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Abstract

Abstract argumentation frameworks (AFs) provide the basis for various reason-
ing problems in the area of Artificial Intelligence. Efficient evaluation of AFs has
thus been identified as an important research challenge. So far, implemented sys-
tems for evaluating AFs have either followed a straight-forward reduction-based
approach or been limited to certain tractable classes of AFs. In this work, we
present a generic approach for reasoning over AFs, based on the novel concept of
complexity-sensitivity. Establishing the theoretical foundations of this approach,
we derive several new complexity results for preferred, semi-stable and stage se-
mantics which complement the current complexity landscape for abstract argu-
mentation, providing further understanding on the sources of intractability of AF
reasoning problems. The introduced generic framework exploits decision proce-
dures for problems of lower complexity whenever possible. This allows, in par-
ticular, instantiations of the generic framework via harnessing in an iterative way
current sophisticated Boolean satisfiability (SAT) solver technology for solving
the considered AF reasoning problems. First experimental results show that the
SAT-based instantiation of our novel approach outperforms existing systems.

Keywords:
abstract argumentation, computational complexity, argumentation procedures

1. Introduction

Formal argumentation has evolved into an important field in Artificial Intel-
ligence. Abstract argumentation frameworks (AFs for short), as introduced by
Dung [1], are central in formal argumentation, providing a simple yet powerful
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formalism to reason about conflicts between arguments. The power of the formal-
ism, however, comes at a price. In particular, many important reasoning problems
for AFs are located on the second level of the polynomial hierarchy, including
skeptical reasoning in the preferred semantics [2], and both skeptical and credu-
lous reasoning in the semi-stable and the stage semantics [3]. This naturally raises
the question about the origin of this high complexity and, in particular, calls for
research on lower complexity fragments of the reasoning tasks. The focus of this
article is both on the identification of such lower-complexity fragments of second-
level reasoning problems arising from abstract argumentation, and on exploiting
this knowledge in developing efficient complexity-sensitive decision procedures
for the generic second-level problems.

Tractable (i.e., polynomial-time decidable) fragments have been quite thor-
oughly studied in the literature (see [4, 5, 6, 7, 8] for instance). However, there
is only little work on identifying fragments which are located on the first level
(NP/coNP layer), that is, in-between tractability and full second-level complexity.

Identification of first-level fragments of second-level reasoning tasks is im-
portant due to several reasons. Firstly, from a theoretical point of view, such
fragments show particular (but not all) sources of complexity of the considered
problems, and pave the way towards “trichotomy”-style results (see [9] for an ex-
ample in the context of answer-set programming). Secondly, NP fragments can be
efficiently reduced to the problem of satisfiability in classical propositional logic
(SAT). This allows for realizations of argumentation procedures by employing
sophisticated SAT-solver technology [10, 11] for reasoning over argumentation
frameworks.

Going even further, in this work we aim at designing decision procedures
for second-level argumentation problems by exploiting fragments extending such
first-level fragments. To this end, we use the NP decision procedures as NP oracles
in an iterative fashion. Such approaches fall under the general counter-example
guided abstraction refinement (CEGAR) approach originating from the field of
model checking [12, 13]. For problems complete for the second level of the poly-
nomial hierarchy, this leads to general procedures which, in the worst case, re-
quires an exponential number of calls to the NP oracle, which is indeed unavoid-
able under the assumption that the polynomial hierarchy does not collapse. Nev-
ertheless, we show in this work that such procedures can be designed to behave
adequately on input instances that fall into the considered NP fragment and on in-
stances for which a relatively low number of oracle calls is sufficient; as a generic
notion, we say that such a procedure is complexity-sensitive w.r.t. the NP fragment
at hand. For instance, for the second-level problem of answer-set existence for dis-
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junctive logic programs [14], the successful loop-formula approach (see, e.g. [15])
yields a polynomial reduction to SAT for the fragment of tight programs, although
in general the resulting SAT instance is of exponential size. This approach gives
thus a practical decision procedure for (the second-level problems of) answer-set
programming that is at the same time complexity-sensitive w.r.t. the NP fragment
of tight disjunctive programs.

In this work we identify various lower-complexity fragments of second-level
reasoning problems arising from abstract argumentation, and show how some of
the fragments can be exploited in complexity-sensitive CEGAR-style decision
procedures for the generic second-level problems. The fragments identified and
exploited are based on notions of “distance” to particular NP fragments. This
leads to the intuition that, the higher the distance, the more iterative calls to the NP
oracle are needed. We also employ the concept of distance to generalize known
classes of NP fragments.

In more detail, we focus on three important semantics for abstract argumen-
tation: the preferred, semi-stable and stage semantics. Our complexity analysis
is based on six different classes of argumentation frameworks which are known
to yield milder complexity results for at least one of these semantics. Firstly, we
present complexity results for these classes in cases where the exact complexity
for a particular semantics has not been established yet. Moreover, we categorize
the classes into syntactical and semantical families. For the former family, we
consider the known concepts of acyclic and odd-cycle free AFs, as well as a new
class (so-called weak cyclic AFs).

As semantical subclasses we consider the prominent class of coherent AFs [2];
the class of AFs which possess at least one stable extension (stable-consistent
AFs); and the class of AFs which possess a unique preferred extension.

Secondly, we consider alternative notions of distance in order to capture AFs
which are “close” to one of the aforementioned classes. We consider the following
realizations of distance:

(i) graph-based distance measures, where the parameter is given by the num-
ber of arguments to be deleted from a given AF in order to fall into a speci-
fied class; and

(ii) extension-based distance measures, which apply to the semantical sub-
classes.

For instance (among others), starting from the class of coherent AFs (where
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the preferred and stable extensions coincide), we consider as parameter the num-
ber of additional preferred extensions.

The main contributions of this article are the following.

• We show new complexity results for acceptance problems in argumenta-
tion on certain fragments. In particular, for the class of frameworks which
possess a unique preferred extension, semi-stable semantics yields milder
complexity than stage semantics. To the best of our knowledge, this is the
first result that indicates a difference between the complexities of these two
semantics.

• We show that graph-based distance measures are in most cases tight: al-
ready a small distance from the subclass at hand leads to the full second-
level complexity. This reveals that syntactic fragments based on such dis-
tance measures do not hint towards complexity-sensitive decision proce-
dures.

• Towards the design of complexity-sensitive decision procedures, we also
identify extension-based distance measures and show that certain problems
can be solved by a bounded number (in terms of the distance) of NP-oracle
calls.

• Exploiting the suitable extension-based distance measures, we develop a
generic framework of complexity-sensitive decision procedures for the dif-
ferent second-level reasoning problems within abstract argumentation. We
present our procedures in terms of (first-level) argumentation problems, i.e.,
we give novel characterizations of preferred, semi-stable, and stage seman-
tics in terms of simpler semantics (such as stable and complete). The actual
computation of the simpler semantics can be instantiated in various ways.

• We show in detail how the generic framework can be instantiated using
a SAT-based CEGAR-style approach. For this, we develop novel SAT-
encodings for the oracle calls, differing from previously suggested SAT-
encodings of first-level AF reasoning problems [16]. Notably, we exploit
possibilities of learning from counter-examples both on the level of the
original argumentation framework as well as the SAT oracle during com-
putation. Importantly, while monolithic SAT-encodings of second-level ar-
gumentation problems are deemed to be of exponential size, our procedures
are truly complexity-sensitive in that the exponential space requirements
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may be circumvented in cases where it suffices to consider a small part of a
monolithic encoding to decide the actual query.

• We have implemented a prototype of the SAT-based instantiation of our ap-
proach, exploiting a state-of-the-art conflict-driven clause learning (CDCL)
SAT-solver as the underlying NP-oracle. Experiments show the high po-
tential of the proposed approach compared to other state-of-the-art imple-
mentations for abstract argumentation, in particular the logic-programming
approach based on monolithic encodings of second-level problems [17, 18]
arising in argumentation.

The rest of this article is organized as follows. After preliminaries on argu-
mentation frameworks, their semantics, and related decision problems (Section 2),
we review and prove new complexity results for reasoning with preferred, stage,
and semi-stable semantics over several classes of AFs (Section 3). We then in-
troduce extensions of these classes into syntactic classes of AFs based on graph-
based distance measures, and show that these syntactic classes preserve the full
second-level complexity under preferred, stage, and semi-stable semantics (Sec-
tion 4). We then proceed by considering so-called extension-based distance mea-
sures which take the number of extensions into account, giving rise to so-called
semantical subclasses of AFs, and provide positive upper bounds on the complex-
ity of these subclasses (Section 5). These results give rise to novel complexity-
sensitive decision procedures for skeptical and credulous acceptance (Section 6).
After introducing the generic procedures, we show in detail how the procedures
can be naturally instantiated using a SAT-solver as the NP-oracle within the pro-
cedures (Section 7). Before conclusions, we provide an experimental evaluation
of the SAT-based instantiations of the procedures (Section 8).

2. Preliminaries

In this section we review (abstract) argumentation frameworks [1], the seman-
tics studied in this paper (see also [19, 20]), and known complexity results for
decision problems under the different semantics.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A
is a finite set of arguments and R ⊆ A× A is the attack relation. For a given AF
F = (A,R) we use AF to denote the set A of its arguments and RF to denote its
attack relation R. We sometimes use the notation a �R b instead of (a, b) ∈ R.
For S ⊆ A and a ∈ A, we write S �R a (resp. a�R S) in case there is a b ∈ S
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such that b�R a (resp. a�R b). In case no ambiguity arises, we use � instead
of �R.

Semantics for argumentation frameworks assign to each AF F = (A,R) a set
σ(F ) ⊆ 2A of extensions. We consider here for σ the functions stb, adm, prf ,
com, stg , and sem which stand for stable, admissible, preferred, complete, stage,
and respectively, semi-stable semantics. Before giving the actual definitions for
these semantics, we need to define a few more formal concepts.

Definition 2. Given an AF F = (A,R), an argument a ∈ A is defended (in F )
by a set S ⊆ A if for each b ∈ A such that b � a, also S � b holds. Moreover,
for S ⊆ A, we define the range of S, denoted by S+

R , as the set S ∪ {b | S � b}.

We are now ready to define the concrete semantics for AFs.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ),
denoted S ∈ cf (F ), iff there are no a, b ∈ S such that (a, b) ∈ R. For S ∈ cf (F ),
it holds that

• S ∈ stb(F ) if for each a ∈ A \ S, S � a, i.e. S+
R = A;

• S ∈ adm(F ) if each a ∈ S is defended by S;

• S ∈ prf (F ) if S ∈ adm(F ) and there is no T ∈ adm(F ) with T ⊃ S;

• S ∈ com(F ) if S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S
holds;

• S ∈ stg(F ) if there is no T ∈ cf (F ) with T+
R ⊃ S+

R ;

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T+
R ⊃ S+

R .

We recall that for each AF F , stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ com(F ) ⊆
adm(F ) holds, and that for each of the considered semantics σ (except stable)
σ(F ) 6= ∅ holds. Moreover, in case an AF has at least one stable extension, its
stable, semi-stable, and respectively, stage extensions coincide.

Example 1. Consider the AF F = (A,R), with A = {a, b, c, d, e} and R =
{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The graph representation of F is as
follows.
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a b c d e

Here stb(F )= stg(F )= sem(F )={{a, d}}. The admissible sets of F are ∅, {a},
{c}, {d}, {a, c} and {a, d}. The set of preferred extensions is prf (F ) = {{a, c},
{a, d}}. The complete extensions are {a}, {a, c} and {a, d}. 3

We assume the reader has knowledge about standard complexity classes, i.e.
P, NP and L (logarithmic space). Nevertheless we briefly recapitulate the con-
cept of oracle machines and some related complexity classes. Thus let C denote
some complexity class. By a C-oracle machine we mean a (polynomial time) Tur-
ing machine which can access an oracle that decides a given (sub)-problem in C
within one step. We denote such machines as PC if the underlying Turing machine
is deterministic; and NPC if the underlying Turing machine is nondeterministic.
Moreover we consider oracle machines where the number of queries to the oracle
is bounded by f(k). We denote the corresponding complexity classes as PC[f(k)]

for deterministic machines.
In the following we consider complexity classes using NP-oracles. First, the

class ΣP
2 = NPNP denotes the set of problems which can be decided by a non-

deterministic polynomial time algorithm that has (unrestricted) access to an NP-
oracle. The class ΠP

2 = coNPNP is defined as the complementary class of ΣP
2 , i.e.

ΠP
2 = coΣP

2 .
We now recall the complexity of reasoning in AFs for the following decision

problems under different semantics σ.

• Credulous Acceptance (Credσ):
Given an AF F and argument a ∈ AF , is a contained in some S ∈ σ(F )?

• Skeptical Acceptance (Skeptσ):
Given an AF F and argument a ∈ AF , is a contained in each S ∈ σ(F )?

• Verification (Verσ): Given an AF F and a set S ⊆ AF , is S ∈ σ(F )?

• Existence (Existsσ): Given an AF F , is σ(F ) 6= ∅?

• Non-emptiness (Exists¬∅σ ):
Given an AF F , is there a set S ⊆ AF , S 6= ∅ such that S ∈ σ(F )?

In accordance with the above problems we say that an argument is credulously
(resp. skeptically) accepted iff it is contained in at least one extension (resp. in

7



Table 1: Complexity of decision problems for AFs.

σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ

stb NP-c coNP-c in L NP-c NP-c

adm NP-c trivial in L trivial NP-c

com NP-c P-c in L trivial NP-c

prf NP-c ΠP
2 -c coNP-c trivial NP-c

sem ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stg ΣP
2 -c ΠP

2 -c coNP-c trivial in L

all extensions). Table 1 summarizes the computational complexity of these prob-
lems [4, 21, 1, 2, 22, 3, 23], where an entry C-c denotes that the corresponding
problem is complete for class C.

We will focus on Skeptprf , Credsem , Skeptsem , Credstg and Skeptstg . As Ta-
ble 1 indicates, these problems are the ones on the second level of the polynomial
hierarchy.

3. Subclasses of Argumentation Frameworks

In this section we review several classes of AFs where reasoning with pre-
ferred, stage or semi-stable semantics becomes easier compared to the results for
the general case. Both earlier and new results are discussed. First, we consider
the classes of acyclic and weakly cyclic AFs.

Definition 4. An AF F is acyclic if there is no directed cycle of attacks in F ; F is
weakly cyclic if F can be made acyclic by deleting one argument (and its incident
attacks) from each strongly connected component 1 (SCC) of F . We denote these
classes of AFs by acyc and wcyc.

One can easily show that deciding whether a given AF falls into one of these
classes can be done efficiently. First, it is well known that deciding whether a

1A set of arguments is called strongly connected in an AF if there is a path from each argument
to every other argument in the set. A strongly connected component of an AF is a ⊆-maximal
strongly connected set.
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directed graph is cyclic or not can be done in polynomial time. Moreover, the
SCCs of a graph can be computed in polynomial time. Thus, for testing whether
a graph is in wcyc one first computes the SCCs and then looks in each SCC for an
argument which, if removed, turns the SCC into an acyclic graph.

It is well known that the problems we are interested here become tractable
when restricted to acyclic AFs. For the class wcyc (these are the AFs where the
graph parameter cycle-rank is at most 1 [7]), we can make direct use of the fol-
lowing complexity result.

Proposition 1 ([7]). For weakly cyclic AFs, Skeptprf is coNP-complete.

The reasoning problems for stage and semi-stable semantics still maintain
their full complexity when restricted to weak cyclic AFs [7].

We now turn to semantical subclasses.

Definition 5. An AF F for which stb(F ) 6= ∅ is stable-consistent. We denote the
class of such AFs by stablecons.

We recall that testing an AF for the existence of a stable extension is NP-
complete [21] (cf. Table 1). The following result is immediate from the fact
that, in case an AF has at least one stable extension, its stable, semi-stable, and
respectively, stage extensions coincide.

Proposition 2. For stable-consistent AFs, Credσ is NP-complete and Skeptσ is
coNP-complete, σ ∈ {sem, stg}.

However, in case of the preferred semantics, stable consistency is of no help
for deciding skeptical acceptance.

Proposition 3. For stable-consistent AFs, the problem Skeptprf is ΠP
2 -complete.

Proof. Hardness follows from a reduction in [2] that maps the ΠP
2 -hard problem

of deciding whether given a QBF Φ = ∀Y ∃Zϕ(Y, Z), where ϕ is a CNF formula∧
c∈C c with each clause c ∈ C a disjunction of literals from X = Y ∪ Z, is true

to Skeptprf . We build FΦ = (AΦ, RΦ) as follows (see also Figure 1):

AΦ = {ϕ, b} ∪ C ∪X ∪ X̄
RΦ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄) , (x̄, x) | x ∈ X}∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(ϕ, b) , (b, b)} ∪ {(b, z), (b, z̄) | z ∈ Z}
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

b

Figure 1: FΦ for the QBF Φ = ∀y1y2∃z3z4(y1 ∨ y2 ∨ z3) ∧ (y2 ∨ ¬z3 ∨ ¬z4) ∧
(y2 ∨ z3 ∨ z4).

with X̄ = {x̄ | x ∈ X} and x̄ being a fresh argument.
We have that Φ is valid iff the argument ϕ is skeptically accepted in FΦ [2].

Moreover, each model M of ϕ corresponds to the stable extension M ∪X \M ∪
{ϕ} of FΦ. Since the QBF-problem remains hard for instances where the propo-
sitional formula ϕ has at least one model, the result follows.

The next class relates preferred and stable extensions and was already intro-
duced in Dungs seminal paper [1] and has been thoroughly discussed in [2].

Definition 6. An AF F is coherent if prf (F ) = stb(F ). We denote the class of
such AFs by coherent.

Proposition 4. For coherent AFs and σ ∈ {prf , sem, stg}, Credσ is NP-complete
and Skeptσ is coNP-complete.

Proof. The result for σ = prf is clear by definition when taking the complexity
of stable semantics (recall Table 1) into account. Since each AF possesses at least
one preferred extension, each coherent AF is also stable-consistent. The result for
the remaining cases σ ∈ {sem, stg} thus follows immediately as well.

Testing coherence is in general even worse (ΠP
2 -complete [2]) than testing

stable-consistency. At first glance this restricts the practical value of this fragment,
but there is a class of easy detectable coherent AFs, namely the AFs without odd-
length cycles. Thus, we introduce one further syntactical subclass.

10



Definition 7. An AF F is odd-cycle free if there is no directed cycle consisting of
an odd number of attacks in F . We denote the class of odd-cycle free AFs by ocf.

In fact, testing for odd-length cycles in digraphs can be done in polynomial time
(see e.g. [24]).

The following proposition generalizes the observation of [5] that for F ∈ ocf
reasoning with preferred semantics is complete for the first level of the polynomial
hierarchy.

Proposition 5. For AFs F ∈ ocf, and σ ∈ {prf , sem, stg}, Credσ is NP-complete
and Skeptσ is coNP-complete.

Proof. Membership is immediate from the well-known result that every AF with-
out odd-length cycles is coherent [1].

The hardness for the case of preferred semantics was already shown in [5]. For
the sake of completeness we restate the proof which also applies to semi-stable
and stage semantics. To this end we use what [25] calls the standard translation
of a CNF formula to an AF given below, which originates from the work of [21].
Starting from a propositional formula ϕ(X) =

∧
c∈C c with each clause c ∈ C

a disjunction of literals from X , we build Fϕ = (Aϕ, Rϕ) as follows (see also
Figure 2):

Aϕ = {ϕ, ϕ̄} ∪ C ∪X ∪ X̄
Rϕ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄) , (x̄, x) | x ∈ X}∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(ϕ, ϕ̄) , (ϕ̄, ϕ)}.

We have that ϕ is satisfiable iff the argument ϕ is credulously accepted iff the
argument ϕ̄ is not skeptically accepted [21]. As Fϕ is free of odd-length cycles,
the theorem follows.

The final fragment we introduce is another semantical one. It makes use of the
complexity gap between credulous and skeptical acceptance for preferred seman-
tics.

Definition 8. We denote the class of AFs F satisfying |prf (F )| = 1 by uniqpref.

We next show that testing whether there is at most one preferred extensions is
coNP-complete, using a result from [26].
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ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

ϕ̄

Figure 2: Fϕ for the CNF-formula ϕ = (x1 ∨x2 ∨x3)∧ (x2 ∨¬x3 ∨¬x4)∧ (x2 ∨
x3 ∨ x4).

Proposition 6. Deciding whether a given AF F falls into the class uniqpref is
coNP-complete.

Proof. Membership is by a guess and check algorithm for falsifying that F ∈
uniqpref. This algorithm guesses two sets S, S ′ ⊆ A and tests whether S ∈
adm(F ), S ′ ∈ adm(F ) and S ∪ S ′ 6∈ adm(F ).

The statement S ∈ adm(F ), S ′ ∈ adm(F ) and S∪S ′ 6∈ adm(F ) is equivalent
to the fact that |prf (F )| ≥ 2. To show this let us first assume that we have S, S ′

being admissible and S ∪S ′ 6∈ adm(F ). This implies that S ∪S ′ 6∈ cf (F ). As by
definition of preferred extensions, each admissible set is contained in a preferred
extensions we can consider E,E ′ s.t. S ⊆ E ∈ prf (F ) and S ′ ⊆ E ′ ∈ prf (F ).
As S∪S ′ 6∈ cf (F ) also E∪E ′ 6∈ cf (F ) and thus E 6= E ′. Now assuming that we
have E,E ′ ∈ prf (F ) with E 6= E ′. By definition E ∈ adm(F ), E ′ ∈ adm(F )
and as they are maximal also E ∪ E ′ 6∈ adm(F ).

We show the hardness part by the following reduction. Starting from a formula
ϕ(X) =

∧
c∈C c with each clause c ∈ C a disjunction of literals from X , we build

Fϕ = (Aϕ, Rϕ) as follows (see also Figure 3)

Aϕ = {ϕ, ϕ̄} ∪ C ∪X ∪ X̄
Rϕ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄) , (x̄, x) | x ∈ X}∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(ϕ, ϕ̄) , (ϕ̄, ϕ)} ∪ {(ϕ̄, x), (ϕ̄, x̄) | x ∈ X}.
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ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

ϕ̄

Figure 3: Fϕ for the CNF-formula ϕ = (x1 ∨x2 ∨x3)∧ (x2 ∨¬x3 ∨¬x4)∧ (x2 ∨
x3 ∨ x4).

We have that ϕ is satisfiable iff the set {ϕ̄} ∪ C is not the only preferred exten-
sion [26].

Proposition 7. For AFs F ∈ uniqpref and σ ∈ {prf , sem}, problems Credσ and
Skeptσ are in NP.

Proof. Credulous and skeptical acceptance coincide on AFs with a unique exten-
sion. Moreover, for each F ∈ uniqpref, sem(F ) = prf (F ) holds since the exis-
tence of a semi-stable extension is guaranteed for finite AFs, and each semi-stable
extension is also preferred.

It is open whether these problems are also NP-hard. However, we can show
NP-hardness under so-called randomized reductions [27].

Proposition 8. For AFs F ∈ uniqpref and σ ∈ {prf , sem}, problems Credσ and
Skeptσ are NP-hard under randomized reductions.

Proof. To show hardness we consider UNIQUE SAT, a version of the SAT prob-
lem where it is guaranteed that there is at most one model. This version of SAT is
NP-hard under randomized reductions [27]. We use a variation of the reduction
from the proof of Proposition 6 to reduce UNIQUE SAT to Credprf . More pre-
cisely, we extend the AF Fϕ = (Aϕ, Rϕ) by one self-attack (ϕ̄, ϕ̄) (see also Figure
4).
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ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

ϕ̄

Figure 4: (Aϕ, Rϕ ∪ {(ϕ̄, ϕ̄)}) for the CNF-formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨
¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).

Now the set {ϕ̄}∪C is no longer admissible and ϕ̄ cannot be contained in any
preferred extension. One can show that each non-empty admissible set contains
ϕ as follows. Indeed, consider a set E admissible for such a modified framework
with ϕ /∈ E. Then all x, x̄ are not defended against ϕ̄ and thus not inE. Moreover,
also the arguments c ∈ C are not defended by E as each of them is attacked by
some x, x̄, but none of the x, x̄ are attacked by E. Hence also the c ∈ C are
not in E and consequently E = ∅ follows. Now, as each non-empty admissible
set contains ϕ, such a set—by the standard argument—corresponds to a model of
ϕ. Hence, taking into account that ϕ is guaranteed to have at most one model,
we have at most one non-empty admissible set, and thus the AF has exactly one
preferred extension.

For the stage semantics, however, the complexity of acceptance problems re-
mains as high as in the general case.

Proposition 9. For AFs F ∈ uniqpref, Credstg is ΣP
2 -complete and Skeptstg is

ΠP
2 -complete.

Proof. Consider an arbitrary AF F = (A,R) and let t 6∈ A be a fresh argument.
We construct F ′ = (A∪{t}, R∪{t, t}∪{(t, a) | a ∈ A}). As the new argument t
is in conflict with itself it cannot be contained in a conflict-free set. Furthermore,
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Table 2: Complexity when the AF belongs to a sub-class G.

G Skeptprf Credsem Skeptsem Credstg Skeptstg

acyc P-c P-c P-c P-c P-c
wcyc coNP-c ΣP

2 -c ΠP
2 -c ΣP

2 -c ΠP
2 -c

ocf coNP-c NP-c coNP-c NP-c coNP-c
stablecons ΠP

2 -c NP-c coNP-c NP-c coNP-c
coherent coNP-c NP-c coNP-c NP-c coNP-c
uniqpref in NP in NP in NP ΣP

2 -c ΠP
2 -c

as we do not add new conflicts between the original arguments, we have that
cf (F ) = cf (F ′). Moreover as all new attacks origin from t also the ranges of the
conflict-free sets are unchanged and thus also stg(F ) = stg(F ′). Finally, we have
that prf (F ′) = {∅} as none of the arguments can be defended against t. Hence
any decision problem for stg can be directly expressed in AFs from uniqpref.

To summarize, we have introduced several kinds of AF-subclasses. They can
be grouped into syntactical (acyc,wcyc, ocf), and semantical classes (stablecons,
coherent, uniqpref). The complexity results are summarized in Table 2. In the next
two sections, we study possibilities of extending the “good” complexity behavior
of these classes. To this end, we will introduce certain distance measures with
the aim of maintaining lower complexity as long as the distance to such a class is
bound.

4. Graph-Based Distance Measures

A natural way to generalize the introduced subclasses is to consider the min-
imal number of arguments one has to delete from an AF so that the modified
AF falls into the respective class (see also [8]). This gives rise to the following
distance measure.

Definition 9. Let G be a graph class and F = (A,R) an AF. We define distG(F )
as the minimal number k such that there is a set S ⊆ A with |S| = k and (A \
S,R ∩ (A \ S × A \ S)) ∈ G. If there is no such set S we define distG(F ) =∞.
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We start with the class wcyc of weakly cyclic AFs. Recall that this class de-
creases complexity only in the case of skeptical acceptance with respect to pre-
ferred semantics.

Proposition 10. Skeptprf is ΠP
2 -hard for AFs F with distwcyc(F ) = 1.

Proof. ΠP
2 -hardness is established by re-using the reduction from the proof of

Proposition 3 and observing that deletion of the argument b in FΦ results in a
framework with SCCs of size at most 2 which is easily seen to be weakly cyclic.

In words, the subclass wcyc is tight w.r.t. the introduced distance in the sense
that a single argument violating membership in wcyc is sufficient for the general
ΠP

2 -hardness. An analogous result can be shown for the class ocf.

Proposition 11. Skeptprf is ΠP
2 -hard, for AFs F with distocf(F ) = 1.

Proof. Similar as for Proposition 10, deleting argument b from the AF constructed
in the proof of Proposition 3 yields an AF that is free of odd-length cycles.

The same effect can be shown for semi-stable acceptance.

Proposition 12. Credsem is ΣP
2 -hard and Skeptsem is ΠP

2 -hard, for AFs F with
distocf(F ) = 1.

Proof. For a QBF Φ = ∀Y ∃Zϕ(Y, Z) with ϕ =
∧
c∈C c in CNF build the AF

F sem
Φ = (AΦ, RΦ) with X=Y ∪ Z as follows (see also Figure 5):

AΦ = {ϕ, ϕ̄, b, g} ∪ C ∪X ∪ X̄ ∪ Y ′ ∪ Ȳ ′

RΦ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄) , (x̄, x) | x ∈ X}∪
{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(y, y′) , (ȳ, ȳ′) | y ∈ Y } ∪ {(ϕ, b) , (g, g) , (g, b)}∪
{(g, y′), (g, ȳ′) | y ∈ Y } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}.

This reduction is a variation of the reduction presented in [3] and can be easily
shown to be equivalent.2 Hence ϕ is skeptically accepted iff ϕ̄ is not credulously

2The difference being that the original reduction does not contain the argument g, but self-
attacks for each of the arguments {b} ∪ {y′, ȳ′ | y ∈ Y }. In our reduction the argument g is not
acceptable and therefore none of the arguments {b} ∪ {y′, ȳ′ | y ∈ Y } can be defended against g
and thus are unacceptable. Hence the non-empty admissible sets and semi-stable extensions of the
AFs constructed by the two different reductions coincide.
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y′1 ȳ′1 y′2 ȳ′2 g

bϕ̄

Figure 5: F sem
Φ for the QBF Φ = ∀y1y2∃z3z4(y1 ∨ y2 ∨ z3) ∧ (y2 ∨ ¬z3 ∨ ¬z4) ∧

(y2 ∨ z3 ∨ z4).

accepted iff Φ is true. Finally, deleting the argument g results in an AF that is free
of odd-length cycles.

For the stage semantics, we can give an even stronger result, namely in terms
of acyclic frameworks.

Proposition 13. Credstg is ΣP
2 -hard and Skeptstg is ΠP

2 -hard, for AFs F with
distacyc(F ) = 1.

Proof. Hardness results from a reduction from the MINSAT problem, i.e. decid-
ing whether a variable z is in a ⊆-minimal model of a propositional formula
ϕ =

∧
c∈C c in CNF over atoms X . For the reduction we additionally assume

an arbitrary order < on the clauses of ϕ. We build the AF Fϕ,z = (A,R) where
z ∈ X as follows (see Figure 6 for illustration):

A = {ϕ, b, q} ∪ C ∪ C ′ ∪X ∪ X̄
R = {(c, ϕ) | c ∈ C} ∪ {(t, b) , (b, b) , (q, z)} ∪ {(x̄, x) | x ∈ X}∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(c′, a) | c ∈ C, a ∈ X ∪ X̄ ∪ (C \ {c}) ∪ {c′ : c′ < c}}.

It is easy to see that the only cycle in the constructed AF is by the self-attacking
argument b. Thus, distacyc(Fϕ,z) = 1 as deleting the argument b would result in
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an acyclic AF. To prove the assertions we show that the following statements are
equivalent:

1. z is in a minimal model of ϕ;
2. z is credulously accepted (w.r.t. stg) in Fϕ,z;
3. q is not skeptically accepted (w.r.t. stg) in Fϕ,z.

(1)⇔ (2) We recall that each stage extension is also a⊆-maximal conflict free
set (mcf ). Hence we consider only mcf sets as candidates for stage extensions.
In the following we will use the relation ≤+

R defined as S ≤+
R T iff S+

R ⊆ T+
R .

First let us consider mcf sets of Fϕ,z = (A,R) containing an argument c′.
For simplicity we enumerate the clauses c1, . . . , cm and the arguments c′1, . . . , c

′
m,

according to the order < on the clauses. Now one can easily check that these
mcf sets are given by {{c′i, ϕ, q}, {c′i, ci, q} | 1 ≤ i ≤ m}. Further, we have
that the arguments c′1, . . . , c

′
m are in conflict with each other but not attacked from

any other argument. Thus, when concerning the ≤+
R-maximality (the maximality

of the range) of the above mcf sets, they only compete with each other but not
with any other mcf set. Comparing the range of these extensions we get that
{c′i, ci, q}+ = A\{b, c′1, . . . , c′i−1} and {c′i, ϕ, q}+ = A\{ci, c′1, . . . , c′i−1}. Hence
the stage extensions among them are the following {{c′i, ϕ, q} | 1 ≤ i ≤ n} ∪
{{c′1, c1, q}}.

Now let us consider mcf sets E such that for each 1 ≤ i ≤ m, c′i 6∈ E. We
already have stage extensions with ranges A \ {b} and resp. A \ {ci, c′1, . . . , c′i−1}.
Hence, as {c′1, . . . , c′m} ∩ E+ = ∅, the only way for E being ≤+

R-maximal is
that {b, c1, . . . , cm} ⊆ E+. When b ∈ E+, we have that ϕ ∈ E and hence for
1 ≤ i ≤ m that ci 6∈ E. Hence, by the construction of Fϕ,z, {b, c1, . . . , cm} ⊆ E+

iff ϕ ∈ E and X ∩ E is a model of ϕ. So there is a one-to-one correspon-
dence between models M of ϕ and candidates for stage extensions M∗ := M ∪
(X \M)∪{ϕ}∪{q | if z 6∈M}. By the construction the range of each candidate
is clearly incomparable with the ranges of the already determined stage extensions
{{ci, ϕ, q} | 1 ≤ i ≤ n} ∪ {{E1, c1, q}}; and thus the ≤+

R-maximality of such a
candidate only depends on the other candidates with c′i 6∈ E for 1 ≤ i ≤ m. It
remains to show that for two models M,N , we have that M ⊆ N iff M∗ ≥+

R N
∗.

For the “only if” direction consider M ⊆ N . Using that M,N are models
of ϕ we obtain that (M∗)+ = A \ (M̄ ∪ {c′1, . . . , c′m}) ∪ {q | if x 6∈ M} and
(N∗)+ = A \ (N̄ ∪ {c′1, . . . , c′m}) ∪ {q | if x 6∈ N}. As by assumption M ⊆ N
we have that A \ (M̄ ∪ {c′1, . . . , c′m}) ⊇ A \ (N̄ ∪ {c′1, . . . , c′m}) and {q | if x 6∈
M} ⊆ {q | if x 6∈ N}. Hence M∗ ≥+

R N
∗.
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ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4q

b

c′1c′2c′3

Figure 6: Illustration of the AF Fϕ,x1 for ϕ = (x1∨x2∨x3)∧(¬x2∨¬x3∨¬x4)∧
(¬x1 ∨ ¬x2 ∨ x4).

For the “if” part let us consider M 6⊆ N . Hence there is some x ∈ M such
that x 6∈ N . But then we have that x̄ 6∈ (M∗)+ and x̄ ∈ (N∗)+ and therefore
M∗ 6≥+

R N
∗.

Now if z is in a minimal model M then the corresponding M∗ has maximal
range and by the definition ofM∗ also z ∈M∗, and thus z is credulously accepted.
If z is credulously accepted the corresponding stage extension is of the form M∗

(as the other candidates do not contain arguments x ∈ X) and thus there is a
minimal model M also containing z.

(2)⇔ (3): As z is the only argument which has a conflict with q we have that
each mcf set, and thus also each stage extension, either contains q or z. Hence, if
q is in all stage extensions, then z is not credulously accepted, and vice versa.

For each F ∈ acyc we have F ∈ G, with G ∈ {wcyc, ocf, coherent, uniqpref},
and thus the previous result generalizes to all these classes when distG(F ) = 1.

Recall that Propositions 11 and 12 directly yield corresponding hardness re-
sults for the classes coherent and stablecons for preferred and semi-stable seman-
tics. It thus remains to consider the class uniqpref.

Proposition 14. Credsem is ΣP
2 -hard and Skeptprf , Skeptsem are ΠP

2 -hard for AFs
F with distuniqpref(F ) = 1.
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r g

. . .

F = (A,R)

a

b

c

Figure 7: An illustration of the construction in the proof of Proposition 14

Proof. Consider an arbitrary AF F = (A,R), and consider the modified AF F ′ =
(A∪{r, g}, R∪{(r, g)}∪{(g, a) | a ∈ A}) (see also Figure 7). Then, adm(F ′) =
{E ∪ {r} | E ∈ adm(F )} ∪ {∅}.

First, we have that each non-empty admissible set must contain r, because
all arguments except a, g are attacked by g, g is not acceptable and r is the only
argument attacking g. Further g is the only argument attacked by r and hence for
each S ⊆ A we have that S ∪ {r} ∈ adm(F ′) iff S ∈ adm(F ).

As an immediate consequence of this prf (F ′) = {E ∪ {r} | E ∈ prf (F )}
and by the fact that the range of admissible sets is only increased by {r, g} we
also have that sem(F ′) = {E ∪ {r} | E ∈ sem(F )}.

Moreover, distuniqpref(F ′) = 1 since deleting argument r would result in an
AF where {g} is the only non-empty admissible set. This is by the fact that g
is unattacked in the resulting AF and itself attacks all the remaining arguments.
Hence credulous and skeptical acceptance (under the considered semantics) on
arbitrary AFs reduces to AFs F with distuniqpref(F ) = 1.

Table 3 summarizes our results which are all negative in the sense that full
second-level complexity is reached when fragments are parameterized in a “syn-
tactic” way; only acyc yields some positive results (due to [8]). Here FPT (fixed-
parameter tractability) means that for a fixed distance, a problem can be solved
in polynomial time and the order of the polynomial time bound does not depend
on the distance. However, we showed here as a new result that under the stage
semantics, full complexity is obtained even for AFs F with distacyc(F ) ≥ 1 (this
strengthens the NP/coNP-hardness results in [8]).
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Table 3: Complexity when parameterized by the distance to a sub-class G (hard-
ness holds for AFs F of distG(F ) = 1).

G Skeptprf Credsem Skeptsem Credstg Skeptstg

acyc FPT FPT FPT ΣP
2 -c ΠP

2 -c
wcyc ΠP

2 -c ΣP
2 -c ΠP

2 -c ΣP
2 -c ΠP

2 -c
stablecons ΠP

2 -c ΣP
2 -c ΠP

2 -c ΣP
2 -c ΠP

2 -c
ocf ΠP

2 -c ΣP
2 -c ΠP

2 -c ΣP
2 -c ΠP

2 -c
coherent ΠP

2 -c ΣP
2 -c ΠP

2 -c ΣP
2 -c ΠP

2 -c
uniqpref ΠP

2 -c ΣP
2 -c ΠP

2 -c ΣP
2 -c ΠP

2 -c

5. Extension-Based Distance Measures

Here we consider different distance measures which take the number of exten-
sions into account and thus naturally apply only to the semantical subclasses of
AFs, i.e. stablecons, coherent, and uniqpref.

We start by generalizing the class stablecons for semantics sem and stg . In
fact, for stable-consistent AFs we have that each semi-stable (resp. stage) exten-
sion has a range that covers the whole set of arguments. Hence a natural approach
to relax this definition is to bound the number of arguments which are not in the
range of the extensions.

Definition 10. For a semantics σ and k ≥ 0, we call an AF F = (A,R) k-stable-
consistent under σ if for each E ∈ σ(F ), |A \E+

R | ≤ k holds. We use stableconskσ
to denote the respective classes of AFs for given k and σ.

Theorem 1. For AFs in stableconskσ (σ ∈ {sem, stg}), Credσ and Skeptσ are in
PNP.

Proof. Consider an AF F = (A,R). We can decide credulous (resp. skeptical)
acceptance by considering all candidates for the range, i.e. sets S with |A \S+

R | ≤
k, and test whether there is an extension with range S that contains (resp. does not
contain) the queried argument. But while (for fixed k) there are just polynomial
many sets S the testing part is still ΣP

2 / ΠP
2 -hard.

To overcome this we introduce two shortcuts. To this end let S be the set of
ranges we have to consider, which is initialized by S = {S ⊆ A | |A \ S| ≤
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k}. First, if we know that there is an extension with range S, we do not have
to consider subsets of S for the range of extensions, and thus delete them from
S. Second, we only consider maximal sets S ∈ S . Then we know that there
is no extension having a superset of S as range and we can simplify the check
for extension by testing whether there is an admissible (resp. conflict-free) set
having range S; this is clearly in NP (simply guess a set and check whether it is
admissible / conflict-free and whether the range fits).

In what follows we summarize these considerations and give a PNP procedure
deciding Credsem (resp. coSkeptsem) for the class stableconsksem of AFs, which
answers the query by calling either accept or reject:
Require: AF F = (A,R), argument α ∈ A
Ensure: accepts the input iff α is credulously accepted (resp. not skeptically

accepted) in F w.r.t. sem, rejects otherwise
1: Initialize S ← {S ⊆ A | |A \ S| ≤ k}.
2: while S 6= ∅ do
3: pick S ∈ S with maximum cardinality
4: if there is an E ∈ adm(F ) with E+

R = S and α ∈ E (resp. α 6∈ E ) then
5: accept
6: else if there is an E ∈ σ(F ) with E+

R = S then
7: S ← S \ {S ′ | S ′ ⊆ S}
8: else
9: S ← S \ {S}

10: end if
11: end while
12: reject

If we replace adm by cf , we obtain the corresponding decision procedure for
stage semantics, i.e., for the class stableconskstg .

Next, we parameterize coherence.

Definition 11. An AF F is k-coherent, where k ≥ 0, if |prf (F )\ stb(F )| ≤ k. We
use coherentk to denote the respective class of AFs for given k.

We do not consider the corresponding definitions for sem and stg as in Defini-
tion 10: The reason is that either a stable extension exists (hence, the AF is stable-
consistent), or the parameter k, as used in Definition 11, would simply mention
the number of semi-stable, resp. stage, extensions. In fact, we will consider these
classes of AFs of bounded solution cardinality at the end of this section.
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In the case of k-coherent AFs, the potential exponential number of stable ex-
tensions appears to cause additional difficulties. While we are unable to provide
a hardness result using standard reductions at the moment, we provide a slightly
weaker result (using randomized reductions) which still suggests that parameter-
ized coherence does not allow for more efficient algorithms.

Theorem 2. Skeptprf for AFs in coherentk is ΠP
2 -hard under randomized reduc-

tions; hardness holds even for k = 1.

Proof. Consider the following promise problem: Given a QBF Φ = ∀Y ∃Zϕ(Y, Z)
together with the fact that ∃≤1Y ∀Z¬ϕ(Y, Z) is true, decide whether Φ is true. By
results in [27] and [26] (extension to QBFs), this problem is ΠP

2 -hard under ran-
domized reductions. Now one can apply the reduction presented in the proof
of Proposition 3 from QBFs to Skeptprf (see also Figure 1). The sets Y with
∀Z¬ϕ(Y, Z) are in one-to-one correspondence to the preferred extensions which
are not stable. Hence using the promise problem results in an AF from the class
coherent1.

The final class we discuss is uniqpref. The natural distance here is to consider
frameworks which possess at most k preferred extensions. We will also apply the
same idea for semi-stable and stage semantics.

Definition 12. Let σ ∈ {prf , sem, stg}. We denote by solkσ the class of all AFs F
such that |σ(F )| ≤ k.

Theorem 3. For AFs F ∈ solkprf , Skeptprf is in PNP.

Proof. We provide an algorithm which iteratively constructs the set prf (F ). The
set E serves this purpose and is initialized by E := ∅. At each stage of the al-
gorithm we construct a new preferred extension E as follows: Start with E = ∅,
and iterate over all arguments a asking an NP-oracle whether there is a complete
extension C of the given framework such thatE∪{a} ⊆ C and there is noE ′ ∈ E
such that C ⊆ E ′. If the oracle returns yes, add a to E and proceed with the next
arguments. In the end, E is either a preferred extension (i.e. we cannot add further
arguments) or the empty set. If E 6= ∅, simply add E to the set E and proceed
with constructing the next preferred extension. If E = ∅, there is no non-empty
complete extension that is not already contained in one of the extensions in E , and
hence the algorithm terminates. If E = ∅, add ∅ to E .

By the assumption F ∈ solkprf , prf (F ) is of polynomial size and for each
extension only a linear number of steps (iterating over all arguments) is needed.
Hence the overall run-time is polynomial (using an NP oracle).
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Table 4: Complexity when the AFs belong to a sub-class G.

G Skeptprf Credsem Skeptsem Credstg Skeptstg

stableconskσ – in PNP in PNP in PNP in PNP

coherentk ΠP
2 -c in PNP in PNP in PNP in PNP

solkσ in PNP in PNP in PNP in PNP in PNP

Theorem 4. For AFs in solkσ (σ ∈ {sem, stg}), Credσ and Skeptσ are in PNP.

Proof. Let F = (A,R). The algorithm we present below is quite similar to the
algorithm in the proof of Theorem 3, but instead of computing σ(F ), we construct
here σ+(F ) := {E+

R | E ∈ σ(F )}. Again, below we use E as the set of the
currently computed elements from σ+(F ), initialized as E := ∅ and iteratively
extend it. Moreover, let bsem = com and bstg = cf .

Within each iteration, start with S = ∅ and iterate over all arguments a ∈ A
asking an NP-oracle whether there is a set C ∈ bσ(F ) such that S ∪ {a} ⊆ C+

R

and there is no T ∈ E such that C+
R ⊆ T . If the oracle returns yes, add a to S

and proceed with the next arguments. In the end, S is either the range of a σ-
extension or the empty set. If S 6= ∅, simply add S to the set E and continue with
constructing the next set. If S = ∅, there is no non-empty set in bσ(F ) such that
S+
R is not already contained in a set of E , and hence the algorithm terminates. If
E = ∅, add ∅ to E .

By assumption, the number of σ-extensions is bounded and so is the size of
σ+(F ). To decide Credσ (resp. co-Skeptσ) for an argument a, iterate over all
sets S ∈ σ+(F ) and ask an NP oracle whether there is an E ∈ bσ(F ) such that
E+
R = S and a ∈ E (resp. a 6∈ E).

Our results are summarized in Table 4. Recall that the ΠP
2 -hardness of Skeptprf

for class stableconskσ was shown for randomized reductions. Furthermore, recall
that coherentk for σ ∈ {sem, stg} reduces either to stablecons or to solkσ. We
did not consider k-stable-consistent AFs under prf since the full complexity was
already reached for the class of stable-consistent AFs (recall Table 2).

6. Complexity-Sensitive Procedures

In this section we describe complexity-sensitive decision procedures for skep-
tical and credulous acceptance problems, which are on the second level of the
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polynomial hierarchy. Our procedures follow the lines of Theorems 1, 3, and 4.
As a result, the procedures are complexity-sensitive w.r.t. the classes exhibiting
lowered complexity, as shown in the previous section (recall Table 4). At the
same time, the procedures are applicable to the general second-level skeptical and
credulous acceptance problems.

The general framework implemented by our procedures exploits NP-oracles,
and uses oracle calls to decide NP-decidable relaxations of the input instance by
over- and/or under-approximating the acceptance conditions of the problem at
hand. The relaxation is iteratively strengthened based on the answers provided by
the oracle calls. More specifically, at the beginning of the procedures, the candi-
date extensions are the NP-decidable admissible sets (or, alternatively, complete
extensions) in case of preferred and semi-stable semantics, or conflict-free sets in
case of stage semantics. We refer to the semantics that characterizes the initial
candidate extensions as the chosen base semantics. Starting from the initial can-
didate extensions, the remaining set of candidate extensions is then non-trivially
reduced in an iterative fashion based on the results returned by the previous oracle
calls.

We will now explain in detail our procedures, starting with skeptical accep-
tance for preferred semantics.

6.1. Procedure for Preferred Semantics
First let us consider preferred semantics and the problem of skeptical accep-

tance (recall that credulous acceptance is already in NP). Our procedure builds
on Theorem 3 and, as an additional shortcut, uses the following observation: In
coherent AFs an argument a is skeptically accepted iff a is not attacked by a pre-
ferred extension. In general, one has to drop the “if” direction. However, we
still have that an argument is skeptically accepted only if a is not attacked by a
preferred extension. As the latter is equivalent to a not being attacked by an ad-
missible set or a complete extension we can test it with one call to an NP-oracle.

Our complexity-sensitive procedure for deciding skeptical acceptance of an
argument w.r.t. preferred semantics is presented as Algorithm 1, Skeptprf (F, α).
First, the procedure applies the just explained shortcut. If this does not result in
a decision for the input instance, the algorithm presented in the proof of Theo-
rem 3 is applied, yielding a complexity-sensitive procedure for deciding skeptical
acceptance in the class solkprf . In the algorithm, we are free to choose the base
semantics σ, i.e., the semantics used in the NP search procedures, to be either ad-
missible or complete semantics. In practice, this choice might influence the actual
running time of the procedure; experimental results on the impact of the choice
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are provided in Section 8. Finally, notice that in the following algorithms we use
the function NP-ORACLE not only to get yes/no answers for NP-queries, but also
to obtain certain extensions. This does not fully match to the formal notion of a
NP-oracle, which only return yes or no, but to a functional variant of it. However,
NP-ORACLE can be easily implemented by a linear number of calls to a classical
NP-oracle (cf. proof of Theorem 3).

Algorithm 1 Skeptprf (F, α)

Require: AF F = (A,R), argument α ∈ A, σ ∈ {adm, com}
Ensure: accepts the input iff α is skeptically accepted in F w.r.t. prf , rejects

otherwise
1: E ← ∅
2: if NP-ORACLE (∃E ∈ σ(F ) : E attacking α) then
3: reject
4: end if
5: while E ← NP-ORACLE (∃E ∈ σ(F ) : α 6∈ E,@E ′ ∈ E : E ⊆ E ′) do
6: while E ′ ← NP-ORACLE (∃E ′ ∈ σ(F ) : E ⊂ E ′) do
7: E ← E ′

8: end while
9: if α 6∈ E then

10: reject
11: else
12: E ← E ∪ {E}
13: end if
14: end while
15: accept

Algorithm 1 answers the skeptical acceptance of an argument α for an AF F
under preferred semantics. As before the algorithm answers the query by calling
either accept or reject. It first tries to construct an admissible set or complete
extension, depending on the choice of the base semantics σ, which attacks α. In
this case we can immediately reject the query. The outer while loop in line 5 now
computes an admissible set or complete extension E, excluding α and ensuring
that E is not a subset of an admissible set or complete extension E ′, which was
checked before, i.e. is in E . If such an E is found it is iteratively extended in
the inner while loop, as long as this is possible. Afterwards E must be a subset
maximal admissible set or complete extension, hence a preferred extension. Then
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we check if α 6∈ E. In this case we can reject the skeptical acceptance of α in F .

Example 2. To illustrate the behavior of Algorithm 1 consider the following AF.

a b c d e

The AF has two preferred extensions {b, e} and {a, c, e} with e being the only
skeptically accepted argument.

Let us first test b for skeptical acceptance with Algorithm 1 and base seman-
tics adm. Then, already in line 2 of the algorithm we obtain an admissible set
attacking b, e.g. {a, c}, and thus reject b.

Now consider the argument e and base semantics com. As e is only attacked
by d and d is in no complete extension the shortcut in line 2 does not apply. In line
5 we enter the while loop as for instance the emptyset ∅ is a complete extension
that does not contain e. We pick ∅ as our candidate extension and in line 6 we
enter the second while loop as {b} is complete and a superset of ∅. In line 7 we
choose {b} for being our new candidate solution. Then we go back to line 6 and as
{b, e} is complete and a superset of {b} we again update the candidate extension
to be {b, e}. Now as {b, e} is maximal we skip the inner loop and in line 10 we
check whether e is contained in our candidate. As e ∈ {b, e} we enter the else
part and add {b, e} to the set of already considered candidates. Now back in line
5 we ask for a complete extension not contained in {b, e} and not containing e.
As the former is only satisfied by the set {a, c, e}, the query fails and we skip the
outer loop. Finally, as we could not construct a counter example for the skeptical
acceptance of e we accept it.

6.2. Procedures for Semi-Stable and Stage Semantics
We now turn to the problems of skeptical and credulous acceptance under

semi-stable and stage semantics, and describe our complexity-sensitive proce-
dures for these problems. Our procedures combine the results of Theorems 1
and 4. For each of the cases of skeptical and credulous acceptance, the procedures
for semi-stable and stage semantics only differ in the choice of the base semantics,
and can hence be presented as a unified procedure.

Our procedure for deciding credulous acceptance for semi-stable semantics
(using base semantics σ ∈ {adm, com}) and credulous acceptance for stage se-
mantics (using base semantics σ = cf ) is presented as Algorithm 2, Credθ(F, α).
The procedure first applies the algorithm from the proof of Theorem 1, but bounds
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the search depth to a fixed constant d as follows: We initialize S to {S ⊆ A |
|A \S| ≤ d+ 1} and only consider sets S with |A \S| ≤ d in the first while loop.
Hence, if S = ∅ in line 13 then all the sets S with |A \ S| = d + 1 are subsets of
ranges of already considered extensions and thus no further extensions exists (as
indeed all sets with |A \ S| > d + 1 are subsets of sets with |A \ S| = d + 1).
Hence the algorithm has to reject the instance.

If the algorithm from the proof of Theorem 1 does not result in deciding the
input instance, the algorithm from the proof of Theorem 4 is applied. Hence Algo-
rithm 2 is complexity-sensitive for stablecons≤d and solk, the first one expressing
that is complexity-sensitive w.r.t. k′-stable-consistency as long k′ is below some
threshold d.

Example 3. To illustrate the behavior of Algorithm 2, consider the following AF
F .

a b c d e

The semi-stable extensions are {b} and {c, e} with ranges {b}+ = {a, b, c} and
{c, e}+ = {b, c, d, e}.

Let us first check whether c is credulously accepted with base-semantics adm
and d = 1. In the first while loop we have to consider the sets {a, b, c, d, e},
{b, c, d, e}, {a, c, d, e}, {a, b, d, e}, {a, b, c, e} and {a, b, c, d}. In the first iteration
we have to pick S = {a, b, c, d, e}. As there is no admissible set with range
{a, b, c, d, e}, i.e. no stable extension, we simply delete {a, b, c, d, e} from S. As S
still contains sets S with |A\S| ≤ 1 we pick another set S for instance {b, c, d, e}.
As {c, e} is an admissible set with range {b, c, d, e} we end up in line 6 and accept
c.

Now we consider the same argument c, but we set the parameter d to 0. In line
2 we initialize the set S with {{a, b, c, d, e}, {b, c, d, e}, {a, c, d, e}, {a, b, d, e},
{a, b, c, e}, {a, b, c, d}}. Again we enter the first loop and pick S = {a, b, c, d, e}
and then delete it from S. Then there are not further sets in S with |A \ S| ≤ 0
and thus we skip the first loop, As S 6= ∅ we next enter the second loop. Now we
pick an admissible set containing c, for instance {c}. Next we enter the inner loop
to maximize the range of the candidate solution. As {c, e} has a larger range we
update our E to {c, e} and as this is range maximal we skip the inner loop. Now
as c ∈ {c, e} the algorithms accepts c.

Our procedure for skeptical acceptance under semi-stable and stage semantics,
presented as Algorithm 3, works in a similar fashion as Algorithm 2 exploiting
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Algorithm 2 Credθ(F, α) (where θ ∈ {sem, stg})
Require: AF F = (A,R), argument α ∈ A, integer d, base-semantics σ ∈

{adm, com} for θ = sem; σ = cf for θ = stg ;
Ensure: accepts the input iff α is credulously accepted in F w.r.t. θ, rejects

otherwise
1: E ← ∅;
2: S ← {S ⊆ A | |A \ S| ≤ d+ 1}
3: while ∃S ∈ S : |A \ S| ≤ d do
4: pick S ∈ S with maximum cardinality
5: if NP-ORACLE

(
∃E ∈ σ(F ) : E+

R = S, α ∈ E
)

then
6: accept
7: else if NP-ORACLE

(
∃E ∈ σ(F ) : E+

R = S
)

then
8: S ← S \ {S ′ | S ′ ⊂ S}
9: else

10: S ← S \ {S}
11: end if
12: end while
13: if S = ∅ then
14: reject
15: end if
16: while E ← NP-ORACLE

(
∃E ∈ σ(F ) : α ∈ E,@E ′ ∈ E : E+

R ⊆ E ′
)

do
17: while E ′ ← NP-ORACLE

(
∃E ′ ∈ σ(F ) : E+

R ⊂ E ′+R
)

do
18: E ← E ′

19: end while
20: if NP-ORACLE

(
∃E ′ ∈ σ(F ) : E ′+R = E+

R : α ∈ E
)

then
21: accept
22: else
23: E ← E ∪ {E+

R}
24: end if
25: end while
26: reject
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Theorems 1 and 4 once more. The key difference to Algorithm 2 is that, instead
of constructing a witness for an argument to be credulously accepted, it attempts
to construct a counter-example for an argument to be skeptically accepted, and
only accepts if no such counter-example can be constructed.

6.3. Materializing the NP-Oracles
Our procedures just described make heavy use of NP-oracle queries for the

base semantics applied in each case. Hence, in practical implementations of our
procedures, one wants to make use of (existing) NP-solvers for the base semantics
for deciding the oracle queries. However, some of our queries are rather non-
standard, and thus are unlikely to be directly implemented in a solver for the base
semantics.

We see two ways to deal with this problem. One alternative is to translate
the oracle queries to standard AF reasoning tasks, like credulous/skeptical accep-
tance of an argument, existence of a stable extension, or existence of a non-empty
extension, by modifying the frameworks for the queries.

As a second alternative, one can characterize argumentation semantics within
other suitable formalisms, and then apply a decision procedure for the chosen
formalism as the underlying NP-oracle for deciding the queries. In this approach,
the key is to find a formalism that is well-suited for encoding the NP-queries, most
preferably in an incremental manner, and for which at the same time efficient off-
the-shelves implementations are readily available.

In the next section, we will present an instantiation of our procedures based
on the second alternative, using Boolean satisfiability (SAT) as a well-suited for-
malism. In other words, the SAT-based instantiation is based on representing the
NP-queries in a natural way in propositional logic, and applying readily avail-
able and highly optimized state-of-the-art SAT-solvers for decision of the queries.
As will be later shown in Section 8, it turns out that an implementation of the
SAT-based instantiation of our procedures provide a competitive approach for the
second-level argumentation problems considered.

Before describing details on the SAT-based instantiation of our procedures, let
us shortly outline the other possibility, i.e., the translation-based approach based
on translating the oracle queries to standard AF reasoning tasks. We exemplify
this alternative by providing translations for two of our NP-queries. We start with
the NP query for an admissible/conflict-free set of a given range used in lines 5,7
and 20, respectively, of Algorithms 2 and 3, respectively, which can be translated
to computing a stable extension of a modified AF.
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Algorithm 3 Skeptθ(F, α) (where θ ∈ {sem, stg})
Require: AF F = (A,R), argument α ∈ A, integer d, base-semantics σ ∈

{adm, com} for θ = sem; σ = cf for θ = stg ;
Ensure: accepts the input iff α is skeptically accepted in F w.r.t. θ, rejects

otherwise
1: E ← ∅;
2: S ← {S ⊆ A | |A \ S| ≤ d+ 1}
3: while ∃S ∈ S : |A \ S| ≤ d do
4: pick S ∈ S with maximum cardinality
5: if NP-ORACLE

(
∃E ∈ σ(F ) : E+

R = S, α ∈ E
)

then
6: reject
7: else if NP-ORACLE

(
∃E ∈ σ(F ) : E+

R = S
)

then
8: S ← S \ {S ′ | S ′ ⊂ S}
9: else

10: S ← S \ {S}
11: end if
12: end while
13: if S = ∅ then
14: accept
15: end if
16: while E ← NP-ORACLE

(
∃E ∈ σ(F ) : α 6∈ E,@E ′ ∈ E : E+

R ⊆ E ′
)

do
17: while E ′ ← NP-ORACLE

(
∃E ′ ∈ σ(F ) : E+

R ⊂ E ′+R
)

do
18: E ← E ′

19: end while
20: if NP-ORACLE

(
∃E ′ ∈ σ(F ) : E ′+R = E+

R : α 6∈ E
)

then
21: reject
22: else
23: E ← E ∪ {E+

R}
24: end if
25: end while
26: accept
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Proposition 15. Let F = (A,R) be an AF and S ⊆ A, and define F stg
S , F sem

S as
follows:

F stg
S = (A ∩ S, (R ∩ (S × S)) ∪ {(b, b) | b� (A \ S)})

F sem
S = (A ∩ S, (R ∩ (S × S)) ∪ {(b, b) | b� (A \ S) ∨ (A \ S) � b})

This construction ensures the following correspondence:
i. E ∈ stb(F stg

S ) iff E ∈ cf (F ) and E+
R = S; and

ii. E ∈ stb(F sem
S ) iff E ∈ adm(F ) and E+

R = S

Proof. To prove (i) let us first consider a E ∈ stb(F stg
S ). As the construction

of F stg
S does not drop conflicts in S we have that E ∈ cf (F ) and further as

E ∈ stb(F stg
S ) and the attacks origin from F we have that E+

R ⊃ S. Moreover
there is no argument a ∈ E that attacks an argument in A \ S as such an a is
self-attacking in F stg

S . Hence also E+
R = S. Now let us consider E ∈ cf (F ) and

E+
R = S. As E+

R = S also E ⊂ S and there is no argument a ∈ E attacking an
element fromA\S. HenceE ∈ cf (F stg

S ) and as all attacks within S are preserved
in F stg

S also E ∈ stb(F stg
S ).

Now to prove (ii) consider E ∈ stb(F sem
S ). We show that E ∈ adm(F ).

As before we have that E ∈ cf (F ) and E+
R = S. Next consider an argument

a attacking an argument b in E. By construction a ∈ S (otherwise b would be
self-attacking and thus not in E), and as E+

R = S there is a c ∈ E attacking a.
Now consider an E ∈ adm(F ) and E+

R = S. Again as E+
R = S also E ⊂ S and

there is no argument a ∈ E attacking an A \ S. Furthermore as E ∈ adm(F ) and
E+
R = S there is no argument b ∈ A \ S attacking E. Hence E ∈ cf (F stg

S ) and as
all attacks within S are preserved in F sem

S also E ∈ stb(F sem
S ).

Now consider the NP-query in line 6 of Algorithm 1, which asks whether there
is a superset of the current candidate solution that is still admissible/complete.

Proposition 16. For an AF F = (A,R), S ∈ adm(F ), and FS defined as the AF
(A\S+

R , R∩ ((A\S+
R )× (A\S+

R ))) it holds that S ∈ prf (F ) iff adm(FS) = {∅}.
Proof. First let us consider the case where S 6∈ prf (F ), then there exists a non-
empty S ′ ⊆ A \ S such that S ∪ S ′ ∈ adm(F ). Now it is easy to see that also
S ′ ∈ adm(FS). Next let us consider the case where there exists a non-empty
S ∈ adm(FS). Then one can easily show that S ∪ S ′ ∈ adm(F ) and as S ′ is
disjoint from S, also S 6∈ prf (A,R).

In the rest of the paper, however, our main focus will be on the second alter-
native, developing SAT-based instantiations of our generic complexity-sensitive
procedures.
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7. SAT-Based Complexity-Sensitive Procedures

In this section we describe instantiations based on SAT for the complexity-
sensitive procedures (see Algorithms 1, 2, and 3) described in the previous section.
In the SAT-based instantiations, the queries, i.e. the inputs to the NP-oracle, are
propositional formulas, encoding the currently remaining candidate extensions
under the chosen base semantics.

Harnessing SAT for instantiating the procedures has several benefits. First, the
NP-oracle calls can be encoded in a natural way using propositional logic. During
the main iterative loop of the procedures, restricting the set of candidate extensions
further, based on already found counter-examples, can be achieved by iteratively
adding new clauses to the propositional formula, which encodes the initial candi-
date extensions. Hence the input to the SAT-solver, acting as the NP-oracle, needs
not to be built from scratch before each oracle call. This can be seen as a form of
no-good learning which further prunes the possible IN/OUT-labellings [28] of the
arguments on the level of the propositional encoding. Furthermore, any off-the-
shelf complete SAT-solver can hence be used as the NP-oracle. This relieves the
implementer from the non-straight-forward task of implementing the actual NP
search procedure. By applying SAT as the NP-oracle, the highly optimized and
efficient conflict-driven clause learning (CDCL) SAT-solvers available today can
be directly exploited. This especially includes CDCL SAT-solvers that can be ap-
plied incrementally, which basically means that (after a satisfiable oracle call) the
SAT-solver can maintain its state from one oracle call to the next without needing
to start search from scratch when adding further restrictions on the set of candidate
extensions on the propositional level. Furthermore, the clauses learned within the
CDCL SAT search, imposing further restrictions on the candidate extensions, can
be kept from one iteration to another.

7.1. A SAT-Based Complexity-Sensitive Framework
The main structure of our SAT-based instantiation, based on the class solkσ,

which applies well to all semantics under our consideration, can be represented as
a unifying framework for all the semantics. In what follows we consider semantics
σ ∈ {prf , sem, stg}, a reasoning mode M ∈ {Skept,Cred}, an AF F = (A,R),
and an argument α ∈ A. The generic structure of our SAT-based framework is
shown in Algorithm 4.

Notice that in the algorithms we use the function SAT not only to get a yes
answer if the provided formula is satisfiable and a no answer if the formula is
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unsatisfiable, but also to obtain a model in the former case. The dual function
UNSAT returns yes iff the formula is unsatisfiable.

Algorithm 4 Decideθ(F, α,M) (where θ ∈ {prf , sem, stg})
Require: AF F = (A,R), argument α ∈ A, base-semantics σ ∈ {adm, com}

for θ ∈ {prf , sem}; σ = cf for θ = stg ; and reasoning mode M ∈
{Skept,Cred};

Ensure: accepts the input iff M = Skept and α is skeptically rejected or M =
Cred and α is credulously accepted in F w.r.t. σ, rejects otherwise

1: if M = Skept then
2: q ← ¬xα
3: else if M = Cred then
4: q ← xα
5: end if
6: ϕ← ϕσ(F ) ∧ q ∧ SHORTCUTSθ(F, α,M)
7: while I ←SAT (ϕ) do
8: while I ′ ← SAT (ψIθ(F ) ∧ q) do
9: I ← I ′

10: end while
11: if UNSAT

(
ψIθ(F )

)
then

12: accept
13: else
14: ϕ← ϕ ∧ γIθ
15: end if
16: end while
17: reject

We will provide details for the generic concepts ψIσ(F ) and γIσ as well as
for the function SHORTCUTSσ(F, α,M) for the different semantics separately
below. Let us note at this point already that the procedure might terminate in
SHORTCUTSσ(F, α,M) in certain cases. Then, we also terminate the procedure
with the status returned by SHORTCUTSσ(F, α,M), i.e. accept or reject.

Overall, the procedure works as follows. Depending on the reasoning mode,
we test whether there is an extension containing α, or whether there is an exten-
sion not containing α, hence accepting α credulously or rejecting it for skeptical
reasoning. This is encoded via the query-literal q. In line 6, a formula is built to
encode extensions of the base semantics, i.e. not taking maximality into account,
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together with the query q as well as semantics-specific shortcuts that can be ap-
plied for pruning the search space via learning inferred information; this will be
discussed later in more detail. The SHORTCUTS function allows for refining the
base encoding using the inferred information it outputs. The loop in line 7 follows
the ideas of the main loops in the Algorithms 1, 2 and 3: starting with a model
that corresponds to a set of arguments satisfying the base semantics and our query
q, each iteration then extends this set to a larger one satisfying q until we have a
maximal set satisfying q. In line 11, the condition q is dropped for testing whether
the set is maximal among all sets, i.e. whether it is an extension. If this is the case,
the algorithm accepts. Otherwise, we learn that none of the smaller sets can be an
extension (line 14). Finally, after excluding all sets satisfying the base semantics
and q from being a valid extension, the algorithm rejects the query (line 17).

7.2. Instantiating the Framework
A key aspect of instantiating the SAT-based framework is how the AF reason-

ing tasks are encoded as propositional formulas over the variables X = {xa | a ∈
A} and Y = {ya | a ∈ A} such that the models of the formulas are in correspon-
dence with certain sets of arguments. The intuition behind the variables is that xa
is true iff a is in the set, and ya is true iff a is in the range of the set.

7.2.1. Encoding the Base Semantics
To ensure the relation between the set and its range, we apply the formula

ya ↔ xa ∨
∨

(b,a)∈R

xb

together with a propositional encoding that restricts the models to correspond to
particular types of AF extensions. To this end, we use the following propositional
formulas ϕcf (F ), ϕadm(F ), and ϕcom(F ), respectively, to encode the conflict-free
sets, admissible sets, and complete extensions, respectively for a given AF F =
(A,R):

ϕcf (F ) =
∧

(a,b)∈R

(¬xa ∨ ¬xb)

ϕadm(F ) = ϕcf (F ) ∧
∧

(b,c)∈R

(¬xc ∨
∨

(a,b)∈R

xa)

ϕcom(F ) = ϕadm(F ) ∧
∧
a∈A

(ya ∨
∨

(b,a)∈R

¬yb)
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7.2.2. Preferred Semantics
For preferred semantics we are only interested in skeptical reasoning, since

credulous reasoning for preferred semantics has a lower complexity.
Given an AF F = (A,R) and an argument α ∈ A we can choose the base

semantics from {adm, com}. The SHORTCUTS function for preferred semantics
is shown in pseudocode in Algorithm 5. It implements the shortcut from Algo-
rithm 1 (lines 2-4) and additionally exploits learning in case the shortcut does not
decide the instance.

Algorithm 5 SHORTCUTSprf (F, α, Skept)

Require: AF F = (A,R), argument α ∈ A and base-semantics σ ∈ {adm, com}
Ensure: rejects the input only if α is not skeptically accepted in F w.r.t. prf ,

returns a formula otherwise
1: if SAT (ϕσ(F ) ∧

(∨
(β,α)∈R xβ

)
) then

2: reject
3: else
4: return

∧
(β,α)∈R ¬xβ

5: end if

Here we simply check in line 1 whether there is a counter-example for skepti-
cal acceptance of α under the chosen base-semantics witnessed by a set attacking
α, and if not, learn in line 4 that this is the case. Furthermore, in the case of pre-
ferred semantics with a base semantics σ ∈ {adm, com} the formulas ψIθ(F ) and
γIθ are:

ψIprf (F ) = ϕσ(F ) ∧
∧

x∈I∩X

x ∧
( ∨
x∈X\I

x
)

γIprf =
∨

x∈X\I

x.

Here, given a set I satisfying base semantics of the main procedure, ψIprf en-
codes the supersets I ′ ⊃ I satisfying σ. 3 By adding the formula γIprf we learn
that we are no longer interested in subsets of I , i.e. we need at least one argument
from the complement, thereby reducing the search space.

3Note that in principle one can choose different base-semantics for the main procedure, the
shortcut function and the formula ψI

prf (F ).
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7.2.3. Semi-Stable and Stage Semantics
Let us next consider semantics θ ∈ {sem, stg}. For semi-stable, we have the

choice of using either adm or com as base-semantics. For stage semantics, we use
base semantics cf . The SHORTCUTS function for semi-stable and stage semantics,
based on stableconskσ, is presented in pseudocode in Algorithm 6.

The procedure follows the idea of the first loop in the Algorithms 2 and 3, and
thus in principle can decide the reasoning problems without any further investiga-
tions, but would be expensive for high values of k. To profit in cases where k is
small from the complexity-sensitive perspective, and avoid unnecessary computa-
tional cost otherwise, we include again the parameter d to bound the search-depth
to sets of arguments to those whose range S satisfies |A \ S| ≤ d.

The loop in line 7 iterates over sets S ⊆ A. In line 8, MAXIMAL returns
a maximal-cardinality set S from U , (starting with S = A). Line 9 builds the
formula fS encoding that sets of interest have range S. Line 10 tests whether
there is a set with range S satisfying q under the base semantics. If so, we have
found an extension satisfying q and accept. Line 12 tests whether there is an
extension under base semantics which has range S. If so, we learn that we are
no longer interested in sets S ′ ⊆ S. Otherwise (line 16) we learn that we are not
interested in extensions with range S. Finally, if all sets have been excluded from
being the range of an extension satisfying q, the procedures rejects. In case the
bound d is exceeded before this, we return the formula ψ as learnt information.

The helper formulas ψIσ and γIσ (θ ∈ {sem, stg}) are:

ψIθ(F ) = ϕσ(F ) ∧
∧

y∈I∩Y

y ∧
( ∨
y∈Y \I

y
)

γIθ =
∨

y∈Y \I

y.

where F = (A,R) is an AF, base-semantics σ ∈ {adm, com} if θ = sem and
σ = cf in case θ = stg . For a set I satisfying base-semantics σ the formula ψIσ
encodes sets I ′ satisfying σ and I+

R ⊂ (I ′)+
R, while formula γIσ encodes that we

are no longer interested in sets I ′ with (I ′)+
R ⊆ I+

R .

8. Experiments

We have implemented the SAT-based instantiations from Section 7 of our
complexity-sensitive decision procedures as the SAT-based argumentation system
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Algorithm 6 SHORTCUTSθ(F, α,M) (where θ ∈ {sem, stg})
Require: AF F = (A,R), argument α ∈ A,

base-semantics σ ∈ {adm, com} for θ = sem; σ = cf for θ = stg ;
and reasoning mode M ∈ {Skept,Cred};

Ensure: accepts (rejects) the input only if M = Skept and α is skeptically re-
jected (accepted) or M = Cred and α is credulously accepted (rejected)
in F w.r.t. σ, returns a formula otherwise

1: if M = Skept then
2: q ← ¬xα
3: else if M = Cred then
4: q ← xα
5: end if
6: ψ ← >;S ← {S ⊆ A | |A \ S| ≤ d+ 1}
7: while (∃S ∈ S : |A \ S| ≤ d) do
8: S ← MAXIMAL(U)
9: fS ←

∧
s∈S ys ∧

∧
s∈A\S ¬ys

10: if SAT (ϕσ(F ) ∧ q ∧ fS(X)) then
11: accept
12: else if SAT (ϕσ(F ) ∧ fS(X)) then
13: ψ ← ψ ∧

(∨
s∈A\S ys

)
14: S ← S \ {S ′ | S ′ ⊂ S}
15: else
16: ψ ← ψ ∧

(∨
s∈S ¬yS ∨

∨
s∈A\S ys

)
17: S ← S \ {S}
18: end if
19: end while
20: if (S = ∅) then
21: reject
22: else
23: return ψ
24: end if
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CEGARTIX4. In this section we present experimental results on the efficiency of
CEGARTIX (v0.1a).

In the evaluation, we compare the performance of CEGARTIX to that of a
recently proposed, state-of-the-art argumentation reasoning system [18] that ex-
ploits advances in answer-set programming (ASP). It turns out that CEGARTIX
improves significantly over the state-of-the-art ASP-based system. Furthermore,
we evaluate within CEGARTIX the impact of (i) applying the alternative base se-
mantics and (ii) the impact of using different values of the parameter d within the
shortcut functions for the different semantics.

CEGARTIX employs the CDCL SAT-solver Minisat [11] (v2.2.0) as the SAT
oracle in an incremental mode, which allows us to retain from starting search from
scratch when adding newly learnt information to a current satisfiable working
formula.

In the experiments, we considered all the five reasoning tasks focused on in
this article. The experiments were executed under OpenSUSE with 2.33-GHz
Intel Xeon processors and 49-GB main memory. At most one query was run at a
time to reduce performance bottlenecks. A timeout of five minutes was enforced
on each individual run. We note that this high amount of memory is not actually
used by the considered algorithms. We executed the algorithms with the hardest
queries identified in our performance tests, see Section 8.2 for more details, with
an additional hard limit of 4 GB, which was never reached.

8.1. Benchmarks
As benchmarks we generated AFs ranging from 60 to 1000 arguments using

two parameterized methods for randomly generating the attack relation, following
the line of [18] for benchmarking. We note that, as identified in [29], there is
still need for diverse benchmark libraries for AFs incorporating e.g. AFs from
applications.

Random AFs generated by inserting for any pair of arguments (a, b) with a 6= b
the attack from a to b with a given probability p.

Grid AFs that are sub-graphs of an n ×m grid-structure. We consider two dif-
ferent neighborhoods, one connecting arguments vertically and horizontally

4Available at www.dbai.tuwien.ac.at/research/project/argumentation/
cegartix/.
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Figure 8: Examples of grid-structured AFs

and one that additionally connects the arguments diagonally. Such a con-
nection is a mutual attack with a given probability p and an attack in only
one direction otherwise. In the last case the direction is chosen with 0.5
probability. See Figure 8 for examples.

For both methods, we used the values p ∈ {0.1, 0.2, 0.3, 0.4} and in addition
for the grid AFs n ∈ {5, 10, 15}. The parameter m can then be calculated from
the total number of arguments in the framework. For the number of arguments,
we distinguished between medium-sized AFs with 60, 70, 80, 90, 100, 110, 130,
160 and 200 arguments as well as larger AFs with 300, 400, 500, 600, 700, 800,
900 and 1000 arguments. For the former we generated random and grid attack
relations, for the latter only grid AFs. Overall this resulted in 360 random AFs,
1080 medium-sized grid AFs as well as 960 large grid AFs for each neighborhood.
The total number is 4440 generated AFs.

We let the solvers compute queries for all semantics in this paper, that is,
for the semantics prf , sem and stg , using skeptical reasoning with all three, and
additionally credulous reasoning with the latter two. For the random instances
three different arguments were queried, while for the grid instances we used five
arguments. This resulted in a total of 107400 benchmark instances. We would
like to stress that the generated AFs are by no means tailored to the fragments our
approach is based on. Lastly note also that the number of attacks scales linearly
with the number of arguments for grid AFs, while it scales quadratically with the
number of arguments for random AFs.

8.2. Comparison with State-of-the-Art
We compare the performance of CEGARTIX to that of a recently proposed,

state-of-the-art argumentation reasoning system [18] that exploits advances in
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answer-set programming (ASP) via the so-called metasp approach5. This sys-
tem is a further improvement of the ASPARTIX system [17]. For comparing
CEGARTIX with the ASP-based approach, we used the state-of-the-art no-good
learning disjunctive ASP solver claspD [31] (v1.1.2) combined with the grounder
gringo [32] (v3.0.4).

For this comparison, we employed the base semantics BASE-SEM(σ) = com
for σ∈{prf , sem}, and BASE-SEM(stg)=cf within CEGARTIX. The parameter
for the SHORTCUTSσ(F, α,M) function for σ ∈ {sem, stg}was set to d = 1. The
reason for setting the shortcut parameter d to 1 was to allow for semi-stable and
stage semantics a fast computation if a stable extension exists (d = 0 is sufficient
for this) or if a semi-stable or stage extension with a range covering almost all
arguments exists. On the other hand by setting d to 1 we keep the number of
checks in the shortcut low.

We considered two metrics for comparison, namely, (cumulative) running time
in seconds for all queries of a particular reasoning mode without timed out in-
stances, and separately the number of timeouts. This has the effect that the figures
depicting cumulative running times exclude timed out runs, and therefore show
a faster performance if the number of timed out queries was high. For perfor-
mance comparison of CEGARTIX with ASPARTIX, using the above mentioned
metasp approach, we considered only medium-sized AFs.

Figures 9 and 10 present results on comparing ASPARTIX and CEGARTIX.
On the left, the line plots comparing the cumulative running times (using log-
arithmic scale) are shown. On the right, the scatter plots present running time
differences of individual queries, including timed out instances. The dotted lines
denote ASPARTIX and the solid lines show the performance for CEGARTIX. For
the plots on the left side, the running times for queries made on AFs with a par-
ticular number of arguments are grouped together. The number of timeouts are
shown in Table 5 for ASPARTIX. Using CEGARTIX with the parameters noted
above, no timeouts were encountered.

First consider Figure 9 for skeptical reasoning with random AFs (upper left
plot). CEGARTIX behaves very similarly for all three semantics with respect to
the considered metric, and outperforms ASPARTIX. The difference of ASPAR-
TIX and CEGARTIX is more distinct with semi-stable and stage semantics and
less so for preferred semantics. Note that for AFs with 200 arguments, 29 and 44

5Skeptical and credulous reasoning in metasp is done by introducing constraints in the so-
called meta answer-set programs; for details, see [30].
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Skeptical reasoning on random AFs
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Figure 9: Comparison of ASPARTIX and CEGARTIX: Cumulative running times
using logarithmic scale (left), scatter plots (right).
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Credulous reasoning on random AFs
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Figure 10: Comparison of ASPARTIX and CEGARTIX: Cumulative running
times using logarithmic scale (left), a scatter plot (right).

timeouts were encountered for ASPARTIX under skeptical semi-stable and stage
reasoning, respectively.

The grid structured AFs typically performed quite differently than random
AFs, which is why we investigate them separately in Figure 9 (lower left plot). In
many cases the running times were in fact very close to 0. One can see that grid
AFs are mostly trivial for CEGARTIX. CEGARTIX could solve skeptical reason-
ing tasks with preferred and semi-stable semantics combined within 10 seconds,
while ASPARTIX took significantly more time. The stage semantics is the only
one here with higher running times for CEGARTIX. We will consider the larger
grid AFs below for a more detailed study of CEGARTIX.

Credulous reasoning shows in general a similar picture to skeptical, with the
exception that for semi-stable reasoning on random AFs, ASPARTIX and CE-
GARTIX appear to be closer with respect to performance, which can be seen in
Figure 10 (on the left). However, a closer look at the encountered timed out in-
stances reveals that CEGARTIX significantly outperforms ASPARTIX also in this
case.

For deeper understanding, we also looked into scatter plots comparing AS-
PARTIX and CEGARTIX. These depict running time comparisons for individual
instances for both solvers, including timed out instances. The scatter plots in Fig-
ures 9 and 10 are for skeptical preferred, semi-stable reasoning, and credulous
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Table 5: Timeouts encountered with ASPARTIX on medium-sized random/grid
AFs.

Arguments Skeptprf Credsem Skeptsem Credstg Skeptstg
100 0/1 0/0 0/0 0/0 0/3
110 0/2 0/1 0/6 0/7 0/11
130 0/2 0/1 0/4 0/77 0/120
160 0/4 0/25 0/36 0/349 1/411
200 1/18 0/85 29/89 22/497 44/562

semi-stable acceptance. The x-axis shows the running time of individual queries
with ASPARTIX and the y-axis with CEGARTIX on the same instance. Due to
the low running times of CEGARTIX on grid AFs, we only considered random
AFs for scatter plots.

For preferred semantics, many queries are in favor of CEGARTIX. Except
for a few instances, which are drastically faster for CEGARTIX, the difference is
usually within a few seconds, however. Semi-stable semantics yields a different
picture, depending on the reasoning mode. For skeptical queries CEGARTIX
clearly outperforms ASPARTIX on basically all instances. Credulous reasoning
overall also is solved faster by CEGARTIX. A number of queries, however, were
computed more efficiently by ASPARTIX. We omit the scatter plots for stage
reasoning as they show a behavior similar to skeptical semi-stable semantics.

In general stage and semi-stable semantics show a similar behavior, which re-
flects their similar nature as well as the similar procedures used for the evaluation
of the semantics. It seems that, when considering range-maximality, the choice
of the base-semantics (cf or com) has only minor effects on the qualitative be-
havior of the semantics. We will see a similar behavior in the next section, when
comparing adm and com as base-semantics for semi-stable.

Finally we made some experiments regarding the memory usage of the algo-
rithms. We let both CEGARTIX and ASPARTIX compute the skeptical accep-
tance under stage semantics on AFs with 200 arguments (these are the hardest
instances used in the above comparison) and additionally enforced a hard limit of
4 GB of memory, which was never reached.
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Figure 11: The effect of different parameter settings for the shortcut function and
the choice of base semantics for skeptical semi-stable reasoning.

8.3. Impact of Base Semantics and Shortcuts within CEGARTIX
In this section we investigate the choice of the base semantics for solving the

reasoning problems, as well as the effect of the shortcuts for semi-stable seman-
tics, within CEGARTIX. We will again distinguish between random AFs and grid
AFs, since CEGARTIX behaves quite differently on these two classes of AFs.

First we consider results regarding the impact of the base semantics. On ran-
dom AFs there appears to be only a minimal effect for most CEGARTIX parame-
ters and reasoning tasks. The cumulative running times were comparable between
admissible and complete base semantics. Figure 11 shows the performance result-
ing from applying different combinations of (i) parameter settings for the shortcut
d = 0, 1, 2 and (ii) the alternative base semantics for semi-stable semantics and
skeptical reasoning. The complete base semantics is slightly outperforming the
admissible base for d = 2, for example. For credulous reasoning the difference
between the choice of the base semantics was even smaller. The results for pre-
ferred semantics were similar.

The choice of the base semantics, however, has a stronger influence for reason-
ing under the preferred semantics on grid AFs. For certain queries the number of
oracle calls rises tremendously using the admissible base semantics. This in turn
can be seen in the cumulative running times in Figure 12 for large grid AFs. In
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Figure 12: Performance comparison for the alternative choices of the base seman-
tics for preferred skeptical reasoning on large grid AFs.

contrast, only a few SAT-solver calls are made when using the complete base se-
mantics. We encountered a higher number of SAT-calls in 130 out of 9600 queries
for preferred semantics on large grid AFs with admissibility base semantics. Al-
gorithm 4 entered in these queries the outer while loop (line 7) more than 40 times,
i.e. had to consider a new admissible set many times, while on the remaining 9470
queries this number was lower. In fact the average number the loop was entered
in these 130 queries was 1179.01. This is also reflected in the running time. From
these 130 queries we have that 75 had a running time of five up to 277.08 seconds.
These make up the largest proportion of the cumulative running time in Figure 12.
Additionally we encountered 305 timeouts using admissibility base semantics for
preferred reasoning and large grid AFs. For complete base semantics either using
the shortcut was enough, or otherwise the query was decided without entering the
outer loop in all large grid AFs, i.e. indicating that there did not exist a complete
extension without the queried argument.

Regarding the number of SAT-calls for semi-stable semantics and skeptical
reasoning, out of the 1080 queries on random AFs, using the shortcut with d = 0
the algorithm could solve 996 within the shortcut and the remaining with one ap-
plication of the outer while loop (line 7) of Algorithm 4, for both base semantics.
Since the number of SAT calls within the outer while loop is linearly bounded by
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the number of arguments in the AF, this means that the overall number of SAT-
calls was low in these cases. Without the shortcuts we have that also the outer
while loop was entered at most once for semi-stable skeptical reasoning.

For the performance of the shortcuts, we experienced a slight decrease of per-
formance for random AFs using the shortcuts for semi-stable skeptical reasoning,
see Figure 11 on the left. For the grid AFs we again have a different picture. Here,
as can be seen in Figure 11 on the right, the shortcuts decrease the overall running
time, due to the fact that for grid AFs with a neighborhood of at most four ar-
guments we have no odd-cycles in the AFs, which in turn means that computing
the stable extensions is sufficient. This is reflected in the running time using the
shortcuts for semi-stable semantics. Here it is even sufficient to consider depth
d = 0.

9. Related Work

To the best of our knowledge, our complexity-sensitive approach to devel-
oping decision procedures for second-level abstract argumentation problems is
novel. The CEGAR approach has been harnessed for solving various other intrin-
sically hard reasoning problems [33, 34, 35, 36, 37, 38, 39, 40, 41]. However, we
are not aware of earlier work on developing complexity-sensitive CEGAR-based
procedures.

Systems developed for solving second-level AF reasoning problems typically
rely on monolithic encodings in other reasoning problems of similar complexity,
see e.g. [42, 43] for encodings in terms of quantified Boolean formulas or [17] for
an answer-set programming based approach. Approaches to solving ”easier”, i.e.,
first-level, AF problems are mostly monolithic; these include SAT-encodings [16]
as well as CSP-encodings [44, 45].

A noteworthy exception is the family of labelling-based algorithms [46, 47,
48, 49, 50]. Typically such approaches deal with the problem of enumerating all
extensions and thus, by the exponential number of extensions, systems are re-
stricted to rather small AFs. The main idea of labelling-based algorithms is to
distinguish different statuses of arguments, e.g. an argument can be in the exten-
sion, attacked by an argument in the extension, or neither. These statuses are
encoded via different labels. Now if one argument is labeled with a certain label,
this has immediate effects on the possible labels for its neighbors. On a high-level
there are two different approaches to exploiting these effects in computing exten-
sions. First, starting with all arguments being in the extension and resolving the
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conflicts by removing arguments from the extension and update the labels corre-
spondingly (see e.g. [47]). A second family of algorithms which have similarities
with our approach consist of algorithms which start from a small set, test whether
it is preferred, and, if not, extend the set by further arguments to finally reach a
preferred extension (see e.g. [49, 50]). In [49] also optimizations for credulous
and skeptical reasoning with preferred semantics are considered. A recent empiri-
cal comparison of different labelling-based approaches for enumerating preferred
extensions can be found in [50]. The main difference between existing work on
labelling-based algorithms and our procedures are as follows: (i) we delegate the
combinatorial hard problems to a SAT-solver (an NP-oracle respectively), (ii) we
do not have to deal with sets which are not admissible at all (but may become
admissible by adding further arguments), and (iii) our procedures come with a
(parametrized) complexity classification.

Other current branches in abstract argumentation are certain preprocessing
techniques [51, 52, 53] to divide the problem into small pieces as well as im-
plementations of fixed-parameter tractable algorithms [7, 6, 54]. While the con-
cept of complexity-sensitivity as used in our approach bears some resemblance to
fixed-parameter tractability and parameterized complexity, there are fundamental
differences. Especially, while parameterized complexity usually studies param-
eterizations with respect to polynomial-time tractability, the CEGAR approach
in general is typically based on exploiting “NP-tractability” via iterative calls to
efficient NP decision procedures. Hence our work takes further steps towards a
full classification for argumentation problems of high complexity. This also dis-
tinguishes our complexity results to the ones obtained in [8], where AFs with a
small (graph-based) distance to tractable graph classes are studied. Moreover, the
above-mentioned works on fixed-parameter tractability and splitting focus on the
graph structure of an AF while in this work we also exploit structure in the set of
the extensions.

Finally there is recent work on average-case algorithms for value-based ar-
gumentation [55], using an elaborate handling of the possible value orderings.
However, this is a different setting and [55] focuses on the problem of handling
the different possible value-orderings which do not occur in our setting.

This article extends work presented at the 13th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2012) [56], with
the following improvements. First of all, we now provide full proofs of the re-
sults, and additional explanations and examples. In Section 6 we describe our
complexity-sensitive procedures in a generic setting, while [56] was restricted to
the SAT-based instantiation. The experiments with the CEGARTIX system have
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been extended in several directions. First we now include more details on the
performance tests showing e.g. scatter plots and also incorporating more details
for the stage semantics. We additionally conducted experiments with larger grid-
structured AFs (up to 1000 arguments) and investigated in detail the choice of the
base-semantics and shortcuts. We used newer versions of the systems we com-
pared to, and re-ran all experiments.

10. Conclusion

In this work, we developed a novel method for solving hard problems in
the area of argumentation in a “complexity-sensitive” way. From one perspec-
tive, the approach can be seen as an argumentation-customized incarnation of
the counter-example guided abstraction refinement approach originating from the
field of model checking. Our prototype implementation CEGARTIX employs
SAT-solvers as underlying inference engines. Experiments show that CEGAR-
TIX significantly outperforms existing systems developed for hard argumenta-
tion problems (i.e. problems under the preferred, semi-stable, or stage semantics).
The fundamental aspects of our approach are generic, allowing in principle to
exploit as the underlying NP-oracle systems developed for other reasoning prob-
lems such as CSP or ASP, or even native argumentation systems for “easier” se-
mantics such as the stable or complete semantics. Building necessary ground
for the complexity-sensitive approach, we also presented an extensive complexity
theoretic analysis, providing new results for certain fragments of argumentation
frameworks, as well as distance-based complexity analysis, complementing recent
results from [8].

The promising experimental results suggest to apply our approach also to for-
malisms extending the Dung-style frameworks which we focused on here. In
particular, abstract dialectical frameworks [57] would be an appealing target for-
malism since it generalizes other proposals such as bipolar [58] and extended
argumentation frameworks [59]. In the opposite direction, one could consider fur-
ther fragments of Dung-style frameworks. For preferred semantics, an interesting
class are AFs having a bound number of odd cycles; the complexity of evaluat-
ing such AFs is currently open. An interesting research direction is to develop
complexity-sensitive approaches for this fragment.
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(Eds.), Automated Reasoning, First International Joint Conference, IJCAR
2001, Siena, Italy, June 18-23, 2001, Proceedings, Vol. 2083 of Lecture
Notes in Computer Science, Springer, 2001, pp. 272–288.

[50] S. Nofal, P. E. Dunne, K. Atkinson, On preferred extension enumeration
in abstract argumentation, in: Proceedings of the 4th International Confer-
ence on Computational Models of Argument (COMMA 2012), Vol. 245 of
Frontiers in Artificial Intelligence and Applications, IOS Press, 2012, pp.
205–216.

[51] R. Baumann, Splitting an argumentation framework, in: Proceedings of the
11th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2011), Vol. 6645 of Lecture Notes in Computer Sci-
ence, Springer, 2011, pp. 40–53.

[52] R. Baumann, G. Brewka, R. Wong, Splitting argumentation frameworks:
An empirical evaluation, in: Revised Selected Papers of the 1st International
Workshop on Theories and Applications of Formal Argumentation (TAFA
2011), Vol. 7132 of Lecture Notes in Computer Science, Springer, 2012, pp.
17–31.
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