
Discovering Cyclic Causal Models with Latent Variables:
A General SAT-Based Procedure

Antti Hyttinen Patrik O. Hoyer
HIIT & Dept. of Computer Science

University of Helsinki
Finland

Frederick Eberhardt
Philosophy

California Institute of Technology
Pasadena, CA, USA

Matti Järvisalo
HIIT & Dept. of Computer Science

University of Helsinki
Finland

Abstract

We present a very general approach to learn-
ing the structure of causal models based on
d-separation constraints, obtained from any
given set of overlapping passive observational
or experimental data sets. The procedure al-
lows for both directed cycles (feedback loops)
and the presence of latent variables. Our ap-
proach is based on a logical representation of
causal pathways, which permits the integra-
tion of quite general background knowledge,
and inference is performed using a Boolean
satisfiability (SAT) solver. The procedure is
complete in that it exhausts the available in-
formation on whether any given edge can be
determined to be present or absent, and re-
turns “unknown” otherwise. Many existing
constraint-based causal discovery algorithms
can be seen as special cases, tailored to cir-
cumstances in which one or more restricting
assumptions apply. Simulations illustrate the
effect of these assumptions on discovery and
how the present algorithm scales.

1 INTRODUCTION

One of the main goals in many fields of science is to
identify the causal relations existing among some set
of variables of interest. Such causal knowledge may
be inferred both from experimental data (randomized
controlled trials) and passive observational measure-
ments. In general the information available from mul-
tiple such studies may need to be combined to ob-
tain an accurate picture of the underlying system. In
recent years, many approaches to this causal discov-
ery problem have been suggested (Spirtes et al., 1999;
Richardson and Spirtes, 1999; Schmidt and Murphy,
2009; Claassen and Heskes, 2010; Peters et al., 2010;
Triantafillou et al., 2010), building on the framework

of causal Bayes networks (Spirtes et al., 1993; Pearl,
2000). In this framework, causal relations among a set
of variables V are represented by a directed graph G
in which each variable is represented by a node in the
graph, and an arrow from node x to node y indicates
that x is a direct cause of y (with respect to V).

Although causal models based on directed graphs are
often restricted to be acyclic, causal feedback can be
represented by permitting directed cycles in G, i.e. di-
rected paths from a node back to itself. In addition,
unmeasured common causes of two or more nodes in
V are commonly represented by allowing bi-directed
arrows (↔) between any pair of confounded nodes.1

(If there are no such confounders, the set V is said to
be causally sufficient.) Thus, in the most general case
of cyclic causal structures with latent variables, any
pair of nodes x, y ∈ V, with x 6= y, can be connected
by any combination of the edges x → y, y → x, and
x↔ y (see Figure 1 for examples).

One of the key theoretical concepts in causal models
based on directed graphs is the notion of d-separation,
due to Geiger et al. (1990). This is a graphical sep-
aration criterion that provides the structural counter-
part to (conditional) independencies in the probabil-
ity distribution generated by the model. D-separation
is based on paths in the graph. Since a single pair
of nodes can be connected by multiple edges, in our
model space a path is defined as a sequence of consec-
utive edges in the graph, without any restrictions on
the types or orientations of the edges involved.

Definition 1 (D-separation) A path p is said to be
d-separated (or blocked) by a set of nodes C if and
only if (i) p contains a chain i → m → j or a fork
i← m→ j such that the middle node m is in C, or (ii)
p contains an inverted fork (or collider) i → m ← j

1In this representation a latent variable affecting more
than two observed variables is represented by two-way con-
founders (bi-directed edges) between all pairs of nodes cor-
responding to the affected observed variables.

such that the middle node m is not in C and such that
no descendant of m is in C. A set C is said to d-
separate x from y if and only if C blocks every path
from x to y. (Pearl, 2000)

When applying Definition 1 to graphs with bi-directed
edges such as in Figure 1(b), the bidirected edge z ↔ w
can be viewed as a latent structure z ← lzw → w.

In acyclic models, such as causal Bayes networks, if
two nodes x and y are d-separated given a set C then
the corresponding random variables are statistically
independent when conditioning on C in the probabil-
ity distribution generated by the model. If there are
no statistical independencies in the distribution other
than those implied by d-separation applied to the un-
derlying graph, the distribution is said to be faithful
to the graph. Thus, under an assumption of faith-
fulness causal discovery procedures can use the out-
comes of statistical independence tests, applied to the
observed data, to infer d-separation and hence struc-
tural properties of the underlying graph. For example,
if in a set of four variables V = {x, y, z, w} it is found
that (i) x is unconditionally independent of y, (ii) x
is independent of w given z, (iii) y is independent of
w given z, and (iv) no other unconditional indepen-
dencies are found, then the well-known PC-algorithm
(Spirtes et al., 1993) will infer that the underlying
causal structure is the one in Figure 1(a).

While the correspondence between probabilistic inde-
pendence and d-separation is known to hold generally
for acyclic models (even when there are latent vari-
ables), the case is not as clear for cyclic models. The
correspondence is known to hold for linear causal re-
lations with Gaussian error terms, i.e. non-recursive
linear Gaussian structural equation models (Spirtes,
1995), and can be extended to models with correlated
error terms, which is one way to account for causally
insufficient sets of variables. A general characteriza-
tion of the parameterizations of cyclic models (with la-
tent variables), for which the correspondence between
d-separation and probabilistic independence holds, is
not known (Pearl and Dechter, 1996; Neal, 2000).

Following the standard approach of non-parametric
causal discovery algorithms, we use d-separation rela-
tions as the basic input to our procedure, but acknowl-
edge that in the cyclic case only the linear Gaussian
models are known to provide the appropriate corre-
spondence with statistical independence. We allow for
a set-up similar to the overlapping data sets approach
of the ION-procedure (Tillman et al., 2009) in that
we do not restrict ourselves to a single data set mea-
sured over some set of observed nodes, but can handle
d-separation relations that were obtained from differ-
ent (overlapping) sets Vi of nodes. Analogously to

x
""

y

||
z

��
(a) w

x // z

		

cc

}}
(b) y // w

II

Figure 1: Example graphs (see text for details).

Hyttinen et al. (2012) we generalize the overlapping
data sets case to allow that the Vi can contain nodes
that are known to have been subject to a randomized
experiment. Nevertheless, the target of our discovery
procedure is the underlying causal graph G over the
set of nodes V =

⋃
i Vi, implying that G may contain

edges between nodes that are never measured together
in the same data set.

2 PROBLEM SETTING

We consider the space of cyclic causal models G over
the (jointly) causally insufficient set of nodes V =⋃

i Vi, where each Vi specifies the nodes present in
experiment Ei = (Ji,Ui). Ji and Ui form a partition
of Vi such that the nodes in Ji are randomized si-
multaneously and independently and the nodes in Ui

are passively observed (Ji can be empty to allow for
passive observational settings). We use the following
simplification of the d-separation criterion:

Definition 2 (D-separation) A path is d-connect-
ing with respect to a conditioning set C if every col-
lider c on the path is in C and no other nodes on the
path are in C, otherwise the path is d-separated (or
“blocked”).

Definition 2 is equivalent to Definition 1 when an edge
can be used multiple times in a path (Studený, 1998;
Koster, 2002). For example, the sequence of edges
x → z → w ← z ← y in the graph in Figure 1(a)
is d-connecting with respect to conditioning set C =
{w}. The extension of d-separation to experimental
settings is straightforward: a d-connecting path may
only contain a node x ∈ J if x /∈ C and x is a fork
(common cause) on the path or the source of the path.
We write x ⊥ y |C ||J (resp. x 6⊥ y |C ||J) to denote
that x is d-separated from (resp. d-connected to) y
given C in the experiment with intervention set J. We
assume we have a d-separation oracle that returns the
truth values of statements of the form ‘x ⊥ y |C ||Ji’
in the true graph G, for any pair of distinct nodes x, y
and set of nodes C that occur together in some Vi.

It is well known that even in the presence of random-
ized experiments the set of all d-separation relations
over the set of nodes in general underdetermines the
true causal structure even for much more restricted
model spaces than we consider here. So the discov-

ery task is to determine for each pair of nodes in V
and for each edge type (←,→,↔) whether the edge is
present, absent or if its existence is unknown. In addi-
tion we determine possible indirect (ancestral) causal
relations: for each ordered pair of nodes (x, y), whether
a directed path x → · · · → y exists, does not exist or
if its existence is unknown.

3 SAT AND BACKBONES

Our algorithm for causal structure discovery is based
on computing the so-called backbone of a given for-
mula in propositional logic. We employ a Boolean sat-
isfiability (SAT) solver (Biere et al., 2009) to determine
the backbone, which can be directly interpreted as the
solution to the structure discovery task. This section
provides an overview on SAT and backbones.

Propositional formulas are built from Boolean vari-
ables by repeated application of the connectives ¬
(negation), ∨ (disjunction, logical OR), ∧ (conjunc-
tion, logical AND), ⇒ (implication) and ⇔ (equiva-
lence). Any propositional formula can be represented
in conjunctive normal form (CNF) using a standard
linear-size encoding (Tseitin, 1983). For a Boolean
variable X, there are two literals, X and ¬X. A clause
is a disjunction of literals; a CNF formula is a conjunc-
tion of clauses. A truth assignment is a function τ from
Boolean variables to {0, 1}. A clause C is satisfied by
τ if τ(X) = 1 for some literal X in C, or τ(X) = 0
for some literal ¬X in C. A CNF formula F is satisfi-
able if there is an assignment that satisfies all clauses
in F , and unsatisfiable otherwise. The NP-complete
Boolean satisfiability (SAT) problem asks whether a
given CNF formula F is satisfiable.

Implementations of decision procedures for SAT, so-
called SAT solvers, can in practice not only determine
satisfiability of CNF formulas, but also produce a sat-
isfying truth assignment for satisfiable formulas. The
most efficient SAT solvers are based on the complete
conflict-driven clause learning (CDCL) search algo-
rithm (Marques-Silva and Sakallah, 1999; Moskewicz
et al., 2001; Eén and Sörensson, 2004). Central to
CDCL is the ability to derive lemmas (in terms of new
CNF clauses) based on non-solutions detected during
search, which makes the search performed by CDCL
SAT solvers differ from standard depth-first backtrack-
ing search. In many cases, the state-of-the-art CDCL
SAT solvers can solve SAT instances consisting of mil-
lions of clauses and variables (Järvisalo et al., 2012).

If a Boolean variable X takes the same value in all
satisfying truth assignments of a given CNF formula
F , X is called a backbone variable of F ; the value X
is assigned to in all satisfying assignments is called
the polarity of X. The set of backbone variables (or

simply, the backbone) of a formula F can be computed
by a linear number of calls (in the number of variables
in F) to a SAT solver: if exactly one of F ∧ X and
F ∧¬X is satisfiable, then X is in the backbone of F .

4 ENCODING D-SEPARATION

Figure 2 shows our propositional encoding for the d-
connection property. The encoding allows to repre-
sent both d-separation and d-connection relations as
constraints directly on the edges present or absent in
the underlying causal graph. In essence, the encoding
spells out Definition 2 (extended to experiments) by
expressing the conditions for paths being blocked or
unblocked.

In the encoding, Boolean variables [x→ y] and [x↔ y]
represent the underlying causal graph. For each pair of
distinct nodes x, y ∈ V, the Boolean variable [x → y]
(variable [x ↔ y], respectively) takes the value 1 if
and only if the edge x → y (edge x ↔ y, respec-
tively) is present in the graph.2 The Boolean vari-
able [x 6⊥ y |C ||J] is 1 if and only if x and y are
d-connected in the underlying graph when condition-
ing on C and intervening on J. To encode the dif-
ferent types of d-connecting paths of length l between
pairs of nodes x, y when conditioning on C and inter-

vening on J (Eqs. 1–7), Boolean variables [x
l

− · · · >
C,J

y],

[x
l

< · · · · · >
C,J

y], and [x
l

− · · ·−
C,J

y] are introduced, with the re-

spective arrowheads and edge-tails as indicated. In
general, d-connecting paths in a cyclic graph can have
infinite length, length of a path being the number of its
edges. However, as shown in Appendix B, only paths
of a maximum length lmax = 2|V| − 4 need to be con-
sidered. These Boolean variables are hence defined for
all paths (of the four types) of length l = 1, . . . , lmax

and for all pairs of nodes in V.

The constraint requiring that a specific d-connection
x 6⊥ y |C ||J is present is constructed by taking the
conjunction of the variable [x 6⊥ y |C ||J] and Equa-
tions 1–7. Similarly, the constraint requiring that a
specific d-separation x ⊥ y |C ||J is present is the con-
junction of ¬[x 6⊥ y |C ||J] and Equations 1–7.

From a causal perspective, for a d-connection
x 6⊥ y |C ||J the encoding splits the d-connecting paths
into four groups (Eq. 1): (i) paths that start with
an edge-tail at x and end with an arrowhead at y,
(ii) paths that start with an arrowhead at x and end
with an edge-tail at y, (iii) paths that start with an ar-
rowhead at x and end with an arrowhead at y, and (iv)

2We omit self-loops, i.e. edges from a node to itself, as
they do not affect the d-connectedness of a graph.

Encoding of d-connection between nodes x, y given conditioning set C and intervention set J.

[x 6⊥ y |C ||J] ⇔
lmax∨
l=1

(
[x

l
− · · · >
C,J

y] ∨ [y
l

− · · · >
C,J

x] ∨ [x
l

< · · · · · >
C,J

y] ∨ [x
l

− · · ·−
C,J

y]

)
(1)

Paths of length 1:
[x

1
− · · · >
C,J

y] ⇔
{

[x→ y] if y /∈ J
0 otherwise

(2)

[x
1

< · · · · · >
C,J

y] ⇔
{

[x↔ y] if x /∈ J and y /∈ J
0 otherwise

(3)

[x
1

− · · ·−
C,J

y] ⇔ 0 (4)

Paths of length l = 2, . . . , lmax:

[x
l

− · · · >
C,J

y] ⇔
∨
z/∈C

(
[x

1
− · · · >
C,J

z] ∧ [z
l−1
− · · · >
C,J

y]

)
∨
∨
z∈C

(
[x

1
− · · · >
C,J

z] ∧ [z
l−1

< · · · · · >
C,J

y]

)
(5)

[x
l

< · · · · · >
C,J

y] ⇔
∨
z/∈C

(
[z

1
− · · · >
C,J

x] ∧ [z
l−1
− · · · >
C,J

y]

)
∨
∨
z/∈C

(
[z

1
− · · · >
C,J

x] ∧ [z
l−1

< · · · · · >
C,J

y]

)
∨

∨
z/∈C

(
[x

1
< · · · · · >
C,J

z] ∧ [z
l−1
− · · · · >
C,J

y]

)
∨
∨
z∈C

(
[x

1
< · · · · · >
C,J

z] ∧ [z
l−1

< · · · · · >
C,J

y]

)
(6)

[x
l

− · · ·−
C,J

y] ⇔
∨
z/∈C

(
[x

1
− · · · >
C,J

z] ∧ [z
l−1
− · · ·−
C,J

y]

)
∨
∨
z∈C

(
[x

1
− · · · >
C,J

z] ∧ [y
l−1
− · · · >
C,J

z]

)
(7)

Figure 2: Encoding d-connection via paths between pairs of nodes.

paths that start with an edge-tail at x and end with
an edge-tail at y. The paths are built up recursively in
terms of length l (Eqs. 5, 6, and 7). By keeping track
of the path lengths we ensure that each path bases
out through Eqs. 2 and 3 on the actual edges in the
graph, whose presence is represented by Boolean vari-
ables [x→ y] and [x↔ y]. There are no paths of type
(iv) with length 1, as such a path must involve at least
one collider (in C) to have tails at both ends (hence
Eq. 4). The shortest valid case is of length l = 2 and
results from the second half of Eq. 7. By explicitly
keeping track of the terminal edge-marks in each path
variable, the encoding ensures that all colliders on a
d-connecting path are in the conditioning set C, and
all non-colliders are not in C. The base cases (Eqs. 2
and 3) ensure that there is no path with an edge into
a variable that is intervened on (into y ∈ J).

For each given d-separation relation x ⊥ y |C ||J (or
similarly each d-connection relation x 6⊥ y |C ||J), the
whole encoding, including Eqs. 1–7, is cubic in the
number |V| of nodes. Furthermore, it is important to
notice that our algorithm, as described next, does not
generate the constraints in Eqs. 1–7 for all possible
d-separation and d-connection relations at once. The
constraints for individual relations are generated only
on demand during the execution of the algorithm, in
many cases avoiding generating an exponential num-

ber of constraints needed to represent all possible d-
separation and d-connection relations.

The SAT-based approach to causal structure discovery
by Triantafillou et al. (2010) uses an encoding based
on partial ancestral graphs (PAGs), a particular form
of equivalence class. Their encoding does not suffice
for our purposes, since it is restricted to acyclic causal
structures in non-experimental settings, and given ex-
periments it is often possible to distinguish between
different graphs that for passive observational data be-
long to the same PAG.

5 ALGORITHM

The encoding of d-separation relations presented in the
previous section can be used for a variety of discovery
applications. For the purpose of illustration we will
present here one algorithm for a common discovery
setting. The extension to other settings is then easily
explained. Algorithm 1 iterates over three steps un-
til all d-separation relations are known: (1) finding a
set of d-separation/connection tests Tc (in order of in-
creasing conditioning set size) with currently unknown
result, and determining those relations Dc, (2) gener-
ating the additional constraints encoding the relations
in Dc (recall the encoding in Figure 2), and (3) com-
puting the backbone over the propositional formula

Algorithm 1 SAT-based causal structure discovery

Initialize solution S for the edge variables [x → y], [x ↔ y]
of each pair of distinct nodes x, y ∈ V to status unknown.

Initialize ϕ to be the empty propositional formula.

For conditioning set size c from 0 to |V| − 2:

1: Determine d-separation/connection relations.

Find a set Tc of d-separation/connection tests with con-
ditioning set size c that are undetermined given S.
Determine the d-separation/connection relation for each
test in Tc, and let set Dc consist of these relations.

2: Refine the working formula ϕ.

For each x ⊥ y |C ||J in Dc:

Encode x ⊥ y |C ||J using equations 1-7:
ϕ := ϕ∧ Encode(x ⊥ y |C ||J).

For each x 6⊥ y |C ||J in Dc:

Encode x 6⊥ y |C ||J using equations 1-7:
ϕ := ϕ∧ Encode(x 6⊥ y |C ||J).

3: Incremental backbone computation with SAT solver

Compute B: the set of edge-variables [x → y], [x ↔ y]
in the backbone of ϕ.
For each edge variable e in B:

If e ∈ B with polarity 1, set status of e to present in S.
If e ∈ B with polarity 0, set status of e to absent in S.

Output S: the status of each edge.

consisting of the constraints generated so far.

In Step 1 we apply a pruning heuristic (described in
Appendix A) that guarantees that all unknown d-
separation relations are found, but remains computa-
tionally tractable. We use a d-separation oracle (see
Section 2) to determine the result of each test.

In Step 2, given a d-connection relation x 6⊥ y |C ||J,
the subroutine Encode returns the conjunction of
[x 6⊥ y |C ||J] and the formulas in Eqs. 1–7. Similarly,
given a d-separation relation x ⊥ y |C ||J, Encode re-
turns the conjunction of ¬[x 6⊥ y|C||J] and the for-
mulas in Eqs. 1–7. Note that for each combination of
C and J, Eqs. 2–7 need to the added only once into ϕ
(also guaranteed by our current implementation). This
is important in practice, so that the SAT solver is not
suffocated with many copies of the same constraints.

In Step 3, a SAT solver is used incrementally for de-
termining which of the edge-variables in the current
working formula ϕ are in the backbone of ϕ. The po-
larity of these backbone variables determines whether
the corresponding edges are present or absent.

Like other constraint based causal discovery algo-
rithms, Algorithm 1 considers d-separation relations
in order of the size of the conditioning set C. For
sparse graphs, this enables a rapid pruning of the con-
straint generation on the basis of the simplest tests.

But unlike other constraint based algorithms, Algo-
rithm 1 can explicitly include known d-connections,
rather than assuming that there is a d-connection
whenever no d-separation is found (see also Section 7).

Algorithm 1 is easily adjusted to consider an arbitrary
set of d-separation/connection relations as input, as
long as the set of nodes V is specified from the out-
set. If the set is small, one can just run step 2 and 3
to compute the backbone using all available relations,
otherwise one can run the full procedure, simply omit-
ting relations from Dc that are not available in the
set. It will terminate when all relations are encoded
or when no more are needed, as determined by step 1.

In Algorithm 1 we use the status on each edge as the
output. If other aspects of the graphs are of interest,
one can easily define other variables and compute the
backbone over them. In Section 6 we use this feature
to determine which ancestral relationships are known.

5.1 BACKGROUND KNOWLEDGE AND
MODEL SPACE ASSUMPTIONS

Although we have considered a very general model
space, restricting the procedure to smaller spaces is
simple. Focusing on just one data set rather than a
set of overlapping data sets, or only considering pas-
sive observational data and no experiments, requires
no adjustments of Algorithm 1. If one has reason to
believe that there are no unmeasured nodes, i.e. that
V is (jointly) causally sufficient, then setting

[x↔ y]⇔ 0 (8)

for all pairs of nodes in the encoding will enforce this
restriction. If one is only interested in acyclic causal
structures, then adding the constraint

¬[x 6⊥ y |∅ ||{x}] ∨ ¬[x 6⊥ y |∅ ||{y}] (9)

for each pair of nodes, together with the respective
path definitions (Eqs. 2–7), is sufficient. Eq. 9 disal-
lows cycles by enforcing that there cannot be a di-
rected path from x to y and a directed path from
y to x. Since the conditioning set in each of the d-
connection claims in Eq. 9 is empty, there cannot exist
any colliders in the d-connecting paths. The interven-
tion on x and y, respectively, in each of the claims
in Eq. 9 ensures that d-connections due to common
causes are excluded. Only directed paths are involved
in x 6⊥ y |∅ ||{x} and x 6⊥ y |∅ ||{y}. In Section 5.2 we
use this flexibility to generate the same causal infer-
ences as other d-separation based algorithms.

More generally, the encoding allows for including var-
ious types of background knowledge. One can enforce
that a particular edge is present or absent, that partic-
ular ancestral relations are maintained or disallowed,

that specific paths (with, if needed, particular way-
points and of a specific length) are present or absent.
The type of knowledge that can be encoded is more
general than any other constraint based procedure we
are aware of, including the additions to the cSAT+ al-
gorithm by Borboudakis et al. (2011). One is in prin-
ciple only limited by what can be encoded in terms of
a Boolean constraint over the edge and path variables.
We think this could be of enormous utility to applica-
tions with significant domain knowledge or when qual-
itative causal relations are discovered by other means
(e.g. using the additive noise or non-Gaussian tech-
niques of Peters et al. (2010) and Hoyer et al. (2008)).

5.2 COMPLETENESS

For more restricted model spaces, graphical represen-
tations of the classes of d-separation-equivalent graphs
have been developed (e.g. partial ancestral graphs).
We do not have a similar representation for our more
general model space and it is unclear whether an eas-
ily interpretable representation is possible, since there
can be graphs that share the same d-separation rela-
tions, but differ in adjacencies, orientations and ances-
tral relationships. By only providing the status of each
edge as output of Algorithm 1, we follow Triantafillou
et al. (2010) who used this solution format in light of
the often (even computationally) unmanageable out-
put of the ION-algorithm (which does not consider
cyclic graphs). The downside is that this output is
not fully informative about the solution space. For ex-
ample, if d-separation relations were obtained from a
passive observation of the graph x→ y → z, then the
current output does not represent that x → y ← z is
not a solution. Instead, it would (among other things)
mark all edges of adjacent nodes as unknown, since
x← y ← z is also a solution. Nevertheless, it is trivial
to query our procedure about graphical aspects that
are not represented in the output. Since the complete
solution space is implicitly represented by the working
formula ϕ, the SAT-solver can easily determine that
x → y ← z is not a valid solution in this example.
Similarly, one can query the status of any other struc-
tural proposition by constructing a Boolean variable X
for it using the edge or path variables in the encoding,
and determining whether X is in the backbone of ϕ or
not. If it is, then polarity 1 indicates that X is true
for all graphs that satisfy ϕ, while polarity 0 indicates
that X is false for all graphs that satisfy ϕ. If X is not
in the backbone, then there is a graph G1 that satisfies
ϕ, for which X is true, and a graph G2 that satisfies
ϕ, but for which X is false. This is one, given the en-
coding perhaps trivial, sense in which our procedure
is complete for any propositional query given the d-
separation/connection relations (and any model space
restrictions) as input. We call this query-completeness.

A different type of completeness is used in the context
of other constraint based algorithms. Given the d-
separation tests that an algorithm performs, we say
that an algorithm is d-separation complete if all d-
separation relations over the set of nodes are known.
The PC-algorithm (for acyclic graphs over a causally
sufficient set of nodes), the FCI-algorithm (for acyclic
graphs over a causally insufficient set of nodes) and
the CCD-algorithm (for cyclic graphs over a causally
sufficient set of nodes) are all d-separation complete
for their model spaces, respectively (Spirtes et al.,
1993; Richardson, 1996; Spirtes et al., 1999). Rely-
ing on the model space assumptions, the algorithms
conduct just enough d-separation tests to determine
all d-separation relations of the graphs in the solution
space, even relations that the algorithms did not ex-
plicitly test. None of these algorithms are d-separation
complete when their model space assumptions are vi-
olated: Figure 1(b) gives a cyclic graph for which FCI
is not d-separation complete, since it does not test
whether x ⊥ y |{w, z}. The graph with latent con-
founders in Figure 3 is an example for which CCD is
not d-separation complete, because it does not deter-
mine the d-separation x1 ⊥ x5 |{x2, x3, x4}. PC does
not handle either graph. These limitations illustrate
that achieving d-separation completeness without per-
forming all tests is a non-trivial problem in the gen-
eral model space we consider (containing both graphs).
Once we consider overlapping data sets, there are d-
separation relations involving nodes that do not occur
together in any Vi. Sometimes these can be deter-
mined from the other d-separation relations, but of-
ten they remain undetermined even when all the d-
separation relations within each Vi are established.
For this setting we adjust the definition of d-separation
completeness to require that exactly those relations
that cannot be determined (in the sense just described)
are left unknown and all others are determined.

For cyclic models with latent variables in overlapping
experimental or observational data sets, Algorithm 1
is d-separation complete, and in general it will not
test all available d-separation relations. But in the
present implementation (of step 1) we resort to sim-
ple safe heuristics to avoid some redundant tests, and
otherwise apply brute force (see Appendix A). It is
an open challenge to further reduce the number of
tests performed while preserving d-separation com-
pleteness. We cannot employ a simple variant of the
efficient test schedules of FCI and CCD, as they se-
lect subsequent tests on the basis of a graphical rep-
resentation of the knowledge acquired so far that is
specific to their restricted model spaces. But given
those restrictions, we can adopt the test schedules:
Using FCI as basis, the ION-algorithm (which also
assumes acyclicity) is d-separation complete for pas-

x1 // x2oo
''

x3oo // x4
ww

// x5oo

Figure 3: An (acyclic) graph with latents for which
the CCD-algorithm is not d-separation complete.

sively observed overlapping data sets (Tillman et al.,
2009). Similarly, if we assume acyclicity, we can use
instead of our heuristic the test schedule of FCI in
Algorithm 1 when analyzing overlapping experimental
data sets: run FCI on each individual data set (ex-
perimental or not) and input to Algorithm 1 the re-
sults of the tests that FCI considered on each individ-
ual data set (together with the acyclicity constraints
in (9) for the FCI model space). Algorithm 1 will then
combine the information across data sets and output
all information available on the status of each edge
in the true graph. The set of d-separation relations
tested by FCI is sufficient for d-separation complete-
ness for the Vi in that data set. Interventions do not
affect the d-separation completeness, since the manip-
ulated graph in any experiment still satisfies all model
space assumptions of FCI. (One could avoid some tests
by further book-keeping of the information about the
interventions, but for d-separation completeness it is
unnecessary.) Given FCI’s d-separation completeness
on each data set, the constraints generated by feed-
ing the test results to Algorithm 1 imply that all d-
separations relations that could be tested, are already
determined. Any d-separation relation still unknown
cannot be determined. By assuming acyclicity we thus
obtain d-separation completeness using the efficient
FCI schedule of tests for overlapping data sets with
experiments. As Algorithm 1 is also query-complete,
we have a general procedure for the approaches of La-
gani et al. (2012).

An analogous argument for cyclic graphs without la-
tent nodes, using the test schedule of CCD, can only
be made if we assume that the nodes in V are all ob-
served in all (possibly experimental) data sets. In the
overlapping setting, causal sufficiency can be violated
in the individual data sets and, as shown above, CCD
is not d-separation complete for such a model space.

6 SIMULATIONS

To determine the effectiveness of the proposed ap-
proach, we implemented Algorithm 1 and investigated
the properties of the method empirically. Our im-
plementation is based on the MiniSAT solver (Eén
and Sörensson, 2004, 2003). The code is available at
http://www.cs.helsinki.fi/group/neuroinf/nonparam/.

First, we investigated the extent to which our ap-
proach, and in particular the SAT solver used, is able
to solve the large problem instances generated by non-

trivial graphs. We generated random directed graphs
of size n = 5 . . . 12 nodes, in which each of the edges
(both directed and bidirected) was independently in-
cluded with probability 0.2. We then generated a
random set of 10 overlapping experiments, in each of
which each node was independently and with equal
probability chosen to be either intervened, passively
observed, or unobserved. Finally, we computed all ob-
servable d-separation/connection relations; these con-
stituted the input to our procedure.

Figure 4(a) gives, for each value of n, the median run-
time based on 100 random problem instances, for the
complete procedure (solid curve), and when only con-
sidering conditioning sets C with two or fewer elements
(dotted curve). Note that most instances involving a
relatively small number of nodes (on the order of 10 or
less) can be solved by the complete procedure in min-
utes, if not seconds. We emphasize that these are not
trivial problems: No other existing causal discovery
procedure can handle our model space (allowing both
latents and cycles), nor our very general experimental
setup (overlapping data sets including interventions).
At the same time, it is quite clear that, at least in its
current implementation, the method does not scale to
much larger numbers of variables. Scalability could
be achieved with a more efficient search for unknown
d-separations in Step 1 of the algorithm.

An effective way to reduce the run-time of the algo-
rithm is to limit the size of the conditioning sets con-
sidered (dotted line in Figure 4(a)). While this means
that completeness is not guaranteed, Figure 4(b) shows
that in most cases very little is lost in terms of identi-
fiability. We randomly sampled 100 problem instances
as above, except that we now fixed the number of
nodes to n = 8. The red solid curve shows the pro-
portion of true directed edges (i.e. x → y in the true
graph) which were identified as a direct edge (as op-
posed to unknown, since no errors are made). Simi-
larly, the red dashed curve shows the identification of
absences of direct edges, and the remaining curves in-
dicate the amount of bidirected edges and existence of
directed paths (ancestral relationships) identified. A
key observation is that tests of higher order (roughly
|C| ≥ 3) provide very little additional information over
those involving smaller conditioning sets.

Finally, we investigated the extent to which our very
general model space (allowing both cycles and latents)
is detrimental to identification when the true model is
more restricted. We generated a total of 300 random
problem instances using the same procedure as above,
each with n = 8 nodes, where the first 100 models were
restricted to being acyclic, the second 100 were re-
stricted to contain no latents (i.e. no edges of the form
x ↔ y in the true graph over V), and the remaining

0 1 2 3 4 5 6

0
20

40
60

80
10
0

maxsize
pe
rc
en
ta
ge

ru
n
-t

im
e

[s
]

n max |C|
am

ou
n
t

id
en

ti
fi
ed

[%
]

5 6 7 8 9 10 11 12

2
5

20
10
0

50
0

50
00

n

se
co
nd
s

(a) (b)

Figure 4: (a) Median run-time of the procedure as a
function of the total number of nodes in the model.
The dotted line gives the median run-time when re-
stricting to max |C| = 2. (b) Proportion of edges
(solid lines) and absences of edges (dashed lines) iden-
tified, as a function of max |C|. Directed edges are
shown in red, bidirected edges (confounders) in green,
and directed paths (ancestral relationships) in blue.

100 were both acyclic and contained no latents. Fig-
ure 5 shows the proportion of direct edges identified,
and the proportion of absences of direct edges identi-
fied, as a function of the assumptions used (assuming
an acyclic model, assuming no latents, assuming both,
or assuming neither). The general message is that very
little identifiability seems to be lost when assuming the
more general model spaces in this experimental setup.

7 DISCUSSION

By focusing exclusively on d-separation and d-connec-
tion relations obtained without errors we have so far
taken the approach used by other constraint-based al-
gorithms in the literature (PC, FCI, CCD, ION, IOD,
cSAT+ etc.) to separate the causal from the statistical
inference. As an important direction for future work,
we now briefly discuss integrating statistical inference.

In most realistic situations d-separation/connection
relations are determined by independence tests from
statistical data. Such tests, especially when performed
in large numbers, produce errors due to the finite
number of samples available and problems of multi-
ple testing. All other constraint-based causal discov-
ery algorithms face similar problems. In our case, the
errors can result in d-separation/connection relations
that are contradictory. Since the logical encoding is
simply unsatisfiable in such cases, no output is given.
But there are more interesting features of the encod-
ing and the algorithm that hold promise to be useful
with actual statistical data. First, since no definite an-
swer is required of a d-separation test, we can enforce
different p-value thresholds to detect independencies
and dependencies (see Tsamardinos et al. (2012)). If

PC CCD FCI OURS

50
60

70
80

90
10
0

CCD OURS

50
60

70
80

90
10
0

FCI OURS

50
60

70
80

90
10
0

PC CCD FCI OURS

50
60

70
80

90
10
0

CCD OURS

50
60

70
80

90
10
0

FCI OURS

50
60

70
80

90
10
0

PC CCD FCI OURS

50
60

70
80

90
10
0

CCD OURS

50
60

70
80

90
10
0

FCI OURS

50
60

70
80

90
10
0

50
60

70
80

90
10
0

a
m

o
u
n
t

id
en

ti
fi
ed

[%
]

assumptions assumptions assumptions

true model true model true model

presences
absences

Figure 5: Proportion of directed edge presences and
absences identified, under various model space as-
sumptions, for acyclic true models without latents
(left), acyclic models with latents (center), and cyclic
models without latents (right).

a p-value of a test falls between the thresholds, the d-
separation relation can be treated as unknown, by just
not adding any constraints into the working formula
ϕ. This approach does not completely avoid conflicts,
but reduces their number and allows for at least some
more control than many extant algorithms are able to
offer. A second approach to dealing with statistical is-
sues would be to exploit extensions of SAT, especially
Boolean optimization in terms of maximum satisfiabil-
ity (MaxSAT) of propositional formulas (Biere et al.,
2009), where the task is to find a truth assignment that
satisfies the maximum number of CNF clauses. Hence
a MaxSAT solver could be used for discovering causal
models that entail a minimal number of contradictory
d-separation/connection relations in the input.

8 CONCLUSION

We presented a causal discovery procedure for a very
general model space: to our knowledge, it is currently
the only nonparametric causal discovery algorithm
that allows for a model space that includes graphs with
cycles and latent confounders (recall the discussion on
cycles and d-separation in Section 1). The algorithm
can be applied to overlapping data sets, whether they
are experimental or passive observational, and can in-
corporate a large variety of different background in-
formation if available. It does not depend on para-
metric restrictions such as linearity (Hyttinen et al.,
2012), and requires only the ability to test for d-
separation/connection relations.

SAT-based procedures have been previously pro-
posed for the more restricted space of acyclic causal
models (Triantafillou et al., 2010; Borboudakis and
Tsamardinos, 2012). However, ours is the first proce-
dure that is complete with respect to overlapping sur-
gical experiments, and additionally handles a model

space that allows for cycles. In order to capture the
more general model space, we employ a novel logical
encoding of d-separation and d-connection relations.
The Boolean constraints for individual relations are
generated iteratively and only on demand during the
execution of our procedure, and an incremental SAT
solver is used for iteratively computing the backbone
of the Boolean constraints. Our procedure can also
be easily used for the more restricted model spaces
by introducing additional Boolean constraints. By
constraining the model space to causally sufficient or
acyclic causal structures we can perform the inferences
of the standard algorithms in the literature, such as
PC, FCI, ION, IOD, cSAT+ and CCD for moderately
sized graphs. The inferences made are complete in the
most general and in the more restricted settings.

A PRUNING HEURISTICS

In the (intermediary) solution S describing our cur-
rent knowledge some edges are present, some are ab-
sent and the presence of some edges is unknown. We
consider two graphs G1 and G2, such that they agree on
all the edges that are determined, but G1 omits all un-
determined edges, while G2 includes all undetermined
edges as present. As removing edges can only result
in more d-separation relations, a d-connection relation
present in G1 must be present in all solutions. Sim-
ilarly, a d-separation relation present in G2 must be
present in all possible solutions. Only the remaining
tests are possibly informative. This is a safe heuristic
that turns out to be computationally feasible, as for-
ward calculation of d-separation/connection relations
for a fully defined graph is fast for the model sizes we
are considering. In addition, we also omit tests with
conditioning sets that contain nodes that cannot be on
a d-connecting path between the nodes in question.

B LIMIT ON THE PATH LENGTH

Written solely in terms of edge variables, the right-
hand side of Eq. 1 is a large disjunction of d-connecting
paths up to length lmax for the relation on the left-
hand side. As a path of arbitrary length can be d-
connecting, lmax should be infinite to guarantee sound-
ness of the formulation. Here we show that only paths
of lengths up to a certain upper bound need to be
considered. The following lemma, proven at the end
of this appendix, is essential in showing this.

Lemma 1 If there exists a path that is d-connecting
with respect to x \⊥⊥y |C ||J and longer than 2|V|− |C∪
J ∪ {x, y}| − 1 edges, then there exists a shorter path
that is d-connecting with respect to the same relation.

Consider a path plong that is d-connecting for
x 6⊥ y |C ||J and longer than 2|V|−|C∪J∪{x, y}|−1.
By Lemma 1 there is a path pshort with at most length
2|V| − |C ∪ J ∪ {x, y}| − 1 edges that is d-connecting
with respect to the same relation. Now the expanded
version of the right hand side of Equation 1 has the
form: . . . ∨ [pshort] ∨ [plong] ∨ The only situation
where such a constraint may have a different value
than . . . ∨ [pshort] ∨ . . . is when plong exists and pshort
does not. This is impossible by the construction of
pshort using Lemma 1. We can thus ignore [plong] and
all paths longer than 2|V| − |C ∪ J ∪ {x, y}| − 1. We
can set lmax = 2|V| − 4, since if C = ∅, then paths
have at most length |V| − 1.

Proof of Lemma 1 The following six rules always
give a shorter d-connecting path with respect to the
same relation. The deleted part is underlined on the
left. Circles indicate arrowhead or tail.

x◦ · · · ◦x◦ · · · ◦y ⇒ x◦ · · · ◦y (10)

x◦ · · · ◦y◦ · · · ◦y ⇒ x◦ · · · ◦y (11)

· · · >z< · · · >z< · · · ⇒ · · · >z< · · · (12)

· · · >z− · · · ◦z− · · · ⇒ · · · >z− · · · (13)

· · · −z◦ · · · −z< · · · ⇒ · · ·−z< · · · (14)

· · · −z◦ · · · ◦z− · · · ⇒ · · ·−z− · · · (15)

The rules imply that if a middle node z appears three
times on a d-connecting path, the path will necessarily
have at least one of the forms on the left in (12-15). (A
path can never be d-connecting if the same node ap-
pears both as a collider and a non-collider somewhere
on the path.) Thus a node can appear at most two
times in paths that cannot be shortened.

First, consider the case with no colliders on the path.
The only situation where a d-connecting path can-
not be shortened and a node appears twice, occurs
when the path has the form · · · >z− · · ·−z< · · · . This path
cannot be d-connecting without a collider between
the instances of z. Thus, without colliders a path
that cannot be shortened has at most |V| nodes and
thus length |V| − 1. Second, if the path cannot be
shortened, each node in C ∪ J ∪ {x, y} can appear
at most once due to (10-15). The remaining nodes
can appear at most twice. This makes a total of
2|V| − |C ∪ J ∪ {x, y}| nodes. Hence the length of
the path is at most 2|V| − |C ∪ J ∪ {x, y}| − 1. �

Acknowledgements

This research was supported by the Academy of Fin-
land under grants 218147 and 255625 (POH), 132812
and 251170 (MJ), by HIIT (AH) and by the James S.
McDonnell Foundation (FE).

References

Biere, A., Heule, M. J. H., van Maaren, H., and Walsh,
T., editors (2009). Handbook of Satisfiability. IOS
Press.

Borboudakis, G., Triantafilou, S., Lagani, V., and
Tsamardinos, I. (2011). A constraint-based ap-
proach to incorporate prior knowledge in causal
models. In Proc. ESANN, pages 321–326.

Borboudakis, G. and Tsamardinos, I. (2012). Incor-
porating causal prior knowledge as path-constraints
in bayesian networks and maximal ancestral graphs.
In Proc. ICML, pages 1799–1806.

Claassen, T. and Heskes, T. (2010). Causal discovery
discovery in multiple models from different experi-
ments. In Proc. NIPS, pages 415–423.

Eén, N. and Sörensson, N. (2003). Temporal induction
by incremental SAT solving. Electr. Notes Theor.
Comput. Sci., 89(4):543–560.

Eén, N. and Sörensson, N. (2004). An extensible SAT-
solver. In Proc. SAT 2003, pages 502–518.

Geiger, D., Verma, T., and Pearl, J. (1990). Identify-
ing independence in Bayesian networks. Networks,
20:507–533.

Hoyer, P. O., Shimizu, S., Kerminen, A. J., and Palvi-
ainen, M. (2008). Estimation of causal effects using
linear non-Gaussian causal models with hidden vari-
ables. International Journal of Approximate Rea-
soning, 49:362–378.

Hyttinen, A., Eberhardt, F., and Hoyer, P. O. (2012).
Causal discovery of linear cyclic models from mul-
tiple experimental data sets with overlapping vari-
ables. In Proc. UAI, pages 387–396.

Järvisalo, M., Le Berre, D., Roussel, O., and Simon, L.
(2012). The international SAT solver competitions.
AI Magazine, 33(1):89–92.

Koster, J. T. A. (2002). Marginalizing and condition-
ing in graphical models. Bernoulli, 8(6):817–840.

Lagani, V., Tsamardinos, I., and Triantafilou, S.
(2012). Learning from mixture of experimental data:
A constraint-based approach. In Proc. SETN, pages
124–131.

Marques-Silva, J. P. and Sakallah, K. A. (1999).
GRASP: A search algorithm for propositional sat-
isfiability. IEEE Trans. Computers, 48(5):506–521.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang,
L., and Malik, S. (2001). Chaff: Engineering an
efficient SAT solver. In Proc. DAC, pages 530–535.

Neal, R. (2000). On deducing conditional indepen-
dence from d-separation in causal graphs with feed-
back. Journal of Artificial Intelligence Research,
12:87–91.

Pearl, J. (2000). Causality: Models, Reasoning, and
Inference. Cambridge University Press.

Pearl, J. and Dechter, R. (1996). Identifying in-
dependencies in causal graphs with feedback. In
Proc. UAI, pages 420–426.

Peters, J., Janzing, D., and Schölkopf, B. (2010). Iden-
tifying cause and effect on discrete data using addi-
tive noise models. In Proc. AISTATS, pages 597–
604.

Richardson, T. and Spirtes, P. (1999). Automated dis-
covery of linear feedback models. In Glymour, C.
and Cooper, G. F., editors, Computation, Causation
& Discovery, pages 253–302. AAAI / MIT Press.

Richardson, T. S. (1996). Feedback Models: Interpre-
tation and Discovery. PhD thesis, Carnegie Mellon
University.

Schmidt, M. and Murphy, K. (2009). Modeling discrete
interventional data using directed cyclic graphical
models. In Proc. UAI, pages 487–495.

Spirtes, P. (1995). Directed cyclic graphical represen-
tation of feedback models. In Proc. UAI, pages 491–
498.

Spirtes, P., Glymour, C., and Scheines, R. (1993).
Causation, Prediction, and Search. Springer-Verlag.

Spirtes, P., Meek, C., and Richardson, T. (1999). An
algorithm for causal inference in the presence of la-
tent variables and selection bias. In Glymour, C. and
Cooper, G. F., editors, Computation, Causation &
Discovery, pages 211–252. AAAI / MIT Press.

Studený, M. (1998). Bayesian networks from the point
of view of chain graphs. In Proc. UAI, pages 496–
503.

Tillman, R. E., Danks, D., and Glymour, C. (2009).
Integrating locally learned causal structures with
overlapping variables. In Proc. NIPS 2008, pages
1665–1672.

Triantafillou, S., Tsamardinos, I., and Tollis, I. G.
(2010). Learning causal structure from overlapping
variable sets. In Proc. AISTATS, pages 860–867.

Tsamardinos, I., Triantafillou, S., and Lagani, V.
(2012). Towards integrative causal analysis of het-
erogeneous data sets and studies. Journal of Ma-
chine Learning Research, 13:1097–1157.

Tseitin, G. S. (1983). On the complexity of derivation
in propositional calculus. In Automation of Rea-
soning 2: Classical Papers on Computational Logic
1967–1970, pages 466–483. Springer.

