
Blocked Clause Elimination

Matti Järvisalo1, Armin Biere2, and Marijn Heule3

1 Department of Computer Science, University of Helsinki, Finland
2 Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria

3 Algorithmics Group, Delft University of Technology, The Netherlands

Abstract. Boolean satisfiability (SAT) and its extensions are becoming a core
technology for the analysis of systems. The SAT-based approach divides into
three steps: encoding, preprocessing, and search. It is often argued that by en-
coding arbitrary Boolean formulas in conjunctive normal form (CNF), structural
properties of the original problem are not reflected in the CNF. This should result
in the fact that CNF-level preprocessing and SAT solver techniques have an inher-
ent disadvantagecompared to related techniques applicable on the level of more
structural SAT instance representations such as Boolean circuits. In this work
we study the effect of a CNF-level simplification technique called blocked clause
elimination (BCE). We show that BCE is surprisingly effective both in theory and
in practice on CNFs resulting from a standard CNF encoding for circuits: without
explicit knowledge of the underlying circuit structure, it achieves the same level
of simplification as a combination of circuit-level simplifications and previously
suggested polarity-based CNF encodings. Experimentally, we show that by ap-
plying BCE in preprocessing, further formula reduction and faster solving can be
achieved, giving promise for applying BCE to speed up solvers.

1 Introduction
Boolean satisfiability (SAT) solvers and their extensions, especially satisfiability mod-
ulo theories (SMT) solvers, are becoming a core technology for the analysis of systems,
ranging from hardware to software. SAT solvers are in the heart of SMT solvers, and
in some cases such as the theory of bit-vectors, state-of-the-art SMT solvers are based
on bit-blasting and use pure SAT solvers for actual solving. This gives motivation for
developing even more efficient SAT techniques.

SAT-based approaches typically consist of three steps: encoding, preprocessing, and
search. These steps, however, are tightly intertwined. For example, efficient propagation
techniques applied in search (unit propagation as a simple example) are also applica-
ble in preprocessing for simplifying the input formula. Furthermore, preprocessing and
simplifications can be applied both on the conjunctive normal form (CNF) level—which
still is the most typical input form for state-of-the-art SAT solvers–and on higher-level,
more structural formula representations, such as Boolean circuits. Indeed, SAT encod-
ings often go though a circuit-level formula representation, which is then translated into
CNF. This highlights the importance of good CNF representations of Boolean circuits.

It is often argued that by encoding arbitrary Boolean formulas in CNF, structural
properties of the original problem are not reflected in the resulting CNF. This should
result in the fact that CNF-level preprocessing and SAT solver techniques have an in-
herent disadvantage compared to related techniques that can be applied on the level

of more structural SAT instance representations such as Boolean circuits. Motivated
by this, various simplification techniques and intricate CNF encoders for circuit-level
SAT instance descriptions have been proposed [1–5]. On the other hand, based on the
highly efficient CNF-level clause learning SAT solvers and CNF simplification tech-
niques such as [6–11], there is also strong support for the claim that CNF is sufficient
as an input format for SAT solvers.

In this work we study the effect of a CNF-level simplification technique called
blocked clause elimination (BCE), based on the concept of blocked clauses [12]. We
show that BCE is surprisingly effective both in theory and in practice on CNFs resulting
from the standard “Tseitin” CNF encoding [13] for circuits: without explicit knowledge
of the underlying circuit structure, BCE achieves the same level of simplification as
a combination of circuit-level simplifications, such as cone of influence, non-shared
input elimination, and monotone input reduction, and previously suggested polarity-
based CNF encodings, especially the Plaisted-Greenbaum encoding [14]. This implies
that, without losing simplification achieved by such specialized circuit-level techniques,
one can resort to applying BCE after the straightforward Tseitin CNF encoding, and
hence implementing these circuit-level techniques is somewhat redundant. Moreover,
since other related circuit level optimizations for sequential problems—in particular,
the bounded cone of influence reduction [15] and using functional instead of relational
representations of circuits [16]—can be mapped to cone of influence, these can also
be achieved by BCE purely on the CNF-level. Additionally, as regards CNF-level sim-
plification techniques, BCE achieves the simplification resulting from, e.g., pure lit-
eral elimination. In addition to the more theoretical analysis in this paper, we present
an experimental evaluation of the effectiveness of BCE combined with SatElite-style
variable eliminating CNF preprocessing [10], comparing our implementation with the
standard Tseitin and Plaisted-Greenbaum encodings and the more recent NiceDAG [4,
5] and Minicirc [3] CNF encoders.

The rest of this paper is organized as follows. After background on Boolean circuits
and CNF encodings of circuits (Sect. 2) and on resolution-based CNF preprocessing
(Sect. 3), we introduce blocked clause elimination (Sect. 4). Then the effectiveness of
BCE is analyzed w.r.t. known circuit-level simplification techniques and CNF encod-
ings (Sect. 5) and resolution-based preprocessing (Sect. 6). Finally, our implementation
of BCE is briefly described (Sect. 7) and experimental results are reported on the prac-
tical effectiveness of BCE (Sect. 8).

2 Boolean Circuits and CNF SAT

This section reviews the needed background related to Boolean circuits and CNF-level
satisfiability, and well-known CNF encodings of circuits.

Given a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by x̄, the negation of x. As usual, we identify ¯̄x with x.
A clause is a disjunction (∨, or) of distinct literals and a CNF formula is a conjunction
(∧, and) of clauses. When convenient, we view a clause as a finite set of literals and a
CNF formula as a finite set of clauses; e.g. the formula (a ∨ b̄) ∧ (c̄) can be written as{{a, b̄}, {c̄}}. A clause is a tautology if it contains both x and x̄ for some variable x.

2.1 Boolean Circuits

A Boolean circuit over a finite set G of gates is a set C of equations of form g :=
f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {t, f}n → {t, f} is a Boolean function,
with the additional requirements that (i) each g ∈ G appears at most once as the left
hand side in the equations in C, and (ii) the underlying directed graph

〈G,E(C) = {〈g′, g〉 ∈ G×G | g := f(. . . , g′, . . .) ∈ C}〉
is acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a parent of g′. If g :=
f(g1, . . . , gn) is in C, then g is an f -gate (or of type f), otherwise it is an input gate. A
gate with no parents is an output gate. The fanout (fanin, resp.) of a gate is the number
of parents (children, resp.) the gate has.

A (partial) assignment for C is a (partial) function τ : G → {t, f}. An assignment τ
is consistent with C if τ(g) = f(τ(g1), . . . , τ(gn)) for each g := f(g1, . . . , gn) in C.

A constrained Boolean circuit Cτ is a pair 〈C, τ〉, where C is a Boolean circuit and
τ is a partial assignment for C. With respect to a Cτ , each 〈g, v〉 ∈ τ is a constraint, and
g is constrained to v if 〈g, v〉 ∈ τ .

An assignment τ ′ satisfies Cτ if (i) it is consistent with C, and (ii) it respects the
constraints in τ , meaning that for each gate g ∈ G, if τ(g) is defined, then τ ′(g) = τ(g).
If some assignment satisfies Cτ , then Cτ is satisfiable and otherwise unsatisfiable.

The following Boolean functions are some which often occur as gate types.

– NOT(v) is t if and only if v is f.
– OR(v1, . . . , vn) is t if and only if at least one of v1, . . . , vn is t.
– AND(v1, . . . , vn) is t if and only if all v1, . . . , vn are t.
– XOR(v1, . . . , vn) is t if and only if an odd number of vi’s are t.
– ITE(v1, v2, v3) is t if and only if (i) v1 and v2 are t, or (ii) v1 is f and v3 is t.

As typical, we inline gate definitions of type g := NOT(g′). In other words, each occur-
rence of g as ĝ := f(. . . , g, . . .) is expected to be rewritten as ĝ := f(. . . , NOT(g′), . . .).

2.2 Well-Known CNF Encodings

The standard satisfiability-preserving “Tseitin” encoding [13] of a constrained Boolean
circuit Cτ into a CNF formula TST(Cτ) works by introducing a Boolean variable for
each gate in Cτ , and representing for each gate g := f(g1, . . . gn) in Cτ the equivalence
g ⇔ f(g1, . . . gn) with clauses. Additionally, the constraints in τ are represented as
unit clauses: if τ(g) = t (τ(g) = f, resp.), introduce the clause (g) ((ḡ), resp.). A
well-known fact is that unit propagation4 on TST(Cτ) behaves equivalently to standard
Boolean constraint propagation on the original circuit Cτ (see, e.g., [17] for details).

A well-known variant of the Tseitin encoding is the Plaisted-Greenbaum encod-
ing [14] which is based on gate polarities. Given a constrained Boolean circuit Cτ , a
polarity function polτC : G → 2{t,f} assigns polarities to each gate in the circuit. Here t
and f stand for the positive and negative polarities, respectively. Any polarity function
must satisfy the following requirements.

4 Given a CNF formula F , while there is a unit clause {l} in F , unit propagation removes from
F (i) all clauses in F in which l occurs, and (ii) the literal l̄ from each clause in F .

– If 〈g, v〉 ∈ τ , then v ∈ polτC(g).
– If g := f(g1, . . . , gn), then:

• If f = NOT, then v ∈ polτC(g) implies v̄ ∈ polτC(g1).
• If f ∈ {AND, OR}, then v ∈ polτC(g) implies v ∈ polτC(gi) for each i.
• If f = XOR, then polτC(g) 6= ∅ implies polτC(gi) = {t, f}.
• If f = ITE, then v ∈ polτC(g) implies

polτC(g1) = {t, f} and v ∈ polτC(gi) for i = 2, 3.

The Plaisted-Greenbaum encoding [14] uses the polarity function minpolτC that as-
signs for each gate the subset-minimal polarities from 2{t,f} respecting the requirements
above. In other words, for each gate g,

minpolτC(g) := {v | τ(g) = v or v ∈ minpolτC(g
′) for some parent g′ of g}.

The Tseitin encoding, on the other hand, can be seen as using the subset-maximal polar-
ity assigning polarity function maxpolτC(g) := {t, f} for each gate g. For the gate types
considered in this paper, the clauses introduced based on gates polarities are listed in
Table 1.

Table 1. CNF encoding for constrained Boolean circuits based on gate polarities. In the table, gi

is ḡ′i if gi := NOT(g′i), and gi otherwise.

gate g t ∈ polτC(g) f ∈ polτC(g)

g := OR(g1, . . . , gn) (ḡ ∨ g1 ∨ · · · ∨ gn) (g ∨ ḡ1),. . . ,(g ∨ ḡn)
g := AND(g1, . . . , gn) (ḡ ∨ g1),. . . ,(ḡ ∨ gn) (g ∨ ḡ1 ∨ · · · ∨ ḡn)
g := XOR(g1, g2) (ḡ ∨ ḡ1 ∨ ḡ2), (ḡ ∨ g1 ∨ g2) (g ∨ ḡ1 ∨ g2), (g ∨ g1 ∨ ḡ2)
g := ITE(g1, g2, g3) (ḡ ∨ ḡ1 ∨ g2), (ḡ ∨ g1 ∨ g3) (g ∨ ḡ1 ∨ ḡ2), (g ∨ g1 ∨ ḡ3)
〈g, t〉 ∈ τ (g)
〈g, f〉 ∈ τ (ḡ)

Given a constrained Boolean circuit Cτ , we denote the CNF resulting from the
Plaisted-Greenbaum encoding of Cτ by PG(Cτ).

Relevant concepts additional concepts related to polarities are

– monotone gates: gate g is monotone if |minpolτC(g)| = 1; and
– redundant gates: gate g is redundant if minpolτC(g) = ∅.

3 Resolution and CNF-Level Simplification

The resolution rule states that, given two clauses C1 = {x, a1, . . . , an} and C2 =
{x̄, b2, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called the resolvent
of C1 and C2, can be inferred by resolving on the variable x. We write C = C1 ⊗ C2.
This notion can be lifted to sets of clauses: For two sets Sx and Sx̄ of clauses which all
contain x and x̄, respectively, we define

Sx ⊗ Sx̄ = {C1 ⊗ C2 | C1 ∈ Sx, C2 ∈ Sx̄, and C1 ⊗ C2 is not a tautology}.

Following the Davis-Putnam procedure [18] (DP), a basic simplification technique,
referred to as variable elimination by clause distribution in [10], can be defined. The
elimination of a variable x in the whole CNF can be computed by pair-wise resolving
each clause in Sx with every clause in Sx̄. Replacing the original clauses in Sx∪Sx̄ with
the set of non-tautological resolvents S = Sx⊗Sx̄ gives the CNF (F \ (Sx ∪Sx̄))∪S
which is satisfiability-equivalent to F .

Notice that DP is a complete proof procedure for CNFs, with exponential worst-case
space complexity. Hence for practical applications of variable elimination by clause
distribution as a simplification technique for CNFs, variable elimination needs to be
bounded. Closely following the heuristics applied in the SatElite preprocessor [10] for
applying variable elimination, in this paper we study as a simplification technique the
bounded variant of variable elimination by clause distribution, VE, under which a vari-
able x can be eliminated only if |S| ≤ |Sx ∪ Sx̄|, i.e., when the resulting CNF formula
(F \ (Sx ∪ Sx̄)) ∪ S will not contain more clauses as the original formula F .5

It should be noted that the result of VE can vary significantly depending on the order
in which variables are eliminated. In more detail, VE doesn’t have a unique fixpoint
for all CNF formulas, and the fixpoint reached in practice is dependent on variable
elimination ordering heuristics. Hence VE is not confluent.

Proposition 1. VE is not confluent.

4 Blocked Clause Elimination

The main simplification technique studied in this paper is what we call blocked clause
elimination (BCE), which removes so called blocked clauses [12] from CNF formulas.

Definition 1 (Blocking literal). A literal l in a clause C of a CNF F blocks C (w.r.t.
F) if for every clause C ′ ∈ F with l̄ ∈ C ′, the resolvent (C \ {l})∪ (C ′ \ {l̄}) obtained
from resolving C and C ′ on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition 2 (Blocked clause). A clause is blocked if it has a literal that blocks it.

Example 1. Consider the formula Fblocked = (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c). Only
the first clause of Fblocked is not blocked. Both of the literals a and c̄ block the second
clause. The literal c blocks the last clause. Notice that after removing either (a ∨ b̄ ∨ c̄)
or (ā∨c), the clause (a∨b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a trivially satisfiable formula. ¤

As a side-remark, notice that a literal l cannot block any clause in a CNF formula F
if F contains the unit clause {l̄}, and hence in this case no clause containing l can be
blocked w.r.t. F .

An important fact is that BCE preserves satisfiability.

5 More precisely, the SatElite preprocessor [10] applies a variant of VE called variable elimi-
nation by substitution. The analysis on VE in this paper applies to this variant as well.

Proposition 2 ([12]). Removal of an arbitrary blocked clause preserves satisfiability.

Additionally, we have the following.

Proposition 3. Given a CNF formula F , let clause C ∈ F be blocked w.r.t. F . Any
clause C ′ ∈ F , where C ′ 6= C, that is blocked w.r.t. F is also blocked w.r.t. F \ {C}.

Therefore the result of blocked clause elimination is independent of the order in which
blocked clauses are removed, and hence blocked clause elimination has a unique fix-
point for any CNF formula, i.e., BCE is confluent.

Proposition 4. BCE is confluent.

It should be noted that, from a proof complexity theoretic point of view, there are
CNF formulas which can be made easier to prove unsatisfiable with resolution (and
hence also with clause learning SAT solvers) by adding blocked clauses [12]. In more
detail, there are CNF formulas for which minimal resolution proofs are guaranteed to
be of exponential length originally, but by adding instance-specific blocked clauses to
the formulas, the resulting formulas yield short resolution proofs. The effect of adding
(instance-specific) blocked clauses has also been studied in different contexts [19–21].
However, in a more general practical sense, we will show that removal of blocked
clauses by BCE yields simplified CNF formulas which are both smaller in size and
easier to solve.

As a final remark before proceeding to the main contributions of this paper, we
note that this is not the first time removing blocked clauses is proposed for simplifying
CNFs [6]. However, in contrast to this paper, the work of [6] does not make the connec-
tion between blocked clauses and circuit-level simplifications and CNF encodings and,
most importantly, [6] concentrates on extracting underlying circuit gate definitions for
applying this knowledge in CNF simplification; blocked clause removal in [6] is actu-
ally not applied in the case any underlying gate definitions can be extracted, but rather
as an auxiliary simplification over those clauses which cannot be associated with gate
definitions.

5 Effectiveness of Blocked Clause Elimination
The main results of this section show the surprising effectiveness of blocked clause
elimination when applied until fixpoint. We will apply the following definition of the
relative effectiveness of CNF encodings and both circuit and CNF-level simplification
techniques.

Definition 3. Assume two methods T1 and T2 that take as input an arbitrary con-
strained Boolean circuit Cτ and output CNF formulas T1(Cτ) and T2(Cτ), respectively,
that are satisfiability-equivalent to Cτ . We say that T1 is at least as effective as T2 if, for
any Cτ , T1(Cτ) contains at most as many clauses and variables as T2(Cτ) does. If T1

is at least as effective as T2 and vice versa, then T1 and T2 are equally effective.

Notice that, considering BCE, a stricter variant of this definition, based on clause elim-
ination, could be applied: T1 is at least as effective as T2 , if for every circuit Cτ we have

T1(Cτ) ⊆ T2(Cτ). However, for VE this stricter definition cannot be naturally applied,
since in general VE produces non-tautological resolvents which are not subsumed by
the original clauses. Because of this inherent property of VE, we will for simplicity in
the following use the “weaker” version, as in Definition 3. All the results presented not
concerning VE also hold under the stricter version of the definition. Also notice that the
“at least as effective” relation is analogously defined for two CNF-level simplification
methods which, instead of Boolean circuits, take CNF formulas as input.

When considering the effectiveness of VE in this paper, we apply a non-deterministic
interpretation which allows for any variable elimination order, i.e., we say that VE can
achieve the effectiveness of another simplification technique, if there is some elimi-
nation order for which VE achieves the same effectiveness. Finally, note that in the
following we always assume that Boolean circuits (CNF formulas, resp.) are closed
under standard circuit-level Boolean constraint propagation (unit propagation, resp.).

An overview of the main results of this section is presented in Fig. 1. An edge from
X to Y implies that X is as least as effective as Y ; for further details, see the caption.
Notice that transitive edges are omitted: for example, BCE is at least as effective as the
combination of PG, COI, NSI, and MIR.

Plaisted−Greenbaum encoding Tseitin encoding

C
N

F
−

le
ve

l s
im

pl
ifi

ca
tio

n
C

irc
ui

t−
le

ve
l s

im
pl

ifi
ca

tio
n

PGMIR PGNSI

VEPG BCE VE

[BCE + VE]PG BCE + VE

PLPG

BCEPG

PL

PGCOI COI MIR NSI

PG

Fig. 1. Relative effectiveness of combinations of CNF encodings with both circuit and CNF-level
simplification techniques. An edge from X to Y implies that X is as least as effective as Y . No-
tice that transitive edges are omitted. On the left side, XPG means the combination of first apply-
ing the Plaisted-Greenbaum and then the CNF-level simplification technique X on the resulting
CNF. Analogously, PGX means the combination of first applying the circuit-level simplification
X and then the Plaisted-Greenbaum encoding. On the right side the standard Tseitin encoding is
always applied. The pointed circles around COI, MIR, and NSI on the left and right represent
applying the combination of these three simplifications and then the Plaisted-Greenbaum (left) or
Tseitin encoding (right). Additionally, BCE+VE refers to all possible ways of alternating BCE
and VE until fixpoint.

5.1 Pure Literal Elimination by BCE

Before turning to the main results, relating BCE with circuit-level simplification tech-
niques, we begin by first arguing that both BCE and VE actually achieve the same
simplifications as the well-known pure literal elimination. Given a CNF formula F , a
literal l occurring in F is pure if l̄ does not occur in F .

Pure Literal Elimination (PL): While there is a pure literal l in F , remove all clauses
containing l from F .

Notice that the following two lemmas apply for all CNF formulas, and is not re-
stricted to CNFs produced by the TST or PG encodings.

Lemma 1. BCE is at least as effective as PL.

Proof sketch. A pure literal blocks all clauses which contain it by definition, and hence
clauses containing a pure literal are blocked. ¤

Lemma 2. VE is at least as effective as PL.

Proof sketch. Let l be a pure literal. By definition, Sl̄ (the set of clauses containing l̄) is
empty. Hence Sl ⊗ Sl̄ = ∅, and therefore VE removes the clauses in Sl. ¤

5.2 Effectiveness of BCE on Circuit-Based CNFs

In this section we will consider several circuit-level simplification techniques—non-
shared input elimination, monotone input elimination, and cone of influence reduc-
tion [17]—and additionally the Plaisted-Greenbaum CNF encoding.

For the following, we consider an arbitrary constrained Boolean circuit Cτ .

Non-shared input elimination (NSI): While there is a (non-constant) gate g with the
definition g := f(g1, . . . , gn) such that each gi is an input gate with fanout one
(non-shared) in Cτ , remove the gate definition g := f(g1, . . . , gn) from Cτ .

Monotone input reduction (MIR): While there is a monotone input gate g in Cτ , as-
sign g to minpolτC(g).

Cone of influence reduction (COI): While there is a redundant gate g in Cτ , remove
the gate definition g := f(g1, . . . , gn) from Cτ .

First, we observe that the Plaisted-Greenbaum encoding actually achieves the effec-
tiveness of COI.

Lemma 3. PG(Cτ) is at least as effective as PG(COI(Cτ)).

Proof sketch. For any redundant gate g, minpolτC(g) = ∅ by definition. Hence the
Plaisted-Greenbaum encoding does not introduce any clauses for such a gate. ¤

On the other hand, blocked clause elimination can achieve the Plaisted-Greenbaum
encoding starting with the result of the Tseitin encoding.

Lemma 4. BCE(TST(Cτ)) is at least as effective as PG(Cτ).

Proof sketch. We claim that BCE removes all clauses in TST(Cτ) \ PG(Cτ) from
TST(Cτ). There are two cases to consider: redundant and monotone gates. For both
cases, BCE works implicitly in a top-down manner, starting from the output gates (al-
though BCE has no explicit knowledge of the circuit Cτ underlying TST(Cτ).

Consider an arbitrary redundant output gate definition g := f(g1, . . . , gn). Since g
is not constrained under τ , all clauses in TST(Cτ) in which g occurs are related to this
definition. Now it is easy to see that the literals associated with g (recall Table 1) block
each of these clauses, and hence the clauses are blocked. On the circuit level, this is
equivalent to removing the definition g := f(g1, . . . , gn).

Now consider an arbitrary monotone output gate definition g := f(g1, . . . , gn) with
minpolτC(g) = {v}, where v ∈ {t, f}. Then g must be constrained: τ(g) = v. Hence unit
propagation on g removes all clauses produced by TST for the case “if v̄ ∈ polτC(g)”
in Table 1 and removes the occurrences of g from the clauses produced for the case “if
v ∈ polτC(g)”. To see how BCE removes in a top-down manner those clauses related
to monotone gate definitions which are not produced by PG, consider the gate defi-
nition gi := f ′(g′1, . . . , g

′
n′). Assume that unit propagation on g has no effect on the

clauses produced by TST for this definition, that minpolτC(gi) = {v}, and that BCE
has removed all clauses related to the parents of gi in TST(Cτ)\PG(Cτ). Now one can
check that the literals associated with gi block each of the clauses produced by TST
for the case “if v̄ ∈ polτC(gi)”. This is because all the clauses produced by TST for
the definitions of gi’s parents and in which gi occurs have been already removed by
BCE (or by unit propagation). Hence all the clauses produced by TST for the case “if
v̄ ∈ polτC(gi)” in Table 1 are blocked. ¤

Combining Lemmas 3 and 4, we have

Lemma 5. BCE(TST(Cτ)) is at least as effective as PG(COI(Cτ)).

Next, we consider non-shared input elimination.

Lemma 6. BCE(TST(Cτ)) is at least as effective as PG(NSI(Cτ)).

Proof sketch. Assume a gate definition g := f(g1, . . . , gn) such that each gi is a non-
shared input gate. It is easy to check from Table 1 that for each gi, each clause produced
by TST for g := f(g1, . . . , gn) is blocked by gi. The result now follows from Lemma 4
and Proposition 3 (notice that PG(Cτ) is always a subset of TST(Cτ)). ¤

On the other hand, PL cannot achieve the effectiveness of NSI when applying PG:
since PG produces the same set of clauses as TST for any gate g with minpolτC(g) =
{t, f}, no literal occurring in these clauses can be pure.

We now turn to the monotone input reduction. Notice that MIR is a proper gen-
eralization of PL: given a CNF formula F , any pure literal in F is monotone in the
straight-forward circuit representation of F where each clause C ∈ F is represented
as an output OR-gate the children of which are the literals in C. On the other hand, a
monotone input gate in a circuit Cτ is not necessarily a pure literal in TST(Cτ): TST
introduces clauses which together contain both positive and negative occurrences of all
gates, including monotone ones. However, it actually turns out that, when applying the
Plaisted-Greenbaum encoding, PL and MIR are equally effective.

Lemma 7. PL(PG(Cτ)) and PG(MIR(Cτ)) are equally effective.

Proof sketch. Assume a gate definition g := f(g1, . . . , gn), where some gi is a mono-
tone input gate. To see that PL(PG(Cτ)) is at least as effective as PG(MIR(Cτ)), first
notice that since gi is monotone, g is monotone. Now, it is easy to check (recall Table 1)
that gi occurs only either negatively or positively in the clauses introduced by PG for
g := f(g1, . . . , gn), and hence gi is pure.

To see that PG(MIR(Cτ)) is at least as effective as PL(PG(Cτ)), notice that in
order to be a pure literal in PG(Cτ), a gate has to be both monotone and an input. ¤

Using this lemma, we arrive at the fact that BCE on TST can achieve the combined
effectiveness of MIR and PG.

Lemma 8. BCE(TST(Cτ)) is at least as effective as PG(MIR(Cτ)).

Proof sketch. Since BCE can remove all clauses in TST(Cτ) \ PG(Cτ) by Lemma 4,
after this BCE can remove all clauses containing some monotone input gate gi since
BCE is at least as effective as PL (Lemma 1). The result then follows by Lemma 7. ¤

Combining Lemmas 4, 5, 6, and 8, we finally arrive at

Theorem 1. BCE(TST(Cτ)) is at least as effective as first applying the combination
of COI, MIR, and NSI on Cτ until fixpoint, and then applying PG on the resulting
circuit.

As an interesting side-remark, we have

Proposition 5. The combination of NSI, MIR, and COI is confluent.

Moreover, BCE is more effective than applying the combination of COI, MIR, and
NSI on Cτ until fixpoint, and then applying PG on the resulting circuit. To see this,
consider for example a gate definition g := OR(g1, . . . , gn), where g has minpolτC(g) =
{t, f} and only a single gi is an input gate with fanout one (non-shared), i.e. it occurs
only in the definition of g. In this case the clauses in TST(Cτ) in which gi occurs are
blocked.

6 Benefits of Combining BCE and VE

We will now consider aspects of applying BCE in combination with VE. As imple-
mented in the SatElite CNF preprocessor, VE has proven to be an extremely effective
preprocessing technique in practice [10].

First, we show that VE, using an optimal elimination ordering, can also achieve the
effectiveness of many of the considered circuit-level simplifications.

Theorem 2. The following claims hold.

1. VE(TST(Cτ)) is at least as effective as (i) TST(COI(Cτ)); (ii) TST(NSI(Cτ)).
2. VE(PG(Cτ)) is at least as effective as VE(TST(Cτ)).
3. VE(PG(Cτ)) is at least as effective as

(i) PG(COI(Cτ)); (ii) PG(NSI(Cτ)); and (iii) PG(MIR(Cτ)).

Proof sketch.

1. (i) Assume a redundant output gate definition g := f(g1, . . . , gn). Now Sg⊗Sḡ = ∅
since all resolvents are tautologies when resolving on g (recall Table 1).
(ii) Assume a gate definition g := f(g1, . . . , gn) such that each gi is an non-shared
input gate. For OR (similarly for AND), Sg1⊗Sḡ1 = ∅. After resolving on g1 we are
left with the clauses ∪k

i=2{g ∨ ḡi}, where each ḡi is then a pure literal. For XOR,
simply notice that Sg1 ⊗ Sḡ1 = ∅. For ITE, notice that Sg1 ⊗ Sḡ1 = {ḡ ∨ g2 ∨ g3},
and then g2 and g3 are both pure literals.

2. Follows from PG(Cτ) ⊆ TST(Cτ)
3. (i) Follows directly from Lemma 3.

(ii) By a similar argument as in Item 1 (ii).
(iii) Follows directly from Lemmas 2 and 7. ¤
However, there are cases in which VE is not as effective as BCE. Namely, VE

cannot achieve the effectiveness of MIR when applying TST, in contrast to BCE. To
see this, notice that an input gate can have arbitrarily large finite fanout and still be
monotone. On the other hand, VE cannot be applied on gates which have arbitrarily
large fanout and fanin, since the elimination bound of VE can then be exceeded (number
of clauses produced would be greater than the number of clauses removed). In general, a
main point to notice is that for VE, in order to achieve the effectiveness of BCE (on the
standard Tseitin encoding), one has to apply the Plaisted-Greenbaum encoding before
applying VE. In addition, since VE is not confluent in contrast to BCE, in practice
the variable elimination ordering heuristics for VE has to be good enough so that it
forces the “right” elimination order. In addition, there are cases in which BCE is more
effective than VEPG. For some intuition on this, consider a clause C with blocking
literal l. Notice that the result of performing VE on l is not dependent on whether C is
removed. However, for any non-blocking literal l′ ∈ C the number of non-tautological
clauses after applying VE on l′ would be smaller if BCE would first remove C.

On the other hand, there are also cases in which the combination of BCE and VE
can be more effective than applying BCE only. For instance, by applying VE on a
CNF, new blocked clauses may arise. For more concreteness, consider a circuit with
an XOR-gate g := XOR(g1, g2) where g1 and g2 are input gates with fanout one (non-
shared). Assume that g := XOR(g1, g2) is rewritten as an AND-OR circuit structure
g := AND(a, b), a := OR(g1, g2), b := OR(NOT(g1), NOT(g2)), where a and b are
newly introduced gates with fanout one. Notice that g1 and g2 now have fanout two.
In the Tseitin encoding of this structure, BCE cannot see the non-sharedness of g1

and g2 in the underlying XOR. However, by first eliminating the OR-gates a and b with
VE, BCE can then remove the clauses containing the variables g1 and g2 (the gates
become implicitly “non-shared” again). In other words, there are cases in which variable
elimination results in additional clauses to be blocked.

7 Implementation

In short, BCE can be implemented in a similar way as VE in the SatElite preproces-
sor [10]: first “touch” all literals. Then, as long as there is a touched literal l: find clauses

that are blocked by l, mark l as not touched any more, remove these blocked clauses,
and touch the negation of all literals in these clauses. The priority list of touched literals
can be ordered by the number of occurrences. Literals with few occurrences of their
negations are to be tried first. This algorithm is implemented in PrecoSAT version 465
(http://fmv.jku.at/precosat) and can be used to run BCE until completion.

In principle, the result is unique. However, as in our implementation of VE [10] in
PrecoSAT, we have a heuristic cut-off limit in terms of the number of occurrences of
a literal. If the number of occurrences of a literal is too large, then we omit trying to
find blocked clauses for its negation. This may prevent the actual implementation from
removing some blocked clauses. In general, however, as also witnessed by the results of
using BCE on the CNFs generated with the Tseitin and Plaisted-Greenbaum encodings,
this cut-off heuristic does not have any measurable effect.

8 Experiments

We evaluated how much reduction can be achieved using BCE in combination with
VE and various circuit encoding techniques. Reduction is measured in the size of the
CNF before and after preprocessing, and on the other hand, as gain in the number of
instances solved.

We used all formulas of SMT-Lib (http://smtlib.org) over the theory of bit-vectors
(QF BV) made available on July 2, 2009, as a practice benchmark set for the SMT
competition 2009. From these we removed the large number of mostly trivial SAGE
examples. The remaining 3672 SMT problems were bit-blasted to And-Inverter Graphs
(AIGs) in the AIGER format (http://fmv.jku.at/aiger) using our SMT solver Boolec-
tor [22]. Furthermore, we used the AIG instances used in [5], consisting of two types
of instances: (i) AIGs representing BMC problems (with step bound k = 45) obtained
from all the 645 sequential HWMCC’08 (http://fmv.jku.at/hwmcc08) model checking
problems, and (ii) 62 AIGs from the structural SAT track of the SAT competition. We
have made the SMT-Lib instances publicly available at http://fmv.jku.at/aiger/smtqfbv-
aigs.7z (260MB); the others cannot be distributed due to license restrictions. However,
the HWMCC’08 instances can easily be regenerated using publicly available tools 6 and
the model checking benchmarks available at http://fmv.jku.at/hwmcc08. We encoded
these 4379 structural SAT instances with four algorithms: the standard Tseitin encod-
ing [13], the Plaisted-Greenbaum polarity-based encoding [14], the Minicirc encoder
based on technology mapping [3] and VE, and the most recent NiceDAG encoder [4,
5]. The NiceDAG implementation was obtained from the authors. For Minicirc, we used
an improved implementation of Niklas Eén.

In order to additionally experiment with application benchmarks already in CNF,
we also included 292 CNFs of the application track of the SAT competition 2009 to our
benchmark set. All resulting CNFs were preprocessed with VE alone (further abbrevi-
ated e), and separately first with BCE (b), followed by VE (e), and both repeated again,
which altogether gives 6 versions of each CNF (no BCE or VE, e, b, be, beb, bebe).

6 Notice that COI is performed already in the generation process by these tools. However, we
did not implement the non-trivial NSI or MIR for the experiments.

We call such an application of one preprocessing algorithm, either BCE or VE, which
is run to completion, a preprocessing phase.

The results are presented in Table 2. The first column lists the benchmark fam-
ily: S = SAT’09 competition, A = structural SAT track, H = HWMCC’08, B = bit-
blasted bit-vector problems from SMT-Lib. These are all AIGs except for the CNF
instances in S. The next column gives the encoding algorithm used: T = Tseitin, P =
Plaisted-Greenbaum, M = Minicirc, N = NiceDAG, and U = unknown for the S family
already in CNF. The t columns give the sum of the time in seconds spent in one encod-
ing/preprocessing phase. The columns V and C list in millions the sum of numbers of
variables and clauses over all produced CNFs in each phase.

The results show that the combination “be” of BCE and VE always gives better
results than VE (e) alone, with comparable speed. Using a second phase (beb) of BCE
gives further improvements, even more if VE is also applied a second time (bebe).
The CNF sizes after applying BCE (b) for the P encoder and the T encoder are equal,
as expected. Further preprocessing, however, diverges: since clauses and literals are
permuted, VE is not confluent, and thus VE phases can produce different results.

We applied a time limit of 900 seconds and a memory limit of 4096 MB for each
encoder and each preprocessing phase. Thus 139 out of 106848 = 6 · (4 · 4379 + 292)
CNFs were not generated: HM encoding ran out of memory on 5 very large BMC
instances, one large CNF in S could not be preprocessed at all, and there was a problem
with the parser in NiceDAG, which could not parse 14 actually rather small AIGs in
BN. Furthermore, there were 10 timeouts for various preprocessing phases in the A
family: 2 in AT/beb, 2 in AN/be, 2 in AN/e, 2 in AP/be, and 2 in AP/e. However, except
for the one large CNF, where also VE run out of memory, there is not a single case
where BCE did not run until completion within the given time and memory limits.

Reducing the size of a CNF by preprocessing does not necessarily lead to faster run-
ning times. Since it was impossible to run all structural instances with an appropriate
time limit, we only performed preliminary experiments with a very small time limit of
90 seconds. We used PrecoSAT v236, the winner of the application track of the SAT
competition 2009, and PicoSAT v918, a fast clause learning solver which does not use
sophisticated preprocessing algorithms, in contrast to PrecoSAT. In both cases the re-
sults were inconclusive. Running preprocessing until completion takes a considerable
portion of the 90 seconds time limit, even if restricted to VE. In addition, the success of
PrecoSAT shows that not running preprocessing until completion is a much better strat-
egy, particularly if the preprocessor is run repeatedly again, with enough time spent on
search in-between. However, this strategy is hard to evaluate when many preprocessing
techniques are combined.7 Therefore we decided to stick with the run-to-completion
approach, which also gives some clear indication of how much CNF size reduction can
be achieved through BCE.

For the 292 SAT competition instances we were able to run PrecoSAT with a more
reasonable timeout of 900 seconds. The cluster machines used for the experiments, with
Intel Core 2 Duo Quad Q9550 2.8 GHz processor, 8 GB main memory, running Ubuntu
Linux version 9.04, are around two times as fast as the ones used in the first phase of the

7 In PrecoSAT v465, we have failed literal preprocessing, various forms of equivalence reason-
sing, explicit pure literal pruning, BCE, VE, combined with on-the-fly subsumption.

Table 2. Effectiveness of BCE in combination with VE using various encoders.

encoding b be beb bebe e
t V C t V C t V C t V C t V C t V C

S U 0 46 256 2303 29 178 1042 11 145 1188 11 145 569 11 144 2064 11 153
A T 12 9 27 116 7 18 1735 1 8 1835 1 6 34 1 6 244 1 9
A P 10 9 20 94 7 18 1900 1 6 36 1 6 34 1 6 1912 1 6
AM 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8
A N 9 3 10 50 3 10 1855 1 6 36 1 6 34 1 6 1859 1 6
H T 147 121 347 1648 117 277 2641 18 118 567 18 118 594 18 116 3240 23 140
H P 130 121 286 1398 117 277 2630 18 118 567 18 118 595 18 116 2835 19 119
HM 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90
H N 134 34 124 573 34 122 1185 17 102 504 17 101 525 17 100 1246 17 103
B T 577 442 1253 5799 420 1119 7023 57 321 1410 56 310 1505 52 294 8076 64 363
B P 542 442 1153 5461 420 1119 7041 57 321 1413 56 310 1506 52 294 7642 57 322
BM 10024 59 311 1252 58 303 1351 53 287 1135 53 286 1211 52 280 1435 55 303
B N 13148 196 643 2902 193 635 4845 108 508 2444 107 504 2250 105 500 5076 114 518

2009 SAT competition. In the first phase of the competition, with a similar time limit,
PrecoSAT solved many more instances than competitors. Nevertheless, using BCE we
can improve the number of solved instances considerable: PrecoSAT solves 176 original
instances, 177 preprocessed by BCE and VE alone (b and e), 179 be instances, 180 beb
instances, and 183 bebe instances. If we accumulate the time for all the preprocessing
phases and add it to the actual running time, then 181 instances can be solved in the last
case. For the other cases the number of solved instances does not change.

It would be interesting to compare our results to pure circuit-level solvers. To our
understanding, however, such solvers have not proven to be more efficient than running
CNF solvers in combination with specialized circuit to CNF encodings.

9 Conclusions
We study a CNF-level simplification technique we call BCE (blocked clause elimina-
tion). We show that BCE, although a simple concept, is surprisingly effective: without
any explicit knowledge of the underlying circuit structure, BCE achieves the same sim-
plifications as combinations of circuit-level simplifications and the well-known polarity-
based Plaisted-Greenbaum CNF encoding. This implies that the effect of such special-
ized circuit-level techniques can actually be accomplished directly on the CNF-level.
To our best knowledge, these connections have not been known before. Furthermore,
in contrast to specialized circuit-level techniques, BCE can be naturally applied on any
CNF formula, regardless of its origin. Experimental results with an implementation of
a CNF-level preprocessor combining BCE and SatElite-style variable elimination are
presented, showing the effectiveness and possible benefits of applying BCE.

Acknowledgements. The authors thank Niklas Eén and Pete Manolios for providing
up-to-date versions of the Minicirc and NiceDAG encoders used in the experiments.
The first author is financially supported by Academy of Finland under the project “Ex-
tending the Reach of Boolean Constraint Reasoning” (#132812). The third author is
supported by the Dutch Organization for Scientific Research under grant 617.023.611.

References

1. Jackson, P., Sheridan, D.: Clause form conversions for Boolean circuits. In: SAT’04 Selected
Revised Papers. Volume 3542 of LNCS., Springer (2005) 183–198

2. Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis. In: DAC’06, ACM (2006) 532–535

3. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT. In:
SAT’07. Volume 4501 of LNCS., Springer (2007) 272–286

4. Manolios, P., Vroon, D.: Efficient circuit to CNF conversion. In: SAT’07. Volume 4501 of
LNCS., Springer (2007) 4–9

5. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF generation. In:
DATE’09, IEEE (2009) 1590–1595

6. Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural
knowledge from CNF formulas. In: CP’02. Volume 2470 of LNCS., Springer (2002) 185–
199

7. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 34(1) (2004) 52–59

8. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: AAAI’02,
AAAI Press (2002) 613–619

9. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: SAT’04. Volume 3542 of LNCS., Springer (2005) 276–291

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: SAT’05. Volume 3569 of LNCS., Springer (2005) 61–75

11. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF for-
mulas. In: SAT’05. Volume 3569 of LNCS., Springer (2005) 423–429

12. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics
96–97 (1999) 149–176

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In Siekmann, J.,
Wrightson, G., eds.: Automation of Reasoning 2: Classical Papers on Computational Logic
1967–1970. Springer (1983) 466–483

14. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation 2(3) (1986) 293–304

15. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a power PC
microprocessor using symbolic model checking without BDDs. In: CAV’99. Volume 1633
of LNCS., Springer (1999) 60–71

16. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoret-
ical Computer Science 174(3) (2007) 45–56

17. Drechsler, R., Junttila, T., Niemelä, I.: Non-clausal SAT and ATPG. In Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press (2009) 655–694

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7(3) (1960) 201–215

19. Purdom, P.W.: Solving satisfiability with less searching. IEEE Transactions on Pattern
Analysis and Machine Intelligence 6(4) (1984) 510–513

20. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and
filtering in structured satisfiable problems. In: IJCAI’01, Morgan Kaufmann (2001) 351–358

21. Heule, M.J.H., Verwer, S.: Using a satisfiability solver to identify deterministic finite state
automata. In: BNAIC’09. (2009) 91–98

22. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In:
TACAS’09. Volume 5505 of LNCS., Springer (2009) 174–177

