
Complexity-Sensitive Decision Procedures for Abstract Argumentation∗
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Abstract

Abstract argumentation frameworks (AFs) provide the basis
for various reasoning problems in the areas of Knowledge
Representation and Artificial Intelligence. Efficient evalua-
tion of AFs has thus been identified as an important research
challenge. So far, implemented systems for evaluating AFs
have either followed a straight-forward reduction-based ap-
proach or been limited to certain tractable classes of AFs. In
this work, we present a generic approach for reasoning over
AFs, based on the novel concept of complexity-sensitivity.
Establishing the theoretical foundations of this approach, we
derive several new complexity results for preferred, semi-
stable and stage semantics which complement the current
complexity landscape for abstract argumentation, providing
further understanding on the sources of intractability of AF
reasoning problems. The introduced generic framework ex-
ploits decision procedures for problems of lower complexity
whenever possible. This allows, in particular, instantiations
of the generic framework via harnessing in an iterative way
current sophisticated Boolean satisfiability (SAT) solver tech-
nology for solving the considered AF reasoning problems.
First experimental results show that the SAT-based instantia-
tion of our novel approach outperforms existing systems.

Introduction
Formal argumentation has evolved as an important field in
knowledge representation and reasoning with abstract ar-
gumentation frameworks (AFs for short), as introduced by
Dung (1995), being its central formalization, providing a
simple yet powerful formalism to reason about conflicts be-
tween arguments. The power of the formalism, however,
comes at a price. In particular, many important reasoning
problems for AFs are located on the second level of the
polynomial hierarchy, including reasoning in the preferred
semantics (Dunne and Bench-Capon 2002), the semi-stable
and the stage semantics (Dvořák and Woltran 2010). This
naturally raises the question about the origin of this high
complexity and, in particular, calls for research on lower
complexity fragments of the reasoning tasks. The focus
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of this paper is both on the identification of such lower-
complexity fragments of second-level reasoning problems
arising from abstract argumentation, and on exploiting this
knowledge in developing efficient complexity-sensitive deci-
sion procedures for the generic second-level problems.

Tractable (i.e., polynomial-time decidable) fragments
have been quite thoroughly studied in the literature (see,
e.g., (Coste-Marquis, Devred, and Marquis 2005; Dunne
2007; Dvořák, Szeider, and Woltran 2010; Dvořák, Pichler,
and Woltran 2011; Ordyniak and Szeider 2011)). However,
there is only little work on the identification of fragments
which are located on the first level (NP-coNP layer), that is,
inbetween tractability and full second-level complexity.

Identification of first-level fragments of second-level rea-
soning tasks is important due to several reasons. First, from
a theoretical point of view, such fragments show particu-
lar (but not all) sources of complexity of the considered
problems and pave the way towards “trichotomy”-like re-
sults (e.g. (Truszczynski 2011) in the context of answer-set
programming). Second, NP fragments can be efficiently re-
duced to the problem of satisfiability in classical proposi-
tional logic (SAT). This allows for realizations of argumen-
tation procedures by employing highly sophisticated SAT
solver technology in reasoning on argumentation problems.

Going even further, we aim at designing decision proce-
dures for larger fragments based on decision procedures de-
veloped for an NP-fragment, using the NP decision proce-
dures as an NP oracle in an iterative fashion. Such pro-
cedures fall under the general counter-example guided ab-
straction refinement (CEGAR) approach originating from
the field of model checking (Clarke et al. 2003; Clarke,
Gupta, and Strichman 2004). For problems complete for
the second level of the polynomial hierarchy, this leads to a
general procedure which, in the worst case, requires an ex-
ponential number of calls to the NP oracle, which is indeed
unavoidable under the assumption that the polynomial hi-
erarchy does not collapse. Nevertheless, such procedures
can be designed to behave adequately on input instances
that fall into the considered NP fragment and on instances
for which a relatively low number of oracle calls is suffi-
cient. As a generic notion, we say that such a procedure is
complexity-sensitive w.r.t. the NP fragment at hand. For in-
stance, for the second level problem of answer-set existence
for disjunctive logic programs, the successful loop-formula
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approach (see, e.g. (Lierler 2005)) yields a polynomial re-
duction to SAT for the fragment of tight programs, although
in general the resulting SAT instance is of exponential size.
This approach gives thus a practical decision procedure for
(the second level problems of) answer-set programming that
is at the same time complexity-sensitive w.r.t. the NP frag-
ment of tight disjunctive programs.

In this paper we identify various lower-complexity frag-
ments of second-level reasoning problems arising from ab-
stract argumentation, and show how some of the fragments
can be exploited in complexity-sensitive CEGAR-style deci-
sion procedures for the generic second-level problems. The
fragments identified and exploited are based on notions of
“distance” to particular NP fragments. This leads to the in-
tuition that, the higher the distance, the more iterative calls
to the NP oracle are needed. We also employ the concept of
distance to generalize known classes of NP fragments.

In more detail, we focus on three important semantics
for abstract argumentation, namely preferred, semi-stable
and stage semantics. Our complexity analysis is based on
six different classes of argumentation frameworks which are
known to yield milder complexity results for at least one
of these semantics. We first present complexity results for
these classes in cases where the exact complexity for a par-
ticular semantics has not been established yet. Moreover, we
categorize the classes into syntactical and semantical fami-
lies. For the former family, we consider the known concepts
of acyclic and odd-cycle free AFs as well as a new class
(so-called weak cyclic AFs). As semantical subclasses we
consider the prominent class of coherent AFs (Dunne and
Bench-Capon 2002); the class of AFs which possess at least
one stable extension (stable-consistent AFs); and the class
of AFs which possess a unique preferred extension.

In a second step, we consider different notions of dis-
tance in order to capture AFs which are “close” to one of
the aforementioned classes. We consider the following re-
alizations of distance: (i) graph-based distance measures,
where the parameter is given by the number of arguments to
be deleted from a given AF in order to fall into a specified
class; (ii) extension-based distance measures which apply
to the semantical subclasses. For instance (among others),
starting from the class of coherent AFs (where the preferred
and stable extensions coincide), we consider as parameter
the number of additional preferred extensions.

The main contributions of the paper are the following.
•We show new complexity results for acceptance problems
in argumentation on certain fragments. In particular, for the
class of frameworks which possess a unique preferred exten-
sion, semi-stable semantics yields milder complexity than
stage semantics. To the best of our knowledge, this is the
first result that indicates a difference between the complexi-
ties of these two semantics.
• We show that graph-based distance measures are in most
cases tight: already a small distance from the subclass at
hand leads to the full second-level complexity. This reveals
that syntactic fragments based on such distance measures do
not hint towards complexity-sensitive decision procedures.
• Towards the design of complexity-sensitive decision pro-

cedures, we also identify extension-based distance measures
and show that certain problems can be solved by a bounded
number (in terms of the distance) of NP-oracle calls.

• Exploiting the suitable extension-based distance measures,
we develop a generic framework of complexity-sensitive de-
cision procedures for the different second-level reasoning
problems within abstract argumentation. We present our
procedures in terms of (first-level) argumentation problems,
i.e., we give novel characterizations of preferred, semi-
stable, and stage semantics in terms of simpler semantics
(such as stable and complete). The actual computation of
the simpler semantics can be instantiated in various ways.

• We show in detail how the generic framework can be in-
stantiated using a SAT-based CEGAR-style approach. For
this, we develop novel SAT-encodings for the oracle calls,
differing from previously suggested SAT-encodings of first-
level AF reasoning problems (Besnard and Doutre 2004).
Notably, we exploit possibilities of learning from counter-
examples both on the level of the original argumentation
framework as well as the SAT oracle during computation.
Importantly, while monolithic SAT-encodings of second-
level argumentation problems are deemed to be of expo-
nential size, our procedures are truly complexity-sensitive
in that the exponential space requirements may be circum-
vented in cases where it suffices to consider a small part of
a monolithic encoding to decide the actual query.

• We have implemented a prototype of the SAT-based in-
stantiation of our approach, exploiting a state-of-the-art
conflict-driven clause learning (CDCL) SAT solver as the
underlying NP-oracle. First experiments show the high
potential of the proposed approach compared to other
state-of-the-art implementations for abstract argumentation,
in particular the logic-programming approach based on
monolithic encodings of second-level argumentation prob-
lems (Egly, Gaggl, and Woltran 2010; Dvořák et al. 2011a).

Preliminaries
In this section we review (abstract) argumentation frame-
works (Dung 1995) and the semantics studied in this paper
(see also (Baroni and Giacomin 2009)).

Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A is a finite set of arguments and R ⊆
A × A is the attack relation. For a given AF F = (A,R)
we use AF to denote the set A of its arguments and RF to
denote its attack relation R. We sometimes use the notation
a �R b instead of (a, b) ∈ R. For S ⊆ A and a ∈ A, we
also write S �R a (resp. a�R S) in case there is a b ∈ S,
such that b �R a (resp. a �R b). In case no ambiguity
arises, we use � instead of �R.

Semantics for argumentation frameworks assign to each
AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We con-
sider here for σ the functions stb, adm , prf , com , stg , and
sem which stand for stable, admissible, preferred, complete,
stage, and respectively, semi-stable semantics. Before giv-
ing the actual definitions for these semantics, we need to
define a few more formal concepts.
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Definition 2. Given an AF F = (A,R), an argument a ∈ A
is defended (in F ) by a set S ⊆ A if for each b ∈ A, such
that b � a, also S � b holds. Moreover, for S ⊆ A, we
denote by S+

R the set S ∪ {b | S � b}.
Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is
conflict-free (in F ), denoted S ∈ cf (F ), iff there are no
a, b ∈ S, such that (a, b) ∈ R. For S ∈ cf (F ), it holds that

• S ∈ stb(F ), if for each a ∈ A \ S, S � a, i.e. S+
R = A;

• S ∈ adm(F ), if each a ∈ S is defended by S;
• S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈

adm(F ) with T ⊃ S;
• S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A de-

fended by S, a ∈ S holds;
• S ∈ stg(F ), if there is no T ∈ cf (F ), with T+

R ⊃ S
+
R ;

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈
adm(F ) with T+

R ⊃ S
+
R .

We recall that for each AF F , stb(F ) ⊆ sem(F ) ⊆
prf (F ) ⊆ com(F ) ⊆ adm(F ) holds, and that for each of
the considered semantics σ (except stable) σ(F ) 6= ∅ holds.
Moreover, in case an AF has at least one stable extension, its
stable, semi-stable, and respectively, stage extensions coin-
cide.
Example 1. Consider the AF F = (A,R), with A =
{a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e),
(e, e)}. The graph representation of F is given as follows.

a b c d e

Here stb(F ) = stg(F ) = sem(F ) = {{a, d}}. The admissi-
ble sets of F are ∅,{a},{c},{d},{a, c},{a, d}, and prf (F ) =
{{a, c},{a, d}}. The complete extensions are {a}, {a, c}
and {a, d}. 3

We now recall the complexity of reasoning in AFs for the
following decision problems under different semantics σ.
• Credulous Acceptance (Credσ): Given an AF F and argu-

ment a ∈ AF , is a contained in some S ∈ σ(F )?
• Skeptical Acceptance (Skeptσ): Given an AF F and argu-

ment a ∈ AF , is a contained in each S ∈ σ(F )?
• Verification (Verσ): Given an AF F and a set S ⊆ AF , is
S ∈ σ(F )?

• Existence (Existsσ): Given an AF F , is σ(F ) 6= ∅?
• Non-emptiness (Exists¬∅σ ): Given an AF F , is there a set
S ⊆ AF , S 6= ∅ such that S ∈ σ(F )?

In accordance with the above problems we say that an ar-
gument is credulously (resp. skeptically) accepted iff it is
contained in at least one extension (resp. in all extensions).

Table 1 summarizes the computational complexity of
these problems (Coste-Marquis, Devred, and Marquis 2005;
Dimopoulos and Torres 1996; Dung 1995; Dunne and
Bench-Capon 2002; Dunne and Caminada 2008; Dvořák
and Woltran 2010; Dvořák and Woltran 2011).

We will focus on Skeptprf , Credsem , Skeptsem , Credstg
and Skeptstg : as Table 1 indicates, these problems are the
ones on the second-level of the polynomial hierarchy.

Table 1: Complexity of decision problems for AFs.

σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ
stb NP-c coNP-c in L NP-c NP-c
adm NP-c trivial in L trivial NP-c
com NP-c P-c in L trivial NP-c
prf NP-c ΠP

2 -c coNP-c trivial NP-c
sem ΣP2 -c ΠP

2 -c coNP-c trivial NP-c
stg ΣP2 -c ΠP

2 -c coNP-c trivial in L

Subclasses of Argumentation Frameworks
In this section we review several classes of AFs where rea-
soning with preferred, stage or semi-stable semantics be-
comes easier compared to the results for the general case.
Both earlier and new results are discussed. First, we con-
sider the classes of acyclic and weakly cyclic AFs.
Definition 4. An AF F is acyclic if there is no directed cy-
cle of attacks in F ; F is weakly cyclic if F can be made
acyclic by deleting one argument (and its incident attacks)
from each strongly connected component (SCC) of F . We
denote these classes of AFs by acyc and wcyc.

One can easily show that deciding whether a given AF
falls into one of these classes can be done efficiently.

It is well known that the problems we are interested here
become tractable when restricted to acyclic AFs. For weakly
cyclic AFs (these are the AFs where the graph parameter
cycle-rank is at most 1 (Dvořák, Pichler, and Woltran 2011)),
we can make direct use of the following complexity result.
Proposition 1 ((Dvořák, Pichler, and Woltran 2011)). For
weakly cyclic AFs, the problem Skeptprf is coNP-complete.

The reasoning problems for stage and semi-stable seman-
tics still maintain their full complexity when restricted to
weak cyclic AFs (Dvořák, Pichler, and Woltran 2011).

We now turn to semantical subclasses.
Definition 5. An AF F for which stb(F ) 6= ∅ is stable-
consistent. We denote the class of such AFs by stablecons.

We recall that testing for the existence of a stable exten-
sion is NP-complete (Dimopoulos and Torres 1996).

The following result is immediate from the fact that, in
case an AF has at least one stable extension, its stable, semi-
stable, and respectively, stage extensions coincide.
Proposition 2. For stable-consistent AFs, Credσ is NP-
complete and Skeptσ is coNP-complete, σ ∈ {sem, stg}.

However, in case of the preferred semantics, stable con-
sistency is of no help for deciding skeptical acceptance.
Proposition 3. For stable-consistent AFs, the problem
Skeptprf is ΠP

2 -complete,

Proof. Hardness follows from a reduction in (Dunne and
Bench-Capon 2002) that maps the ΠP

2 -hard problem of de-
ciding whether given an a QBF Φ = ∀Y ∃Zϕ(Y, Z), where
ϕ is a CNF formula

∧
c∈C c with each clause c ∈ C a dis-

junction of literals from X = Y ∪ Z, is true to Skeptprf .
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

b

Figure 1: FΦ for the QBF Φ = ∀y1y2∃z3z4(y1 ∨ y2 ∨ z3)∧
(y2 ∨ ¬z3 ∨ ¬z4) ∧ (y2 ∨ z3 ∨ z4).

We build FΦ = (AΦ, RΦ) as follows (see also Figure 1):
AΦ = {ϕ, b} ∪ C ∪X ∪ X̄; and RΦ = {(c, ϕ) | c ∈ C} ∪
{(x, x̄) , (x̄, x) | x ∈ X}∪{(x, c) | x occurs in c}∪{(x̄, c) |
¬x occurs in c} ∪ {(ϕ, b) , (b, b)} ∪ {(b, z), (b, z̄) | z ∈ Z}.
We have that Φ is valid iff the argument ϕ is skeptically ac-
cepted in FΦ (Dunne and Bench-Capon 2002). Moreover
each model M of ϕ corresponds to a stable extension of FΦ.
Since the QBF-problem remains hard for instances where ϕ
has at least one model, the result follows.

The next class relates preferred and stable extensions and
has been discussed in (Dunne and Bench-Capon 2002).
Definition 6. An AF F is coherent if prf (F ) = stb(F ). We
denote the class of such AFs by coherent.
Proposition 4. For coherent AFs and σ ∈ {prf , sem, stg},
Credσ is NP-complete and Skeptσ is coNP-complete.

Proof. The result for σ = prf is clear by definition when
taking the complexity of stable semantics (see Table 1) into
account. Since each AF possesses at least one preferred ex-
tension, each coherent AF is also stable-consistent. The re-
maining results thus follow immediately as well.

Testing coherence is in general even worse (ΠP
2 -

complete (Dunne and Bench-Capon 2002)) than testing
stable-consistency. At first glance this restricts the practical
value of this fragment, but we can identify a class of easy de-
tectable coherent AFs, namely the AFs without odd-length
cycles. Thus, we introduce one further syntactical subclass.
Definition 7. An AF F is odd-cycle free if there is no di-
rected cycle consisting of an odd number of attacks in F .
We denote the class of odd-cycle free AFs by ocf.
In fact, testing for odd-length cycles in digraphs can be done
in polynomial time (see e.g. (Bang-Jensen and Gutin 2010)).
Proposition 5. For AFs F ∈ ocf, and σ ∈ {prf , sem, stg},
Credσ is NP-complete and Skeptσ is coNP-complete.

Proof. Membership is immediate from the well-known re-
sult by Dung (1995), that every AF without odd-length cy-
cles is coherent. Hardness results from a standard reduction
for stable semantics (Dimopoulos and Torres 1996).

The final fragment we introduce is another semantical
one. It makes use of the complexity gap between credulous
and skeptical acceptance for preferred semantics.

Table 2: Complexity when the AF belongs to a sub-class G.

G Skeptprf Credsem Skeptsem Credstg Skeptstg
acyc P-c P-c P-c P-c P-c
wcyc coNP-c ΣP2 -c ΠP

2 -c ΣP2 -c ΠP
2 -c

ocf coNP-c NP-c coNP-c NP-c coNP-c
stablecons ΠP

2 -c NP-c coNP-c NP-c coNP-c
coherent coNP-c NP-c coNP-c NP-c coNP-c
uniqpref in NP in NP in NP ΣP2 -c ΠP

2 -c

Definition 8. We denote the class of AFs F satisfying
|prf (F )| = 1 by uniqpref.

One can easily show that testing whether there is at most
one preferred extensions is coNP-complete.

Proposition 6. For AFs F ∈ uniqpref and σ ∈ {prf , sem},
problems Credσ and Skeptσ are NP-easy.

Proof. On AFs with a unique extension credulous and skep-
tical acceptance coincide. Moreover, for each F ∈ uniqpref,
sem(F ) = prf (F ) holds since the existence of a semi-
stable extension is guaranteed for finite AFs, and each semi-
stable extension is also preferred.

It is open whether these problems are also NP-hard. How-
ever, we can show NP-hardness under so-called randomized
reductions via a version of the SAT problem where it is guar-
anteed that there is at most one model (Valiant and Vazirani
1986) and a standard reduction from SAT to Credprf . For
the stage semantics, the complexity of acceptance problems
remains as high as in the general case, however.

Proposition 7. For AFs F ∈ uniqpref, Credstg is ΣP2 -
complete and Skeptstg is ΠP

2 -complete.

Proof. Consider an arbitrary AF F = (A,R) and let t 6∈ A
be a fresh argument. We construct F ′ = (A ∪ {t}, R ∪
{t, t} ∪ {(t, a) | a ∈ A}). It is easy to see that cf (F ) =
cf (F ′) and thus also stg(F ) = stg(F ′). Further we have
that prf (F ′) = {∅}. Hence, any decision problem for stg
can be directly expressed in AFs from uniqpref.

To summarize, we have introduced several kinds
of AF-subclasses. They can be grouped into syn-
tactical (acyc,wcyc, ocf), and semantical classes
(stablecons, coherent, uniqpref). The complexity re-
sults are summarized in Table 2. In the next two sections,
we study possibilities of extending the “good” complexity
behavior of these classes. To this end, we introduce certain
distance measures with the aim of maintaining lower
complexity as long as the distance to such a class is bound.

Graph-Based Distance Measures
A natural way to generalize the introduced subclasses is to
consider the minimal number of arguments we have to delete
from an AF such that the modified AF falls into the respec-
tive class (see also (Ordyniak and Szeider 2011)). This gives
rise to the following distance measure.
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y′1 ȳ′1 y′2 ȳ′2 g

bϕ̄

Figure 2: F sem
Φ for the QBF Φ = ∀y1y2∃z3z4(y1 ∨ y2 ∨

z3) ∧ (y2 ∨ ¬z3 ∨ ¬z4) ∧ (y2 ∨ z3 ∨ z4).

Definition 9. Let G be a graph class and F = (A,R) an AF.
We define distG(F ) as the minimal number k such that there
is a set S ⊆ Awith |S| = k and (A\S,R∩(A\S×A\S)) ∈
G. If there is no such set S we define distG(F ) =∞.

We start with the class wcyc of weakly cyclic AFs. Re-
call that this class decreases complexity only in the case of
skeptical acceptance with respect to preferred semantics.

Proposition 8. Skeptprf is ΠP
2 -hard for AFs F with

distwcyc(F ) = 1.

Proof. ΠP
2 -hardness is established by re-using the reduction

from the proof of Proposition 3 and observing that deletion
of the argument b in FΦ results in a framework with SCCs of
size at most 2 which is easily seen to be weakly cyclic.

In words, the subclass wcyc is tight w.r.t. the introduced
distance in the sense that a single argument violating mem-
bership in wcyc is sufficient for the general ΠP

2 -hardness.
An analogous result can be shown for the class ocf.

Proposition 9. Skeptprf is ΠP
2 -hard for AFs F with

distocf(F ) = 1.

Proof. Similar as for Proposition 8, deleting argument b
yields an AF that is free of odd-length cycles.

The same effect can be shown for semi-stable acceptance.

Proposition 10. Credsem is ΣP2 -hard and Skeptsem is ΠP
2 -

hard, for AFs F with distocf(F ) = 1.

Proof. For a QBF Φ = ∀Y ∃Zϕ(Y,Z) with ϕ =
∧
c∈C c in

CNF build the AF F sem
Φ = (AΦ, RΦ) with X = Y ∪ Z as

follows (see also Figure 2): AΦ = {ϕ, ϕ̄, b, g}∪C∪X∪X̄∪
Y ′ ∪ Ȳ ′; and RΦ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄) , (x̄, x) | x ∈
X} ∪ {(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c} ∪
{(y, y′) , (ȳ, ȳ′) | y ∈ Y } ∪ {(ϕ, b) , (g, g) , (g, b)} ∪
{(g, y′), (g, ȳ′) | y ∈ Y } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}.

This reduction is a variation of the reduction presented
in (Dvořák and Woltran 2010) and can be easily shown to be
equivalent. Hence ϕ is skeptically accepted iff ϕ̄ is not cred-
ulously accepted iff Φ is true. Finally deleting the argument
g results in an AF that is free of odd-length cycles.

ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4q

b

c′1c′2c′3

Figure 3: Illustration of the AF Fϕ,x1
for ϕ = (x1 ∨ x2 ∨

x3) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ x4).

For the stage semantics, we can give an even stronger re-
sult, namely in terms of acyclic frameworks.

Proposition 11. Credstg is ΣP2 -hard and Skeptstg is ΠP
2 -

hard, for AFs F with distacyc(F ) = 1.

Proof. Hardness results from a reduction from the MIN-
SAT problem, i.e. deciding whether a variable z is in a ⊆-
minimal model of a propositional formula ϕ =

∧
c∈C c in

CNF over atoms X . For the reduction we additionally as-
sume an arbitrary order < on the clauses of ϕ. We build the
AF Fϕ,z = (A,R) where z ∈ X as follows (see Figure 3
for illustration): A = {ϕ, b, q} ∪ C ∪ C ′ ∪ X ∪ X̄; and
R = {(c, ϕ) | c ∈ C}∪ {(t, b) , (b, b) , (q, z)}∪ (x̄, x) | x ∈
X} ∪ {(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c} ∪
{(c′, a) | c ∈ C, a ∈ (C \ {c}) ∪ {c′ : c′ < c}}.

Now the following statements are equivalent: (1) z is in
a minimal model of ϕ; (2) z is credulously accepted (w.r.t.
stg) in Fϕ,z; (3) q is not skeptically accepted (w.r.t. stg) in
Fϕ,z . Finally, distacyc(Fϕ,z) = 1 as deleting the argument b
would result in an acyclic AF.

For each F ∈ acyc we have F ∈ G, where G ∈
{wcyc, ocf, coherent, uniqpref}, and thus the previous result
generalizes to all these classes when distG(F ) = 1.

Recall that Propositions 9 and 10 directly yield cor-
responding hardness results for the classes coherent and
stablecons. It thus remains to consider the class uniqpref.

Proposition 12. Credsem is ΣP2 -hard and Skeptprf ,
Skeptsem are ΠP

2 -hard for AFs F with distuniqpref(F ) = 1.

Proof. Consider an arbitrary AF F = (A,R), and consider
the modified AF F ′ = (A ∪ {r, g}, R ∪ {(r, g)} ∪ {(g, a) |
a ∈ A}). Then, adm(F ′) = {E∪{r} | E ∈ adm(F )}, and
thus prf (F ′) = {E ∪ {r} | E ∈ prf (F )} and sem(F ′) =
{E ∪ {r} | E ∈ sem(F )}. Moreover, distuniqpref(F ′) = 1
since deleting argument r would result in an AF where {g}
is the only admissible set. Hence credulous and skeptical ac-
ceptance (under the considered semantics) on arbitrary AFs
reduces to AFs F with distuniqpref(F ) = 1.

Table 3 summarizes our results which are all negative in
the sense that full second-level complexity is reached when
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Table 3: Complexity when parameterized by the distance to
a sub-class G (hardness holds for AFs F of distG(F ) = 1).

G Skeptprf Credsem Skeptsem Credstg Skeptstg
acyc FPT FPT FPT ΣP2 -c ΠP

2 -c
wcyc ΠP

2 -c ΣP2 -c ΠP
2 -c ΣP2 -c ΠP

2 -c
stablecons ΠP

2 -c ΣP2 -c ΠP
2 -c ΣP2 -c ΠP

2 -c
ocf ΠP

2 -c ΣP2 -c ΠP
2 -c ΣP2 -c ΠP

2 -c
coherent ΠP

2 -c ΣP2 -c ΠP
2 -c ΣP2 -c ΠP

2 -c
uniqpref ΠP

2 -c ΣP2 -c ΠP
2 -c ΣP2 -c ΠP

2 -c

fragments are parameterized in a “syntactic” way; only acyc
yields some positive results (due to (Ordyniak and Szeider
2011)). Here FPT (fixed-parameter tractability) means that
for a fixed distance, a problem can be solved in polynomial
time and the order of the polynomial time bound does not
depend on the distance. However, we showed here that un-
der the stage semantics, full complexity is obtained even for
acyc for AFs F with distacyc(F ) ≥ 1.

Extension-Based Distance Measures
Here we consider different distance measures which take the
number of extensions into account and thus naturally apply
only to the semantical subclasses of AFs, i.e. stablecons,
coherent, and uniqpref.

We start by generalizing the class stablecons for seman-
tics sem and stg . In fact, for stable-consistent AFs we have
that each semi-stable (resp. stage) extension has a range that
covers the whole set of arguments. Hence a natural approach
to relax this definition is to bound the number of arguments
which are not in the range of the extensions.
Definition 10. For a semantics σ and k ≥ 0, we call an
AF F = (A,R) k-stable-consistent under σ if for each E ∈
σ(F ), |A \ E+

R | ≤ k holds. We use stableconskσ to denote
the respective classes of AFs for given k and σ.

Theorem 1. For AFs in stableconskσ (σ ∈ {sem, stg}),
Credσ and Skeptσ are in PNP.

Proof. Consider AF F = (A,R). For S ⊆ A, let F stg
S =

(A ∩ S,R ∩ (S × S) ∪ {(b, b) | b � (A \ S)} and
F sem
S = F stg

S ∪ {(b, b) | (A \ S) � b})). By construc-
tion we have that (i) E ∈ stb(F stg

S ) iff E ∈ cf (F ) and
E+
R = S; and (ii) E ∈ stb(F sem

S ) iff E ∈ adm(F ) and
E+
R = S . The following yields a PNP procedure deciding

Credσ (resp. coSkeptσ) for the class stableconskσ of AFs,
based on NP oracles for Credstb , coSkeptstb and Existsstb .

1. Initialize S with all sets S ⊆ A such that |A \ S| ≤ k.
2. While S 6= ∅ take an S ∈ S with maximum cardinality:

(a) If Credstb(FσS ) (resp. coSkeptstb(FσS )) holds, then ac-
cept.

(b) If Existsstb(FσS ), remove all subsets of S from S.
(c) remove S from S and continue with the loop.

3. reject

Since the cardinality of S is polynomial for fixed k, the pro-
cedure runs in polynomial time using NP-oracles.

Next, we parameterize coherence.

Definition 11. An AF F is k-coherent, where k ≥ 0, if
|prf (F ) \ stb(F )| ≤ k. We use coherentk to denote the
respective class of AFs for given k.

We do not consider the corresponding definitions for sem
and stg as in Definition 10: the reason is that either a stable
extension exists (hence, the AF is stable-consistent), or the
parameter k, as used in Definition 11, would simply mention
the number of semi-stable, resp. stage, extensions. In fact,
we will consider these classes of AFs of bounded solution
cardinality at the end of this section.

Here the potential exponential number of stable exten-
sions appears to cause additional difficulties. While we are
unable to provide a hardness result using standard reductions
at the moment, we provide a slightly weaker result (using
randomized reductions) which still suggests that parameter-
ized coherence does not allow for more efficient algorithms.

Theorem 2. Skeptprf for AFs in coherentk is ΠP
2 -hard un-

der randomized reductions; hardness holds even for k = 1.

Proof. Consider the following promise problem: given
a QBF Φ = ∀Y ∃Zϕ(Y,Z) together with the fact that
∃≤1Y ∀Z¬ϕ(Y,Z) is true, decide whether Φ is true. By
results in (Valiant and Vazirani 1986) and (Dunne 2009)
(extension to QBFs), this problem is ΠP

2 -hard under ran-
domized reductions. Now one can apply the standard reduc-
tion from QBFs to Skeptprf . The sets Y with ∀Z¬ϕ(Y,Z)
are in one-to-one correspondence to the preferred extensions
which are not stable. Hence using the promise problem re-
sults in an AF from the class coherent1.

The final class we discuss is uniqpref. The natural dis-
tance here is to consider frameworks which possess at most
k preferred extensions. We will also apply the same idea for
semi-stable and stage semantics.

Definition 12. Let σ ∈ {prf , sem, stg}. We denote by solkσ
the class of all AFs F such that |σ(F )| ≤ k.

Theorem 3. For AFs F ∈ solkprf , Skeptprf is in PNP.

Proof. We provide an algorithm which iteratively constructs
the set prf (F ). The set E serves this purpose and is initial-
ized by E := ∅. At each stage of the algorithm we con-
struct a new preferred extension E as follows: start with
E = ∅, and iterate over all arguments a asking an NP-oracle
whether there is a complete extension C of the given frame-
work such that E ∪ {a} ⊆ C and there is no E′ ∈ E such
that C ⊆ E′. If the oracle returns yes, add a to E and pro-
ceed with the next arguments. In the end, E is either a pre-
ferred extension (i.e. we can not add further arguments) or
the empty set. If E 6= ∅, simply add E to the set E and
proceed with constructing the next preferred extension. If
E = ∅, there is no non-empty complete extension that is not
already contained in one of the extensions in E , and hence
the algorithm terminates. If E = ∅, add ∅ to E .
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Table 4: Complexity when the AFs belong to a sub-class G.

G Skeptprf Credsem Skeptsem Credstg Skeptstg
stableconskσ – in PNP in PNP in PNP in PNP

coherentk ΠP
2 -c in PNP in PNP in PNP in PNP

solkσ in PNP in PNP in PNP in PNP in PNP

By the assumption F ∈ solkprf , prf (F ) is of polynomial
size and for each extension only a linear number of steps
(iterating over all arguments) is needed. Hence the overall
run-time is polynomial (using an NP oracle).

Theorem 4. For AFs in solkσ (σ ∈ {sem, stg}), Credσ and
Skeptσ are in PNP.

Proof. Let F = (A,R). Instead of computing σ(F ), we
construct here σ+(F ) := {E+

R | E ∈ σ(F )}. Again, be-
low we use E as the set of the currently computed elements
from σ+(F ), initialized as E := ∅ and iteratively extended.
Moreover, let bsem = com and bstg = cf .

Within each iteration, start with S = ∅ and iterate over
all arguments a ∈ A asking an NP-oracle whether there is
a set C ∈ bσ(F ) such that S ∪ {a} ⊆ C+

R and there is no
T ∈ E such that C+

R ⊆ T . If the oracle returns yes, add a
to S and proceed with the next arguments. In the end, S is
either the range of a σ-extension or the empty set. If S 6= ∅,
simply add S to the set E and continue with constructing the
next set. If S = ∅, there is no non-empty set in bσ(F ) such
that S+

R is not already contained in a set of E , and hence the
algorithm terminates. If E = ∅, add ∅ to E .

By assumption, the number of σ-extensions is bounded
and so is the size of σ+(F ). To decide Credσ (resp. co-
Skeptσ) for an argument a, iterate over all sets S ∈ σ+(F )
and ask an NP oracle whether there is an E ∈ bσ(F ) such
that E+

R = S and a ∈ E (resp. a 6∈ E).

Our results are summarized in Table 4. Recall that
the ΠP

2 -hardness of Skeptprf for class stableconskσ was
shown for randomized reductions. Furthermore, recall that
coherentk for σ ∈ {sem, stg} reduces either to stablecons

or to solkσ . We did not consider k-stable-consistent AFs un-
der prf since the full complexity was already reached for the
class of stable-consistent AFs (recall Table 2).

SAT-Based Complexity-Sensitive Procedures
In this section we develop a generic framework instantia-
tions of which provide complexity-sensitive decision proce-
dures for second-level skeptical and credulous acceptance
problems. The framework builds on Theorems 1, 3, and 4.
The generic idea is to use the oracle calls to check candidate
extensions of the input instance. At the beginning of the al-
gorithm the candidate extensions are the admissible sets, in
case of preferred and semi-stable semantics, or conflict-free
sets, in case of stage semantics.

The framework exploits SAT-oracles, and hence the can-
didate extension checks are encoded as propositional for-
mulas. In addition to reducing the set of remaining candi-

date solutions, we also exploit the results of the SAT-oracle
calls to strengthen the base formula. This can be seen as
a form of no-good learning which further prunes the possi-
ble IN/OUT-labellings (Caminada and Gabbay 2009) of the
arguments on the level of the propositional encoding.

Furthermore, by applying SAT as the NP oracle, the
highly optimized and efficient conflict-driven clause learn-
ing SAT solvers available today can be directly exploited in
practical implementations of the framework. This reveals
the implementer from the non-straightforward task of im-
plementing the actual NP search procedure.

A SAT-Based Complexity-Sensitive Framework
In the following we develop a generic SAT-based
complexity-sensitive framework for solving AF reasoning
problems. The framework builds on the observation that
solkσ applies well to all semantics under our consideration.

In what follows we consider semantics σ ∈
{prf , sem, stg}, a reasoning mode M ∈ {Skept,Cred},
an AF F = (A,R), and an argument α ∈ A. The generic
structure of our SAT-based framework is the following.

1. q ←
{
¬xα if M = Skept

xα if M = Cred

2. ϕ← ϕBASE-SEM(σ)(F ) ∧ q ∧ SHORTCUTSσ(F, α,M)

3. while (ϕ is satisfiable)

(a) find model I of ϕ
(b) while (there is a model I ′ of ψIσ ∧ q)

I ← I ′

(c) if (ψIσ(F ) is unsatisfiable) then accept
(d) else ϕ← ϕ ∧ γIσ

4. reject

We will provide details for the generic concepts
ϕBASE-SEM(σ)(F ), SHORTCUTSσ(F, α,M), ψIσ(F ), γIσ
below. Let us note at this point already, that the procedure
might terminate in SHORTCUTSσ(F, α,M) in certain cases.
Then, we also terminate above procedure with the status
returned by SHORTCUTSσ(F, α,M), i.e. accept or reject.

Overall, the procedure works as follows. Depending on
the reasoning mode, we test whether there is an extension
containing α, or whether there is an extension not containing
α. This is encoded via the query-atom q. In step 2, a formula
is built to encode extensions of the base semantics, i.e. not
taking maximality into account together with the query q as
well as semantics-specific shortcuts that can be applied for
pruning the search space via learning inferred information;
this will be discussed later in more detail. The SHORTCUTS
function allows for refining the base encoding using the in-
ferred information it outputs. The loop in step 3 follows the
ideas of Theorems 3 and 4: starting with a model that corre-
sponds to an argument set satisfying the base semantics and
q, each iteration extends the set to a larger one satisfying
q until we have a maximal set satisfying q. In step 3c, the
condition q is dropped for testing whether the set is maximal
among all sets, i.e. whether it is an extension. If so, the algo-
rithms accepts. If not, we learn that none of the smaller sets
can be an extension (step 3d). Finally, after excluding all
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sets satisfying the base semantics and q from being a valid
extension, the algorithm rejects the query (step 4).

Instantiating the Framework
A key aspect of instantiating the SAT-based framework is
how the AF reasoning tasks are encoded as propositional
formulas over the variables X = {xα | α ∈ A} and Xr =
{x′α | α ∈ A} such that the models of the formulas are in the
correspondence with certain sets of arguments. The intuition
behind the variables is that xα is true iff α is in the set, and
x′α is true iff α is in the range of the set.

Encoding the Base Semantics To ensure the relation be-
tween the set and its range, we apply the formula

x′a ↔ xa ∨
∨

(b,a)∈R xb

together with a propositional encoding that restrict mod-
els to correspond to particular types of AF extensions.
To this end, we use the following propositional formulas
ϕcf (F ), ϕadm(F ), and ϕcom(F ), respectively, to encode
the conflict-free sets, admissible sets, and resp. complete ex-
tensions, for a given AF F = (A,R):

ϕcf (F ) =
∧

(a,b)∈R(¬xa ∨ ¬xb)
ϕadm(F ) = ϕcf (F ) ∧

∧
(b,c)∈R(¬xc ∨

∨
(a,b)∈R xa)

ϕcom(F ) = ϕadm(F ) ∧
∧
a∈A(x′a ∨

∨
(b,a)∈R ¬x′b)

Preferred Semantics For preferred semantics we are only
interested in skeptical reasoning, since credulous reasoning
for preferred semantics has lower complexity.

Given an AF F = (A,R) and an argument α ∈ A. For
preferred semantics we can choose BASE-SEM(prf ) from
{adm, com}. The SHORTCUTS function for preferred se-
mantics is in pseudocode as follows.
SHORTCUTSprf (F, α, Skept):

1. if (ϕBASE-SEM(prf )(F )∧
(∨

(β,α)∈R xβ
)

is satisfiable) then
reject

2. else return
∧

(β,α)∈R ¬xβ
Here we simply check whether there is a counter-example
for skeptical acceptance of α under BASE-SEM(prf ) wit-
nessed by a set attacking α, and if not, learn that this is the
case. Furthermore, in the case of preferred semantics the
formulas ψIσ(F ) and γIσ are:

ψIprf (F ) = ϕBASE-SEM(prf )(F )∧
∧
x∈I∩X x∧

(∨
x∈X\I x

)
γIprf =

∨
x∈X\I x.

Here, given a set I satisfying BASE-SEM(prf ), ψIprf en-
codes the supersets I ′ ⊃ I satisfying BASE-SEM(prf ), and
γIprf that we are no longer interested in subsets of I .

Semi-Stable and Stage Semantics Let us next consider
σ ∈ {sem, stg}. For sem , we have the choice of using
either adm or com as BASE-SEM(sem). For stg , we use
BASE-SEM(stg) = cf . The SHORTCUTS function for semi-
stable and stage semantics, based on k-coherence, is in pseu-
docode as follows.

SHORTCUTSσ(F, α,M):

1. ψ ← >;U ← {S ⊆ A}
2. while(U 6= ∅ ∧ |A \ S| ≤ d)

(a) S ← MAXIMAL(U)

(b) fS ←
∧
s∈S x

′
s ∧
∧
s∈A\S ¬x′s

(c) if (ϕBASE-SEM(σ)(F ) ∧ q ∧ fS(X) is satisfiable) then
accept

(d) else if (ϕBASE-SEM(σ)(F ) ∧ fS(X) is satisfiable) then
i. learn ψ ← ψ ∧

(∨
s∈A\S x

′
s

)
ii. U ← U \ {E | E ⊆ S}

(e) else
i. learn ψ ← ψ ∧

(∨
s∈S ¬x′S ∨

∨
s∈A\S x

′
s

)
ii. U ← U \ S

3. if (U = ∅) then reject
4. else return ψ
The procedure follows the ideas in the proof of Theorem 1,
and thus in principle can decide the reasoning problems
without any further investigations, but would be expensive
for high values of k. To profit in cases where k is small from
the complexity-sensitive perspective, and avoid unnecessary
computational cost otherwise, we include the parameter d to
bound the search-depth to sets of arguments to those whose
range S satisfies |A \ S| ≤ d.

The loop in step 2 iterates over sets S ⊆ A. In step
2a, MAXIMAL returns a maximal-cardinality set S from U ,
(starting with S = A). Step 2b builds the formula fS encod-
ing that sets of interest have range S. Step 2c tests whether
there is a set with range S satisfying q under the base seman-
tics. If so, we have found an extension satisfying q and ac-
cept. Step 2d tests whether there is an extension under base
semantics which has range S. If so, we learn that we are
no longer interested in sets S′ ⊆ S. Otherwise (step 2e) we
learn that we are not interested in extensions with range S.
Finally, if all sets have been excluded from being the range
of an extension satisfying q, the procedures rejects. In case
the bound d is exceeded before this, we return the formula
ψ as learnt information.

The helper formulas ψIσ and γIσ (σ ∈ {sem, stg}) are

ψIσ(F ) = ϕBASE-SEM(σ)(F )∧
∧
x′∈I∩Xr

x′ ∧
(∨

x′∈Xr\I x
′)

γIσ =
∨
x′∈Xr\I x

′.

where F = (A,R) is an AF. For a set I satisfying
BASE-SEM(σ) the formula ψIσ encodes sets I ′ satisfying
BASE-SEM(σ) and I+

R ⊂ (I ′)+
R, while formula γIσ encodes

that we are no longer interested in sets I ′ with (I ′)+
R ⊆ I

+
R .

Experiments
In order to study the practical relevance of our SAT-based
complexity-sensitive framework, we implemented a pro-
totype instantiation called CEGARTIX.1 In this section

1Available at http://www.dbai.tuwien.ac.at/research/project/
argumentation/cegartix/.
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Figure 4: Average runtimes of Skeptprf , Credsem , Skeptsem
on logarithmic scale.

we present preliminary experimental results on the effi-
ciency of CEGARTIX, comparing CEGARTIX to a re-
cently proposed, state-of-the-art argumentation reasoning
system (Dvořák et al. 2011a) that exploits advances in an-
swer set programming (ASP) via the so-called metasp ap-
proach2. This system is a further improvement of the AS-
PARTIX system (Egly, Gaggl, and Woltran 2010). It turns
out that, although CEGARTIX is only a prototype imple-
mentation of our SAT-based framework, it improves quite
significantly over the state-of-the-art ASP-based system.

CEGARTIX employs the CDCL SAT solver Minisat (Eén
and Sörensson 2004) (v2.2.0) as the SAT oracle in an in-
cremental mode, which allows us to retain from starting
search from scratch when adding new learnt information
to a current satisfiable working formula. Within CEGAR-
TIX, we employ the base semantics BASE-SEM(σ) = com
for σ ∈ {prf , sem}, and BASE-SEM(stg) = cf . Within
SHORTCUTSσ(F, α,M) for σ ∈ {sem, stg}we used d = 2.

For comparing CEGARTIX with the ASP-based ap-
proach, we used the state-of-the-art no-good learning dis-
junctive ASP solver claspD (Drescher et al. 2008) (v1.1.1)
combined with the grounder gringo (Gebser et al. 2011)
(v3.0.3). In the experiments, we considered all five reason-
ing tasks we have focused on in the paper. The experiments
were executed under OpenSUSE with Intel Xeon processors
(2.33 GHz) and 49 GB memory. A timeout of 5 minutes was
enforced on each individual run.

As benchmarks, we randomly generated 2948 AFs over
60–200 arguments, using two parameterized methods for
generating the attack relation. The first generates random
AFs and inserts for any pair of arguments (a, b) the attack
from a to b with a given probability p. The other method
generates AFs of an n × m grid-structure. We consider
two different neighborhoods, one connecting arguments ver-

2Skeptical and credulous reasoning in metasp is done by in-
troducing constraints in the meta answer-set programs.
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Figure 5: Average runtimes of Skeptprf for random and grid
structured instances on logarithmic scale.

tically and horizontally and one that additionally connects
the arguments diagonally. Such a connection is a mutual
attack with a given probability p and in only one direction
otherwise. Values used are p ∈ {0.1, 0.2, 0.3, 0.4}. This
resulted in a total of 46200 benchmark instances for the se-
mantics prf , sem and stg (using skeptical reasoning with
the first, and additionally credulous reasoning with the lat-
ter two). For the random instances three different arguments
were queried, while for the grid instances we used five ar-
guments. For the largest instances of size 130 and more we
only tested preferred and semi-stable semantics, a total of
9636 instances. For the AFs of size 200 we queried over at
most three different arguments. We would like to stress that
the generated AFs are by no means tailored to the fragments
our approach is based on.

The average computation times, using logarithmic scale,
are shown in Figure 4 for the preferred skeptical acceptance
and semi-stable semantics with skeptical and credulous ac-
ceptance. The averages do not include timed out runs, which
actually favors metasp; the plot excludes a total of 510
timeouts encountered with metasp: 23 with preferred se-
mantics on AFs from size 130 to 200, and the rest with semi-
stable semantics (119 for credulous and 368 for skeptical
reasoning on AFs from size 110 to 200). In contrast only one
timeout was encountered with CEGARTIX, which was for
a preferred acceptance instance with 200 arguments. Over-
all, CEGARTIX outperforms the metasp-based approach:
for stage semantics the results (details excluded due to page
limit) are similar to Figure 4. In Figure 5 we show the results
separated for random and grid instances for the preferred
skeptical acceptance, the other semantics having a similar
result. CEGARTIX performs better on grid structured in-
stances, while on the random instances metasp has a lower
average runtime on instances with 200 arguments. Note also
that the number of attacks scales linearly with the number
of arguments for grid instances, while it scales quadratically
with the number of arguments for random instances.
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To further test the scalability of CEGARTIX, we also
tested its performance on larger instances with 300 and 500
arguments (without grid-structure). Of the instances of size
300 CEGARTIX solved 90 percent of the queries within the
time limit, whereas 80 percent of the queries on instances of
size 500 timed out.

Conclusion
In this work, we developed a novel method for solving hard
problems in the area of argumentation in a “complexity-
sensitive” way. From one perspective, the approach can
be seen as an argumentation-customized incarnation of the
counter-example guided abstraction refinement approach
originating from the field of model checking. Our proto-
type implementation CEGARTIX employs SAT solvers as
underlying inference engines. First experiments show that
CEGARTIX significantly outperforms existing systems de-
veloped for hard argumentation problems (i.e. problems un-
der the preferred, semi-stable, or stage semantics). The fun-
damental aspects of our approach are generic, allowing in
principle to exploit as the underlying NP-oracle systems de-
veloped for other reasoning problems such as CSP or ASP,
or even native argumentation systems for “easier” semantics
such as the stable or complete semantics. Building necessary
ground for the complexity-sensitive approach, we also pre-
sented an extensive complexity theoretic analysis, providing
new results for certain fragments of argumentation frame-
works, as well as distance-based complexity analysis, com-
plementing recent results by Ordyniak and Szeider (2011).

As for future directions, a more in-depth study on which
types of instances our approach is well suited for is needed;
we are currently running larger test series. The promising
first experimental results suggest to apply our approach also
to formalisms extending the Dung-style frameworks which
we focused on here. In particular, abstract dialectical frame-
works (Brewka and Woltran 2010) would be an appealing
target formalism since it generalizes other proposals such
as bipolar (Amgoud et al. 2008) and extended argumenta-
tion frameworks (Modgil 2009). In the opposite direction,
it is also on our agenda to consider further fragments of
Dung-style frameworks. For preferred semantics, an inter-
esting class are AFs having a bound number of odd cycles;
the complexity of evaluating such AFs is currently open.
We also aim to find complexity-sensitive approaches for this
fragment.

Related Work To the best of our knowledge, our
complexity-sensitive approach to developing decision pro-
cedures for second-level abstract argumentation problems is
novel. The CEGAR approach has been harnessed for solv-
ing various other intrinsically hard reasoning problems (de
Moura, Ruess, and Sorea 2002; Wintersteiger, Hamadi, and
de Moura 2010; Janota, Grigore, and Marques-Silva 2010;
Janota and Marques-Silva 2011) using SAT solvers itera-
tively as the underlying NP-oracle. However, we are not
aware of earlier work on developing complexity-sensitive
CEGAR-based procedures. Systems developed for solv-
ing second-level AF reasoning problems typically rely on
monolithic encodings in other reasoning problems of sim-

ilar complexity, see e.g. (Egly and Woltran 2006) for en-
codings in terms of quantified Boolean formulas or (Egly,
Gaggl, and Woltran 2010) for an answer-set programming
based approach. Also “easier”, i.e. first-level, AF prob-
lems approaches and systems are mostly monolithic; this in-
cludes SAT-encodings (Besnard and Doutre 2004) as well
as CSP-encodings (Amgoud and Devred 2011; Bistarelli,
Campli, and Santini 2011). A noteworthy exception is
the family of labelling-based algorithms (Verheij 2007;
Modgil and Caminada 2009; Podlaszewski, Caminada, and
Pigozzi 2011). Other current branches in abstract argu-
mentation are certain preprocessing techniques (Baumann
2011; Baumann, Brewka, and Wong 2011) to divide the
problem into small pieces as well as implementations of
fixed-parameter tractable algorithms (Dvořák, Pichler, and
Woltran 2010; Dvořák, Szeider, and Woltran 2010; Dvořák
et al. 2011b). While the concept of complexity-sensitivity
as used in our approach bears some resemblance to fixed-
parameter tractability and parameterized complexity, there
are fundamental differences. Especially, while parameter-
ized complexity usually studies parameterizations with re-
spect to polynomial-time tractability, the CEGAR approach
in general is typically based on exploiting “NP-tractability”
via iterative calls to efficient NP decision procedures. Hence
our work takes further steps towards a full classification for
argumentation problems of high complexity. This also dis-
tinguishes our complexity results to the ones obtained in
(Ordyniak and Szeider 2011). Finally there is recent work on
average-case algorithms for value-based argumentation (No-
fal, Dunne, and Atkinson 2012), using an elaborate handling
of the possible value orderings.
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Dvořák, W.; Gaggl, S. A.; Wallner, J. P.; and Woltran, S.
2011a. Making use of advances in answer-set programming
for abstract argumentation systems. In Proc. INAP. http:
//arxiv.org/abs/1108.4942.
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Eén, N., and Sörensson, N. 2004. An extensible SAT-
solver. In Proc. SAT 2003, volume 2919 of LNCS, 502–518.
Springer.
Egly, U., and Woltran, S. 2006. Reasoning in argumenta-
tion frameworks using quantified boolean formulas. In Proc.
COMMA, volume 144 of FAIA, 133–144. IOS Press.
Egly, U.; Gaggl, S. A.; and Woltran, S. 2010. Answer-
set programming encodings for argumentation frameworks.
Argument and Computation 1(2):147–177.
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in gringo series 3. In Proc. LPNMR, volume 6645
of LNCS, 345–351. Springer.
Janota, M., and Marques-Silva, J. P. 2011. Abstraction-
based algorithm for 2QBF. In Proc. SAT, volume 6695 of
LNCS, 230–244. Springer.
Janota, M.; Grigore, R.; and Marques-Silva, J. 2010.
Counterexample guided abstraction refinement algorithm
for propositional circumscription. In Proc. JELIA, volume
6341 of LNCS, 195–207. Springer.
Lierler, Y. 2005. cmodels - SAT-based disjunctive answer
set solver. In Proc. LPNMR, volume 3662 of LNCS, 447–
451. Springer.
Modgil, S., and Caminada, M. 2009. Proof theories and
algorithms for abstract argumentation frameworks. In Argu-
mentation in Artificial Intelligence. Springer. 105–132.
Modgil, S. 2009. Reasoning about preferences in argumen-
tation frameworks. Artif. Intell. 173(9-10):901–934.
Nofal, S.; Dunne, P. E.; and Atkinson, K. 2012. Towards
average-case algorithms for abstract argumentation. In Proc.
ICAART 2012.
Ordyniak, S., and Szeider, S. 2011. Augmenting tractable
fragments of abstract argumentation. In Proc. IJCAI, 1033–
1038. IJCAI/AAAI.
Podlaszewski, M.; Caminada, M.; and Pigozzi, G. 2011.
An implementation of basic argumentation components. In
Proc. AAMAS, 1307–1308. IFAAMAS.
Truszczynski, M. 2011. Trichotomy and dichotomy re-
sults on the complexity of reasoning with disjunctive logic
programs. Theory and Practice of Logic Programming
11(6):881–904.
Valiant, L. G., and Vazirani, V. V. 1986. NP is as easy as
detecting unique solutions. Theor. Comput. Sci. 47(3):85–
93.
Verheij, B. 2007. A labeling approach to the computation
of credulous acceptance in argumentation. In Proc. IJCAI,
623–628.
Wintersteiger, C. M.; Hamadi, Y.; and de Moura, L.
2010. Efficiently solving quantified bit-vector formulas. In
Proc. FMCAD, 239–246. IEEE.

64




