46] that for any t 2 [N/8]

Pr[X � N/2 + t] � 1

15
exp(�16t2/N),

where X is the number of heads in N coin flips. Setting N = n � f � 1 and t =
b(n+ f)/2c+ 1�N/2 gives us the desired bound.

Deterministic Algorithms. We can leverage existing deterministic algorithms for
binary consensus to come up with synchronous counting algorithms. However, this
leads to a large number of states per node.

For example, this theorem follows from the results by Dolev and Hoch [20]:

Theorem 2. Let A be a deterministic algorithm that solves binary consensus in R
rounds for n nodes and f faults. Then there exists a deterministic algorithm B that
solves synchronous C-counting in time t 2 O(R+ C) for n nodes and f faults.

Now we can use any consensus algorithm, such as the phase king algorithm [4], to
get a synchronous counter. The phase king achieves optimal resilience and has O(f)
stabilisation time and uses O(log f) state bits (for keeping track of the current round
number) per node. However, the resulting synchronous counter relies on executing
O(f) consensus instances in parallel, which yields a very large state space. We get the
following corollary:

Corollary 1. For all n � 4, f < n/3 and C � 2, there is a deterministic C-counting
algorithm that stabilises in t 2 O(C + f) rounds and uses s 2 2O(logC+f log f) states.
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This approach is not very attractive, for example, from the perspective of hardware
implementations. For further discussion on human-designed algorithms, see a recent
survey [19] on the topic. We will now turn our attention to e�cient, deterministic,
computer-designed algorithms.

6 Projection Graphs

Before discussing how to find an algorithm (or prove that an algorithm does not exist),
let us first explain how we can verify that a given algorithm is correct. Here the concept
of a projection graph is helpful—see Figure 10 in the appendix for an example.

Fix the parameters s, n, and f , and consider a candidate algorithm A that is
supposed to solve the 2-counting problem. For each set F ✓ [n] of faulty nodes,
construct the directed graph GF (A) = (VF , RF (A)) as follows.

1. The set of nodes VF is the set of actual configurations.

2. There is an edge (u,v) 2 RF (A) if configuration v 2 VF is reachable from
configuration u 2 VF . In general, this may produce self-loops.

Note that the outdegree of each node in GF (A) is at least 1. Directed walks in GF (A)
correspond to possible executions of algorithm A, for this set F of faulty nodes. To
verify the correctness of algorithm A, it is su�cient to analyse the projection graphs
GF . The following lemmas are straightforward consequences of the definitions.

Lemma 3. Algorithm A stabilises in some time t i↵ for every F , graph GF (A) contains
exactly one directed cycle, 0F 7! 1F 7! 0F .

Lemma 4. Algorithm A stabilises in time t i↵ the following holds for all F :

1. In GF (A), the only successor of 0F is 1F and vice versa.

2. In GF (A), every directed walk of length t reaches node 0F or 1F .

Lemma 5. Let A be an algorithm. Consider any four configurations x,u,v,w 2 VF

with the following properties: (x,u) 2 RF (A), (x,v) 2 RF (A), and wi 2 {ui, vi} for
each i /2 F . Then (x,w) 2 RF (A).

7 Increasing the Number of Nodes

It is not obvious how to use computational techniques to design an algorithm that
solves the 2-counting problem for a fixed f = 1 but arbitrary n � 4. However, as we
will show next, we can generalise any algorithm so that it solves the same problem for
a larger number of nodes, without any penalty in time or space complexity. Therefore
it is su�cient to design an algorithm for the special case of f = 1 and n = 4. From
the perspective of parametrised verification and synthesis, the following lemma can be
regarded as a cut-o↵ result [27, 37].

Lemma 6. Fix n � 4, f < n/2, s � 2, and t � 1. Assume that A is an algorithm
that solves the 2-counting problem for n nodes, out of which at most f are faulty, with
stabilisation time t and with s states per node. Then we can design an algorithm B
that solves the 2-counting problem for n+ 1 nodes, out of which at most f are faulty,
with stabilisation time t and with s states per node.
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Proof. The claim would be straightforward if we permitted the stabilisation time of
t+ 1. However, some care is needed to avoid the loss of one round.

We take the following approach. Let p be a projection that removes the last element
from a vector, for example, p((a, b, c)) = (a, b). In algorithm B, nodes i 2 [n] simply
follow algorithm A, ignoring node n:

Bi(ui) = Ai(p(ui)).

Node n tries to predict the majority of nodes 0, 1, . . . , n� 1, i.e., what most of them
are going to output after this round:

• Assume that node n observes a configuration un. For each i 2 [n], define
hi = Ai(p(un)). If a majority of the values hi is 1, then the new state of node n
is also 1; otherwise it is 0.

To prove that the algorithm is correct, fix a set F ✓ [n+ 1] of faulty nodes, with
|F |  f . Clearly, all nodes in [n]\F will start counting correctly at the latest in round t.
Hence any execution of B with n 2 F trivially stabilises within t rounds; so we focus
on the case of F ✓ [n], and merely need to show that also node n counts correctly.

Fix an execution X = (x0,x1, . . .) of A, and a time step r � t. Consider the state
vector xr�1. By assumption, A stabilises in time t. Hence the successors of xr�1 in
the projection graph must be in {0F ,1F }.

The key observation is that only one of the configurations 0F and 1F can be the
successor of xr�1. Otherwise Lemma 5 would allow us to construct another state that
is a successor of xr�1, contradicting the assumption that A stabilises.

We conclude that for all rounds r � t and all nodes i 2 [n] \ F , the value hi is
independent of the states communicated by nodes in F . Since the values hi are identical
and n�f > f , node n attains the same state as other correct nodes in rounds r � t.

Other Network Topologies. Recall that our basic definitions only consider algo-
rithms that operate in fully-connected networks, that is, the topology of the communi-
cation network is a complete graph. Next we show that it is relatively straightforward
to generalise our small-state algorithms to other network topologies as well—albeit
with a slight increase in the stabilisation time. The idea is to have a small core of
nodes to initially solve synchronous counting, and from thereon, propagate the solution
throughout the network. This approach was originally introduced by Braud-Santoni et
al. [9]. We now show how this idea can be applied in a large class of graphs.

Consider the following families of graphs G(k,m, d) for integers k,m, d > 0. Let
G = (V,E) be a graph. We say G 2 G(k,m, d) if there exists a partition V

0

, . . . , Vd of
the nodes V such that

1. V
0

is a k-clique.

2. Each node i 2 Va has at least m neighbours in V
0

[ · · · [ Va�1

.

Put otherwise, we can characterise G(k,m, d) using the following game (which is
reminiscent of threshold models in the context of influence spreading in social networks).
Initially, colour all vertices of graph G white. We pick a clique of k nodes and colour
all the nodes black. Now any node with at least m black neighbours switches its own
colour black. If after d iterations all nodes are coloured black, then G 2 G(k,m, d). See
Figure 5 for examples.
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G1

G3

G2

Figure 5: Examples of generalised network topologies. Nodes encompassed within a
rectangle form a clique from which the stabilisation propagates throughout the network.
Here, G

1

2 G(4, 3, 1) and G
2

2 G(5, 3, 1). The partially illustrated graph G
3

2 G(4, 3, k)
is a cycle where there are additional edges to all neighbours within distance 3.

Lemma 7. Assume A is an algorithm that solves synchronous 2-counting in a complete
network of n nodes, out of which at most f are faulty, with stabilisation time t and
with s states per node. Then for any G 2 G(n, 2f + 1, d), we can design an algorithm
B that solves the synchronous 2-counting in G using s states per node. Moreover, B
tolerates f failures and stabilises in time t+ d� 1.

Proof. Let G 2 G(n, 2f + 1, d) be our network topology. Fix a partition V
0

, . . . , Vd

where V
0

= {1, . . . , n} is a n-clique. We construct an algorithm B using the following
rules:

1. If i 2 V
0

= K, then i outputs Ai(x1, . . . , xn).

2. If i 2 Va for some a > 0, then node i follows the majority of neighbours in
V
0

[ · · ·[Va�1

. If the majority has output y, then output 1�y. Otherwise output
the current state.

We argue that at time step t + r, all nodes in V
0

[ · · · [ Vr+1

have stabilised. The
case of r = 0 follows from Lemma 6. Suppose the claim holds for some r0 and
consider node i 2 Vr0+2

. By the induction assumption and definition of G, i has a set
P ✓ V

0

[ · · · [ Vr0+1

of at least 2f + 1 neighbours.
Now node i sees a majority of more than f +1 nodes in P having the same output y.

Thus node i outputs 1� y and is in agreement with non-faulty nodes in P in the next
round. Since there are d + 1 sets in the partition of V , the algorithm stabilises in
t+ d� 1 steps.

It is known that consensus cannot be solved in networks with vertex-connectivity
less than 2f+1 [18], and by Lemma 1, this result carries over to synchronous 2-counting.

Beyond Synchronous Counting. We note that the previous lemmas hold for a
larger class of problems as well: if it su�ces that a node v simply follows a majority of
its neighbours, the generalisation techniques can be applied. These problems include,
for example, binary consensus and set agreement [9].
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8 Computer-Designed Algorithms

In principle, we could now attempt to use a computer to tackle our original problem.
By the discussion of Section 7, it su�ces to discover an algorithm with the smallest
possible s for the special case of n = 4 and f = 1. We could try increasing values of
s = 2, 3, . . . . Once we have fixed n, f , and s, the problem becomes finite: an algorithm
is a lookup table with ` = nsn entries, and hence there are s` candidate algorithms to
explore. For each candidate algorithm, we could use the projection graph approach of
Section 6 to quickly reject any invalid algorithm.

Unfortunately, the search space grows very rapidly and super-exponentially in the
parameters n, s, and f . As we will see, there is no algorithm with n = 4 and s = 2. For
n = 4 and s = 3, we have approximately 10154 candidates. We use three complementary
approaches to tackle the task.

1. Reduce (encode) the problem directly to propositional satisfiability and apply
SAT solvers.

2. Instead of directly encoding the problem as SAT, apply a SAT-based iterative
counter-example guided abstraction refinement approach, in hope of better coping
with the inherent combinatorial explosion.

3. Narrow down the search space by also considering restricted classes of algorithms.

The first approach is discussed in Section 9 and the second approach in Section 10. We
will now describe the third approach, restricting the class of algorithms.

Cyclic Algorithms. We will consider two classes of algorithms—general algorithms
(without any restrictions) and cyclic algorithms. We say that algorithm A is cyclic if

Ai((xi, xi+1

, . . . xn�1

, x
0

, x
1

, . . . , xi�1

)) = A
0

((x
0

, x
1

, . . . , xn�1

))

for all i and all x. That is, a cyclic algorithm is invariant under cyclic renaming of the
nodes.

There is no a priori reason to expect that the most e�cient algorithms are cyclic.
However, cyclic algorithms have many attractive features: for example, in a hardware
implementation of a cyclic algorithm we only need to take n copies of identical modules.
Furthermore, the search space is considerably smaller: we only need to define transition
function A

0

. For n = 4 and s = 3, we have approximately 1038 candidate algorithms.
Cyclic algorithms are also much easier to verify. The projection graphs GF (A) are

isomorphic for all |F | = 1 and hence it is su�cient to check one of them.

Results. We now present our main results on the new computer-generated algorithms
and refer the discussion on how the results were obtained to Sections 9 and 10.

The positive results are reported in Table 1. The key findings are a cyclic algorithm
for s = 3, n = 4, and f = 1, and a non-cyclic algorithm for s = 2, n = 6, and
f = 1. The table also gives examples of space-time tradeo↵s: we can often obtain faster
stabilisation if we use a larger number of states.

For the sake of comparison, we note that the fastest deterministic algorithm from
prior work [20] stabilises in time t = 13 for f = 1 and it requires a large state space.
Our algorithms achieve the stabilisation time of t = 5 for s = 4 and t = 7 for s = 3.
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class nodes (n) states (s) stabilisation time (t)

cyclic 4 3 7
5 3 6
6 3 3
7 2 8
8 2 4

general 4 4 5
5 3 4
6 2 6

Table 1: Summary of computer-designed algorithms. The number of nodes n is the
smallest network on which the algorithm works and t is the worst-case stabilisation
time.

Machine-readable versions of all positive results, together with a Python script that
can be used to verify the correctness of the algorithms, are freely available online [1].
Selected examples of the algorithms are also given in Appendix A. We also provide a
compact, computer-checkable proof that shows that there is no algorithm for s = 2,
n = 4, and f = 1, together with a verification program [1].

9 Synthesis via Directly Encoding to SAT

In this section, we describe how to directly encode the synthesis problem into SAT. At
a high level, we take the following approach:

1. Fix the parameters s, n, f , t, and the algorithm family (cyclic or general).

2. Construct a propositional formula ' that is satisfiable i↵ an algorithm A for the
given parameters exists.

3. Use SAT solvers to find a satisfying assignment a of '.

4. Translate a to an algorithm A.

In essence, the formula ' encodes the conditions given in Lemma 4 and the SAT
solver (implicitly) searches through all algorithms A:

1. Guess an algorithm A and construct the projection graph GF (A).

2. Verify that there are no self-loops in GF .

3. Verify that the only successor of 0F is 1F and vice versa.

4. For each d = 1, 2, . . . , t, find the subset BF (d) ✓ VF of configurations with the
following property: for each x 2 BF (d) there is a directed walk of length d in GF

that starts from x and does not traverse 0F or 1F . We say that x 2 BF (d) is a
d-bad configuration.

5. Verify that the set BF (t) is empty.

15



For cyclic algorithms, we identify equivalent transitions and add corresponding equiva-
lence constraints into the formula.

In the following, we describe the encoding by giving constraints for a single set
F ✓ [n] of faulty nodes. The final formula is then the conjunction of these constraints
over every possible choice of faulty nodes F .

Variables. Fix F ✓ [n] and let u 2 [s]n, x,y 2 VF , i 2 [n], d 2 [t], and c 2 [s]. We
will use the following variables in the encoding:

• a(u, i, c) is true if Ai(u) = c,
• h(x, i, c) is true if the adversary can force node i to switch to state c from

configuration x,
• e(x,y) is true if there exists an edge (x,y) 2 RF ,
• b(x, d) is true if the configuration x 2 BF (d).

Transition Functions. The a-variables describe the algorithm, that is, the transition
function Ai for each node i. Since we want each Ai to be a well-defined function, we
enforce the following constraints for all u 2 [s]n, i 2 [n]:

_

c2[s]

a(u, i, c) (1)

and, for all c 2 [s],

a(u, i, c)!
� ^

c02[s]\c

¬a(u, i, c0)
�
. (2)

Observe that if the constraints given in (2) are omitted, then Ai may be a relation: a
node may have several possible state transitions from a given observed state. Although
one could always post-process each Ai into a function, allowing transition relations
instead of function will only help the adversary.

Projections. Let x,y 2 VF be configurations. Recall from Section 4 the definition
of reachability. If the actual configuration is x, then the adversary can choose any
observed configuration from the set

U(x) = {u 2 [s]n : ⇡F (u) = x}

for each non-faulty node. For all u 2 U(x), we have

a(u, i, c)! h(x, i, c), (3)

declaring that the adversary can force node i to switch to state c from configuration x.
Now, the h-variables imply edges in the projection graph GF :

^

i2[n]\F

h(x, i, yi)! e(x,y). (4)

Ensuring Counting Behaviour. The goal of the algorithm is to eventually stabilise
and start oscillating only between the two actual configurations 0F and 1F . To enforce
this, we have the clauses

e(0F ,1F ) and e(1F ,0F ) (5)

together with
¬e(0F ,x) and ¬e(1F ,x) (6)

for all x 2 VF \ {0F ,1F }.
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Forbidding Non-Stabilising Walks. First, we forbid self-loops in the projection
graphs with the unit clause

¬e(x,x) (7)

for every x 2 VF . To ensure that all configurations but 0F and 1F belong to the set
BF (0), we have the clauses

¬b(0F , 0) and ¬b(1F , 0), (8)

and, for each x 2 VF \ {0F ,1F }, the clause

b(x, 0). (9)

If a configuration x can reach a d-bad configuration y 2 BF (d), then x must be
(d+ 1)-bad. This is captured by the clause

�
e(x,y) ^ b(y, d)

�
! b(x, d+ 1) (10)

for each x,y 2 VF . Finally, in order for the algorithm to eventually stabilise in the
time limit t, we require that there are no t-bad configurations:

¬b(x, t). (11)

Extension: Non-Uniform Stabilisation Time. It is straightforward to generalise
the approach to non-uniform stabilisation time as follows, for some t

0

< t:

• if |F | = 0, the algorithm stabilises in time t
0

,
• if |F | = 1, the algorithm stabilises in time t.

This means that in executions where there are no Byzantine failures, we require the
synthesised algorithm A to stabilise faster. Put otherwise, we constrain the projection
graph G;(A) so that all directed walks of length t

0

< t reach state 0 or 1. This is
done by simply adding the previously described constraints for all F ✓ [n], but the
stabilisation time bound used for the case |F | = 0 is t

0

instead of t. These additional
constraints can potentially help with the synthesis, by making the search space smaller,
and it also helps with the quality of the algorithms.

Many of our algorithms are synthesised with this kind of encoding, with t
0

= 2 or
t
0

= 3. Hence they not only work correctly in the presence of a Byzantine failure, but
they also stabilise very quickly if all nodes are non-faulty. See the online supplement [1]
for details.

10 SAT-Based Counter-Example Guided Search

We now describe an alternative approach for synthesising synchronous counting algo-
rithms: a counter-example guided search algorithm. The structure of our algorithm
is similar to counter-example guided abstraction refinement techniques for model
checking [13, 14] which have previously been successfully applied in various other
computationally hard problem domains [2, 17, 24, 29, 33, 38–40, 55]. We repeatedly
(1) try to construct an algorithm, (2) check whether the algorithm is correct, and (3) if
not, then refine the encoding.

On a high-level, the search algorithm tries to guess a synchronous counting algorithm
A and then uses a SAT solver to find a counter-example, an execution that does not
stabilise, for A. If one is found, then the counter-example is used to include additional
constraints to prune the search space, that is, to rule out at least the found counter-
example from the implicit set of remaining algorithm candidates. Otherwise, A must
be a correct algorithm.
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10.1 Encoding

For this approach, we use a symbolic encoding reminiscent of SAT-encodings for bounded
model checking [5]. As we want the SAT solver to verify that no counter-examples
exist, we use an encoding where the SAT solver finds (i) a set F of faulty nodes and
(ii) a bad execution under F for the counting algorithm.

Variables. Unlike previously, here we use a bit-wise encoding for the states. Each
node has B = log(s) bits that represent its state. Here an observed configuration u is
represented as a bit string of length nB; each node has B bits to encode its state in [s].
If s is not a power of two, then we add extra constraints that only allow s states to be
used.

We now list the variables used in the encoding and their semantics:

• p(i) is true if node i is faulty. In other words, p(i) = 1 implies i 2 F .

• a(u, i, b) represents the bth bit of the next state of node i when it observes the
configuration u 2 {0, 1}nB.

• u(i, j, b, k) is the bth bit of node i as observed by node j at time step k.

• z(k) and o(k) are true if all non-faulty nodes are in state 0 or 1, respectively, at
time step k.

• z(i, k) and o(i, k) are true if i is faulty or it is in state 0 or 1, respectively, at
time step k.

We will also use the short-hand g(i, b, k) = u(i, i, b, k) to represent the bth bit of node i
at time step k. Next we define each part of the encoding as a separate formula.

Choosing the Set of Faulty Nodes. We now define the subformula  
faulty

. We
want the solver to be able to guess a set F of faulty nodes under which a counter-
example exists. To achieve this, we add constraints that force exactly f of the p(i)
variables to be true.

In the following let k 2 [f ], i 2 [n] and j 2 [n] \ {0}. We will introduce the following
variables:

• p
=

(k, i) is true if the kth faulty node is i.
• p(k, i) is true if the kth faulty node is at most i.

To enforce the semantics of these variables, we use the following clauses:

p
=

(k, i)! p(k, i), (12)

p(k, j)! (p
=

(k, j) _ p(k, j � 1)), (13)

p(k, j � 1)!
�
p(k, j) ^ ¬p

=

(k, j)), (14)

¬p
=

(k, 0)! ¬p(k, 0). (15)

To ensure that exactly f faulty nodes will be chosen, we use the following clauses:
we enforce that at least one node is designated as the kth faulty node with

p(k, n� 1), (16)

and we enforce that there is a strict ordering among the nodes with

p
=

(h� 1, i)! ¬p(h, i) (17)
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for all h 2 [f ] \ {0}. Finally, we establish the correspondence to p(i) variables by
enforcing

�
p
=

(k, i)! p(i)
�
^
�
p(i)!

_

k02[f ]

p
=

(k0, i)
�
. (18)

Trivial Transitions. Next, we give clauses that fix the trivial transitions for syn-
chronous counting. The conjunction of these clauses is denoted as  

trivial

.
Let 0 and 1 correspond to the observed configuration where all nodes are in state

0 or state 1, respectively. The state 0 2 [s] is encoded by a bit-string with all zeros,
whereas 1 2 [s] is encoded as the 0th bit set to one and all other bits zero. Now, for all
i 2 [n] and b 2 [B] \ {0}, we enforce

a(0, i, 0) and ¬a(0, i, b), (19)

declaring that after observing configuration 0, node i must change its state to 1 2 [s].
Conversely, from configuration 1 we need to transition to state 0. Thus, for all b 2 [B]
we have

¬a(1, i, b). (20)

Representing State Transitions. Let k 2 [t]. We now define the subformula
 k,state encoding the systems behaviour at time step k.

If node i is non-faulty, then the state of node i is observed correctly by all other
nodes. This is enforced with

¬p(i)!
�
u(i, j, b, k)$ g(i, b, k)

�
(21)

for all i, j 2 [n] and b 2 [B].
For every observable configuration w 2 [s]n, we introduce an auxiliary variable

d(w, i, k) representing that node i observes w at timepoint k. Let w(i, b) denote the bth
bit of the binary representation of the state of node i in the observed configuration w.

To enforce the semantics of d(w, i, k), for every observable configuration w 2 [s]n

and every j 2 [n] the following constraint is needed:

¬d(w, j, k)!
  

_

i2[n], b2[B] : w(i,b)=0

u(i, j, b, k)

!
_

 
_

i2[n], b2[B] : w(i,b)=1

¬u(i, j, b, k)
!! (22)

The intuition behind (22) is that, if d(w, j, k) is false, then there must be at least
one bit in the bit representation of the state observed by node j at timepoint k that is
unequal to the bit representation of w.

Finally, the state transitions of the system are enforced by the clauses

d(w, i, k � 1)!
�
g(i, b, k)$ a(w, i, b)

�
, (23)

where k > 0, w 2 [s]n, i 2 [n] and b 2 [B]. Equation 23 enforces that if at the previous
timepoint we observed state w, then the state of node i equals the successor state of w
as specified by the transition relation of node i.
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Indicators for Stabilisation. Finally, we define the behaviour of the z- and o-
variables; the conjunction of these clauses is the subformula  k,indicator. Recall that at
timepoint k, the variable z(k) is true i↵ the actual configuration is 0F , and respectively
o(k) is true i↵ the actual configuration is 1F . The equivalence is given by clauses which
enforce for all i 2 [n], k 2 [t]:

z(k)! z(i, k) and o(k)! o(i, k), (24)

together with

¬z(k)!
_

j2[n]

¬z(j, k) and ¬o(k)!
_

j2[n]

¬o(j, k). (25)

It remains to describe the clauses that force the semantics of z(i, k) and o(i, k) variables.
First, if a node i is faulty then both z(i, k) and o(i, k) are forced to true:

p(i)!
�
z(i, k) ^ o(i, k)

�
. (26)

For the z-variables, we enforce for all b 2 [B] the clauses

z(i, k)!
�
p(i) _ ¬g(i, b, k)

�
(27)

and the disjunction

¬z(i, k)!
_

b2[B]

g(i, b, k), (28)

declaring that z(i, k) is true i↵ i is faulty or in state 0 2 [s]. Similarly for the o-variables,
as state 1 2 [s] was encoded as the bit string 10 . . . 0, we declare the following clauses
to constrain the o-variables:

o(i, k)!
⇣
p(i) _

�
g(i, 0, k) ^

^

b2[B]\{0}

¬g(i, b, k)
�⌘

(29)

together with the disjunction

¬o(i, k)!
�
¬g(i, 0, k) _

_

b2[B]\{0}

g(i, b, k)
�
. (30)

Combining the Subformulas. The counter-example guided search algorithm incre-
mentally builds a propositional formula to use for both verification and synthesis. In
the algorithm description, we will refer to the following formulas:

 
base

=  
faulty

^  
trivial

, (31)

which gives the basis of the encoding, and, for each k � 0,

⌧k =  k,state ^  k,indicator, (32)

which encodes the unrolling of time.
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1. Let    
base

^ ⌧
0

^ ⌧
1

.

2. While 9⇢ such that ⇢ |=  ^  
illegal

:

· Let    ^  
forbid

(⇢, 1).

3. Let    ^ ⌧
2

^ · · · ^ ⌧t.

4. While 9⇢ such that ⇢ |=  :

(a) If 9� such that � |=  ^ �(⇢) ^ ¬z(t) ^ ¬o(t):
· Let    ^  

forbid

(�, t).

(b) Otherwise:

· Stop and output “A(⇢) is a correct algorithm”.

5. Stop and output “no algorithm exists”.

Figure 6: Basic search algorithm. Steps 2, 4, and 4a resort to a SAT solver to find a
satisfying assignment of a given formula.

10.2 Basic Search Algorithm

Our search algorithm will iteratively construct a sequence  
0

, 
1

, . . . of formulas until
a stabilising 2-counting algorithm is found. Given a satisfiable formula  i, a satisfying
assignment ⇢ defines the following:

• A(⇢): an algorithm defining the n transition functions A
1

, . . . , An,

• F (⇢) ✓ [n]: a set of f faulty nodes,

• X(⇢) = (x0, . . . ,xk): an execution of A under the set F (⇢) of faulty nodes,

• U(⇢) = {uij : i 2 [n] \ F (⇢), j 2 [k]}: the configurations observed by non-faulty
nodes.

That is, the algorithm A(⇢) is determined by the a(·) variables assigned true in ⇢, the
set F (⇢) by the p(·) variables, and so on.

If an assignment ⇢ exists, then either A(⇢) is a correct algorithm or X(⇢) gives an
execution that violates the specification of synchronous 2-counting. In the latter case,
the search algorithm inspects X(⇢) and adds constraints that forbid any other solutions
⇢0 such that A(⇢) = A(⇢0). Of course, a näıve approach is to add constraints that
explicitly exclude algorithm A. However, inspecting the transition functions carefully
allows for more frugal constraints that forbid several algorithms, that is, a tighter
abstraction refinement.

The basic search algorithm is given in Figure 6. Step 1 defines the initial formula
that acts as a basis for the incremental search. In Step 2, the search algorithm first
removes all algorithm candidates that do not correctly oscillate between the 0F and 1F
states even in the special case when the system starts from either state. The formula
 
illegal

is defined as (z(0) ^ ¬o(1)) _ (o(0) ^ ¬z(1)), and the formulas  
forbid

(·, ·) are
constraints that remove bad algorithms from the search space—we will describe these
in detail in Section 10.3.
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Step 4 asks the SAT solver to guess an algorithm candidate A(�). In Step 4a, the
SAT solver is used to find a counter-example to A(�) to see whether it stabilises. If a
counter-example is found, then we use the counter-example to add more constraints
to prune the search space. Here, the formula �(⇢) encodes A(⇢) as a conjunction of
literals consisting of variables a(u, i, b). Step 4b is reached if no counter-example is
found, meaning that A is a correct algorithm for synchronous counting.

Finally, if we reach Step 5, we know that  is unsatisfiable, and hence, there does
not exist any correct algorithms for the given parameters.

Remark. Note that there exist several possible trade-o↵s between having a simple search
algorithm and speeding up synthesis by introducing problem-specific knowledge into
the algorithm and encoding. For example, Step 2 essentially learns Lemma 4.1 which
we could also directly encode into the base formulas. In Step 4, we can introduce z(0)
as a conjunct into the formula to make the search for A(�) intuitively easier, and so
on. However for clarity of exposition, we will focus on more general algorithmic ideas
instead of problem-specific tunings.

10.3 Refinement through Counter-Examples

Once the SAT solver finds a counter-example, we need to forbid algorithms that exhibit
the incorrect behaviour. Intuitively, we add constraints that force the change of some
transitions that caused the bad execution.

Formally, we construct  
forbid

(�, k) as follows. Let x0, . . . ,xk be the execution X(�)
and let uij be the configuration observed by node i /2 F (�) at timepoint j < k. The
literals responsible for the transitions are divided into two sets, P+ and P�, as follows:

(i, j, b) 2 P+ i↵ �[a(uij , i, b)] = 1

(i, j, b) 2 P� i↵ �[a(uij , i, b)] = 0.

Above, �[x] 2 {0, 1,?} denotes the value (false, true, unassigned) of variable x in
assignment �. Now the constraint is

 
forbid

(�, k) =
_

(i,j,b)2P+

a(uij , i, b) _
_

(i,j,b)2P�

¬a(uij , i, b). (33)

Note that the case P+ = P� = ; must be a contradiction, and hence the formula is
always non-empty.

10.4 Improvement: Finding Short Loops

The constraint can be strengthened when X(�) contains a loop x0, . . . ,xh for some
h < k, by then only considering timepoints j  h when constructing the sets P+

and P�. Then, instead of stating that some transition must be changed in the entire
length-k execution, we state that it su�ces to change something for only h < k of the
steps. This results in a shorter disjunction in the constraint.

To this end, we modify Step 4 in the basic search algorithm as shown in Figure 7.
We introduce a new variable `(k) which is true i↵ x0 = xk. We first find the smallest
k < t for A(⇢) such that a bad execution consisting of a length-k loop exists. If no such
loop exists, we proceed as before. Otherwise, we use the counter-example consisting of
a loop to refine the current abstraction.
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4. While 9⇢ such that ⇢ |=  :

(a) If 9k  t and 9� such that � |=  ^ �(⇢) ^ `(k):
· Let    ^  

forbid

(�, k⇤), where k⇤ is the smallest such k.

(b) Otherwise, if 9� such that � |=  ^ �(⇢) ^ ¬z(t) ^ ¬o(t):
· Let    ^  

forbid

(�, t).

(c) Otherwise:

· Stop and output “A(⇢) is a correct algorithm”.

Figure 7: Finding short loops: modifications to Step 4 of Figure 6.

10.5 Improvement: Overshooting and Unrolling on Demand

Usually we are interested in knowing whether there exist any stabilising counting
algorithm for given parameter values s, n, and f . For this task, we modify the
search algorithm so that it can first quickly find some algorithm, possibly with a very
long stabilisation time, and then gradually further tightening the stabilisation-time
requirement.

The overshooting algorithm is given in Figure 8. It unrolls the encoding on demand.
By setting t =1, the algorithm tries to find any algorithm that stabilises. Of course,
as the state space is finite, there is also a finite upper bound on t that can be used here.

The algorithm works as follows. Step 4a searches for the smallest i such that a
i-loop counter-example exists for A(⇢). In Step 4b, if we have already unrolled the
execution to at least i steps, then we add new constraints. Otherwise, Step 4c attempts
to find a counter-example ⇡ of length k. If k < t, then we unroll the encoding for
one additional time step, as it may be that our current time bound k is too small
for a stabilising algorithm to exist. Otherwise, we prune the search space using the
counter-example ⇡.

11 Empirical Results

So far we have introduced two di↵erent approaches for constructing synchronous
counting algorithms. Now the obvious question remains: which one is better? To
answer this, we empirically compared the direct encoding given in Section 9 against
the counter-example guided algorithm described in Section 10. In particular, our goal
was to find out which method is more useful in practice when one wants to synthesise
new algorithms.

Solvers. For solving instances via the direct propositional encoding, we used two
freely available state-of-the-art complete SAT solvers: MiniSAT [26] (version 2.2.0 with
simplifications) and lingeling (version ayv) [6]. The input formula was encoded in
the standard DIMACS CNF file format. As both solvers allow a wide range of di↵erent
parameters to fine-tune the solver search routines, we settled on running both solver
using their respective default parameters.

Our implementation of the counter-example guided search, dubbed as symsync,
builds on top of the incremental interface of the MiniSAT solver [25]. We used the
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1. Let    
base

^ ⌧
0

^ ⌧
1

.

2. While 9⇢ such that ⇢ |=  ^  
illegal

:

· Let    ^  
forbid

(⇢, 1).

3. Let k  1.

4. While 9⇢ such that ⇢ |=  ^ z(0):

(a) Let i min
�
j  k : 9�j such that �j |=  ^ �(⇢) ^ `(j)

 
[ {1}.

(b) If i  k:

· Let    ^  
forbid

(�i, i).

(c) Otherwise, if 9⇡ such that ⇡ |=  ^ �(⇢) ^ ¬z(k) ^ ¬o(k):
· If k < t:

· Let k  k + 1 and    ^ ⌧k,
· Resume from Step 4a.

· Otherwise:

· Let    ^  
forbid

(⇡, k).

(d) Otherwise:

· Output “A(⇢) is a correct algorithm that stabilises in k steps”,
· Let k  k � 1 and t k,
· Resume from Step 4b.

5. Stop and output: “no algorithm exists that stabilises in time t”.

Figure 8: Overshooting algorithm.
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class n s t realisable? log
10

of #candidates

cyclic 4 3 6 no 38
7 2 3 no 38
8 2 3 no 77

4 3 7 yes 38
5 3 6 yes 115
6 3 3 yes 347
7 2 8 yes 38
8 2 4 yes 77

general 4 3 7 yes 154
5 2 79 no 48
5 3 4 yes 579
6 2 6 yes 115
7 2 8 yes 269

Table 2: Problem instances used in the empirical experiments. For all realisable
instances, we also run the experiments for relaxed instances with stabilisation time
t+ 1, 2t, and the maximum possible stabilisation time. The last column gives the log

10

of the number of algorithm candidates.

overshooting variant of the counter-example guided search. Thus, the solver relaxes the
time bound when it does not find a correct algorithm matching the target stabilisation
time, but after finding some stabilising algorithm, the solver will then gradually tighten
the time bound.

Experiment Setup. Recall that an instance of the synthesis problem consists of the
class of algorithms (general or cyclic) and four parameters: number of nodes n, faulty
nodes f , states s, and the stabilisation time t. We chose a set of problem instances
consisting of both realisable (an algorithm exists) and unrealisable (no algorithm exists)
instances, as listed in Table 2. We attempted to choose instances of various di�culty,
but still solvable within a four hour limit on CPU time; we note that some of the
algorithms presented in Table 1 of Section 8 required considerably longer time to
synthesise.

For each problem instance, we ran N = 100 copies of each of the three solvers,
initialising every process with a di↵erent random seed. We recorded the running time,
the maximum memory footprint, and other statistics for each process. When using
the direct encoding, we did not include the time required to generate the instance.
The experiments were run on a computing cluster with Intel Xeon X5650 2.67-GHz
processors. Each process was single-threaded and the memory limit was set to 8 GB.

For each realisable problem instance listed in Table 2, we also ran the same
experiment setup as above for relaxed instances by increasing the stabilisation time
bound in three ways: increasing the stabilisation bound by one, doubling the bound,
and finally using the maximal bound of t = sn�f � 2 time steps. Intuitively, suboptimal
algorithms with a longer stabilisation time should be more common, and hence, perhaps
easier to find. However, this also increases the size of the search space and the size of
the SAT instances.
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Running time (seconds)

Instance MiniSAT lingeling symsync

class n s t 10% 50% 90% 10% 50% 90% 10% 50% 90%

cyclic 4 3 7 1 1 1 1 1 1 1 2 6
8 1 1 3 1 1 1 1 1 5
14 1 1 1 1 1 1 1 1 4
25 1 1 2 1 1 1 1 1 4

5 3 6 2373 — — 803 2715 — — — —
7 1477 13305 — 44 632 711 ? — —
12 25 436 3009 12 16 91 5 31 1014
79 66 672 4180 114 167 441 3 18 42

6 3 3 79 3634 — 16 22 70 — — —
4 ? — — 178 272 3734 — — —
6 2053 — — 251 2451 4344 ? — —

241 6930 — — 1981 2735 — 41 505 —

7 2 8 34 604 4177 65 — — ? — —
9 32 560 2356 21 26 101 5233 — —
16 16 102 661 18 72 79 2 20 84
62 41 442 1921 60 185 267 2 5 35

8 2 4 7 101 440 19 67 81 — — —
5 15 119 797 28 56 83 — — —
8 62 558 3000 50 56 216 622 7304 —

126 850 4117 — 967 3945 7993 9 21 145

general 4 3 7 10859 — — 4246 — — — — —
8 2639 — — 497 — — — — —
14 2884 — — 3211 — — — — —
25 2600 — — 13639 — — — — —

5 3 4 ? — — ? — — — — —
5 ? — — ? — — — — —
8 ? — — ? — — — — —
79 — — — — — — — — —

6 2 6 — — — — — — 1167 — —
7 — — — — — — 541 — —
12 ? — — ? — — 69 1782 —
30 ? — — ? — — 46 382 2069

7 2 8 — — — — — — 528 — —
9 — — — — — — 354 8990 —
16 — — — — — — 111 946 —
62 — — — — — — 75 415 —

Table 3: Summary of realisable problem instances. The solver columns indicate the
first, fifth (median), and ninth decile of running times in seconds. Columns marked
with ? indicate that a solution was found by some but less than 10% of the processes.
For the first decile we have highlighted the running time of the fastest solver. Here
f = 1 for all cases.
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Figure 9: Example of synthesis times. The x axis is the logarithm of time in seconds
and the y-axis is the fraction of processes that had solved the problem instance.
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Results. The synthesis times for realisable instance are summarised in Table 3 and
Figure 9. For each solver, the table gives the median together with first and ninth
decile of synthesis times (in seconds). The time to generate the propositional formula
for direct encoding instances is not included in the running times of MiniSAT and
lingeling solvers, but is for symsync solver, as it iteratively generates its internal
encoding within the CEGAR loop during execution.

The immediate observation is that neither direct encoding or the CEGAR approach
consistently outperform the other. However, it is easy to see some patterns. First, the
direct encoding works well for finding optimal or nearly-optimal algorithms, but finding
some algorithm is much faster with symsync. On the other hand, symsync rarely
manages to find optimal algorithms within the time limit of four hours or the memory
limit of eight gigabytes.

Typically, when the solvers failed to find a solution, this was due to hitting the time
limit. The only notable exceptions to this were the instances for general algorithms
with n = 5 and s = 3, where each symsync instance ran out of memory in each case,
and the cyclic instances with n = 6 and s = 3, where most of the failures were caused
by running out of memory. Neither MiniSAT nor lingeling ran out of memory in
these experiments.

The second pattern is that in many cases symsync gives solutions to instances with
s = 2 states at least an order of magnitude faster than the direct encoding approach.
For general algorithms with n 2 {6, 7}, the direct encoding approach does not even
produce results in the given time limit.

Indeed the observed behaviour is expected. The symsync solver refines the abstrac-
tion and relaxes the time bound if a fast algorithm is not found steadily increasing the
size of the encoding. Usually, some algorithm will be encountered, and from thereon,
the solver will simply proceed by adding new constraints until an algorithm with the
desired time bound is found. On the other hand, trying to find some algorithm using
the direct encoding amounts to simply increasing the time bound to a large enough
value right from the start—this greatly increases the size of the propositional formula
making the search slower.

When comparing the two di↵erent SAT solvers used in the direct encoding approach,
rather unsurprisingly, the actively developed lingeling solver outperforms MiniSAT.
We suspect that lingeling greatly benefits from its inprocessing capabilities, which
are not present in the other solvers.

The results for unrealisable instance are listed in Table 4. For unrealisable instances,
it is relatively clear that the direct encoding outperforms the counter-example guided
approach, although symsync is able to prove the non-existence of a two-state algorithm
for n = 5 nodes in time comparable to the direct encoding approach.

12 Conclusions

In this work, we have used computational techniques to study the synchronous counting
problem. At first sight the problem is not well-suited for computational algorithm
design—we need to reason about stabilisation from any given starting configuration,
for any adversarial behaviour, in a system with arbitrarily many nodes. Nevertheless,
we have demonstrated that computational techniques can be used in this context to
discover novel algorithms.

Our algorithms outperform the best human-designed algorithms: they are deter-
ministic, small (2  s  3), fast (3  t  8), and easy to implement in hardware or in
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Running time (seconds)

Instance MiniSAT lingeling symsync

class n s t 10% 50% 90% 10% 50% 90% 10% 50% 90 %

cyclic 4 3 6 2 3 3 4 6 6 — — —
7 2 7 — — — — — — — — —
8 2 3 9405 13809 — 999 1364 1612 — — —

general 5 2 79 1148 1502 2016 1563 2353 2927 2482 2780 3421

Table 4: Summary of unrealisable problem instances.

software—a small lookup table su�ces. In summary, our work leaves very little room
for improvement in the case of f = 1. The general case of f > 1 has been considered in
subsequent work [43], which shows how the algorithms designed in this work can be
used as subroutines to construct e�cient algorithms that tolerate a larger number of
failures.

We presented two complementary approaches for algorithm synthesis: the direct
SAT encoding from Section 9 and the SAT-based CEGAR approach from Section 10.
In our experiments, the direct encoding was typically the fastest method for finding
optimal algorithms, while the CEGAR approach quickly discovered some algorithms.

Even though our computer-generated algorithms are constructed with a fairly
complicated toolchain, the end results are compact, machine readable, and easy to
verify with a straightforward script. All results and the verification tools are freely
available online [1].
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A Algorithm Listings

In this appendix, we give two examples of our algorithms—machine-readable versions
of all algorithms, verification code, and some illustrations are available online [1].

Table 5 gives a cyclic algorithm for n = 4. The rows are labelled with (x
0

, x
1

), the
columns are labelled with (x

2

, x
3

), and the values indicate A
0

((x
0

, x
1

, x
2

, x
3

)), that is,
the new state of the first node in the observed configuration x. The projection graph
(Section 6) for this algorithm is given in Figure 10.

Table 6 shows a non-cyclic algorithm for n = 6. Again, the rows are labelled with
the first half (x

0

, x
1

, x
2

) of the observed state x and the columns are labelled with the
second half (x

3

, x
4

, x
5

) of the observed state x. The values show the new state for each
node: A

0

(x), A
1

(x), . . . , A
5

(x).

00 01 02 10 11 12 20 21 22

00 1 1 1 1 0 1 1 1 1
01 1 1 1 2 2 0 1 1 1
02 1 1 1 1 0 1 1 1 1
10 1 0 1 1 0 0 1 0 1
11 0 0 0 0 0 0 0 0 0
12 1 0 1 0 0 0 0 0 0
20 1 1 1 1 1 0 1 1 1
21 1 1 1 1 0 0 1 0 0
22 1 1 1 1 0 0 1 0 1

Table 5: Cyclic algorithm for s = 3, n = 4, f = 1, and t = 7.

000 001 010 011 100 101 110 111

000 111111 111111 111111 111111 111111 111111 111111 011000
001 111111 111111 111111 111011 111011 111011 010001 010000
010 111111 111111 111111 101001 111111 101001 011111 001000
011 111111 111011 101001 100000 100001 100000 000001 000000
100 111111 111111 111111 110110 111111 110110 011111 000000
101 111111 111111 110110 110110 110110 110110 010000 000000
110 011111 110110 011111 000000 011111 000000 011111 001000
111 010110 010110 000000 000000 000010 000000 000001 000000

Table 6: Algorithm for s = 2, n = 6, f = 1, and t = 6.
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Figure 10: The projection graph GF (A) for the algorithm A given in Table 5, assuming
that the faulty nodes are F = {0}. The actual configurations have been clustered
according to the length of the longest path that avoids the good states 0F and 1F .
Based on the projection graph, it is straightforward to verify that for any initial state
and for any adversarial activities the algorithm will stabilise in t = 7 steps.
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