Inprocessing Rules

Matti Jarvisald, Marijn Heulé3, and Armin Bieré

! Department of Computer Science & HIIT, University of HelgjrFinland
2 Department of Software Technology, Delft University of fiaology, The Netherlands
3 Institute for Formal Models and Verification, Johannes i€eflniversity, Linz, Austria

Abstract. Decision procedures for Boolean satisfiability (SAT), esaky mod-
ern conflict-driven clause learning (CDCL) solvers, actimmely as core solving
engines in various real-world applications. Preprocegsie., applying formula
rewriting/simplification rules to the input formula befotiee actual search for
satisfiability, has become an essential part of the SAT sglteol chain. Further,
some of the strongest SAT solvers today add more reasonisegi@h byinter-
leavingformula simplification and CDCL search. Suiciprocessing SAT solvers
witness the fact that implementing additional deductioestun CDCL solvers
leverages the efficiency of state-of-the-art SAT solvingHer. In this paper we
establish formal underpinnings of inprocessing SAT s@wiia an abstract inpro-
cessing framework that covers a wide range of modern SATireptechniques.

1 Introduction

Decision procedures for Boolean satisfiability (SAT), espky modern conflict-driven
clause learning (CDCL) [1,2] SAT solvers, act routinely asxsolving engines in many
industrial and other real-world applications today. Folansimplification techniques
such as|[[8,4)516/7[8/9,10/1112,13,14] applied befoeeatttual satisfiability search,
i.e., in preprocessing, have proven integral in enablidigieft conjunctive normal
form (CNF) level Boolean satisfiability solving for real-vid application domains, and
have become an essential part of the SAT solving tool chaking things further,
some of the strongest SAT solvers today add more reasonggpich byinterleaving
formula simplification and CDCL search. Suciprocessing SAT solvernsicluding the
successful state-of-the-art CDCL SAT solvereR 0SAT[15], CRYPTOMINISAT [16],
and LINGELING [17], witness the fact that implementing additional dethrctrules
within CDCL solvers leverages the efficiency of state-ad-Hrt SAT solving further.
To illustrate the usefulness of preprocessing and inpedeg$n improving the per-
formance of current state-of-the-art SAT solvers, we medithe 2011 SAT Compe-
tition version of the state-of-the-art SAT solverNGELING that is based on the in-
processing CDCL solver paradigm. The resulting ;ﬂitﬂ:lfows to either disable all
preprocessing or to just disable inprocessing during kedkle have run the original
version and these two versions on the benchmarks from tHeafpn track—the most
important competition category from the industrial pectpe—of the last two SAT
competitions organized in 2009 and 2011. The results anershoTable 1.

* The 1st author is supported by Academy of Finland (grant813and 251170), 2nd and 3rd
authors by Austrian Science Foundation (FWF) NFN Grant 881423 (RiSE).
4 http://fnmv.jku.at/lTingeling/lingeling-587f-disable-pre-and-inprocessing.patch

http://fmv.jku.at/lingeling/lingeling-587f-disable-pre-and-inprocessing.patch

Table 1. Results of running the original 2011 competition versio7f58f LINGELING on the
application instances from 2009 and from 2011, then withioptocessing and in the last row
without any pre- nor inprocessing. The experiments werainbtl on a cluster with Intel Core 2
Duo Quad Q9550 2.8-GHz processors, 8-GB main memory, rgndiountu Linux. Memory
consumption was limited to 7 GB and run-time to 900 secontis. dingle-threaded sequential
version of ULNGELING was used with one solver instance per processor.

2009 2011
LINGELING solved SAT UNSAT time| solved SAT UNSAT time
original version 587f| 196 79 117 114256164 78 86 14493
only preprocessing | 184 72 112 119141159 77 82 14521
no pre- nor inprocessing170 68 102 138940156 78 78 15343

5 OON

The CNF preprocessoraSELITE introduced in[[¥] appliedrariable elimination
one of the most effective simplification techniques in stat¢he-art SAT solvers. As
already shown in[]7] preprocessing can also be extremelfulsdthin incremental
SAT solving. This form of preprocessing, which is perfornaeach incremental call
to the SAT solver, can be considered as an early form of irgmsing. Figl 1L confirms
this observation in the context of incremental SAT solviagfounded model checking.

However, developing and implementing sound inprocessihgess in the presence
of a wide range of different simplification techniques (iihg variable elimination,
blocked clause elimination, distillation, equivalencagening) is highly non-trivial. It
requires in-depth understanding on how different techescean be combined together
and interleaved with the CDCL algorithm in a satisfiabilityeserving way. Moreover,
the fact that many simplification techniques only preseatesgability but not logical
equivalence poses additional challenges, since in margtipahapplications of SAT

1000 L Ay — * bounds time

with inprocessing—— i %‘i{ with inpr 158 153975 304158

800 e remental .1 | noinpr/115 125436 335393
4 non-incr{ 67 49915 369104

600 -
* = #solved + #(bound 1000 reached)

200 L bounds =5 reached bounds
Time is summed up over all
200 L benchmarks, while unfinished

runs are counted with the time
limit of 900 seconds (same ex-

25()'300 350 400 450 Perimental setup as in TdQ. 1).

O i 1
0 50 100 150 200

Fig. 1. Running the bounded model checkarimc, which is part of the INGELING distribu-
tion with and without inprocessing on the single propertpdienarks of the Hardware Model
Checking Competition 2011 up to bound 1000. With inprocesdi53975 bounds were reached,
while without inprocessing only 125436. The figure showsrteximum bound reached (suc-
cessfully checked) on the y-axis for each of the 465 benckifxaaxis). Benchmarks are sorted
by the maximum bound. For completeness we also include aamiari-incremental mode, which
reaches only 49915 bounds. In this mode a new CNF is genesiattdhecked for each bound
with a fresh SAT solver instance separately, but with botht pnd inprocessing enabled.

solvers a solution is required for satisfiable formulas, o the knowledge of the
satisfiability of the input formula. Hence, when designingrocessing SAT solvers for
practical purposes, one also has to address the intricc®taolution reconstruction.

In this paper we propose an abstract framework that captimesrally the deduc-
tion mechanisms applied within inprocessing SAT solvet®e framework consists of
four generic and clean deduction rules. Importantly, thesrapecify general conditions
for sound inprocessing SAT solving, against which spedifitécessing techniques can
be checked for correctness. The rules also capture soltgmnstruction for a wide
range of simplification techniques that do not preserveckigquivalence: while solu-
tion reconstruction algorithms have been proposed prsijdar specific inprocessing
techniques [18,11], we show how a simple linear-time atharicovers solution recon-
struction for a wide range of techniques.

Our abstract framework has similarities to the abstract DAL framework [19]
and its extension$ [20,21], and the proof strategies approf[22], in describing de-
duction via transition systems. However, in addition torogessing as built-in feature,
our framework captures SAT solving on a more generic levahtii9], not being re-
stricted to DPLL-style search procedures, and at the sameitigives a fine-grained
view of inprocessing SAT solving. We show how the rules of fbamework can be in-
stantiated to obtain both known and novel inprocessingiigcies. We give examples
of how the correctness of such specific techniques can b&etibased on the generic
rules in our framework. Furthermore, we show that our rutethe general setting are
extremely powerful, even capturing Extended Resolutidj.[2

Arguing about correctness of combinations of differenvgg techniques in con-
crete SAT solver development is tremendously simplified byfeamework. One ex-
ample is the interaction of learned clauses wisliable elimination7]. After variable
elimination is performed on the irredundant (original)udas during inprocessing, the
question is what to do with learned clauses that still corgiiminated variables. While
current implementations simply forget (remove) such ledrdauses, it follows easily
from our framework that it is sound to keep such learned esasd use them subse-
quently for propagation. It is also easy to observe e.g.dhatcan (selectively) turn
eliminated or blocked clauses into learned clauses to pregeopagation power.

Another more intricate example from concrete SAT solverettgyment occurs in
the context oblocked clausefd 2]. An intermediate version ofINGELING contained a
simple algorithm for adding new redundant (learned) birtdayses, which are blocked,
but only w.r.t. irredundant (original) clauses, thus digneling already learned clauses.
This would be convenient since focusing on irredundantsgawavoids having full oc-
currence lists for learned clauses. Further, marking tlieddlauses as redundant im-
plies that they would not have to be considered in consezugviable eliminations, and
thus might enable to eliminate more variables without iasiieg the number of clauses.
However, we found examples that proved this approach to dmriect. An attempt to
fix this problem was to include those added clauses in futtlmaked clauseemoval
andadditionattempts, and only ignore them during variable eliminatibims version
was kept in the code for some months without triggering angmsistencies. However,
this is incorrect, and can be easily identified via our forfresnework.

After preliminaries (Secf]2), we review redundancy praipsr(Sect[B) and their
extensions (Sedi] 4) based on different clause eliminatmmhaddition procedures. The
abstract inprocessing rules are discussed in Bect. 5wedldy an instantiation of the
rules using a specific redundancy property and a relatedigestdution reconstruction
approach (Seck]6). Based on this instantiation of the yulesshow how the rules
capture a wide range of modern SAT solving techniques ardexamples, how the
rules catch incorrect variations of these techniques (Bgct

2 Preliminaries

For a Boolean variable, there are twditerals, the positive literal: and the negative
literal —z. A clauseis a disjunction of literals and a CNF formula a conjunctidn o
clauses. A clause can be seen as a finite set of literals andr=af@hhula as a finite
set of clauses. A truth assignment is a functiothat maps literals t¢0, 1} under the
assumptionr(z) = v if and only if 7(-2) = 1 — v. A clauseC is satisfied byr if
7(1) = 1 for some literal € C. An assignment satisfiesF' if it satisfies every clause
in F'; such ar is amodelof F.

Two formulas ardogically equivalentf they are satisfied by exactly the same set of
assignments, arghtisfiability-equivalenif both formulas are satisfiable or both unsat-
isfiable. The length of a claugeis the number of literals i’. A unit clausehas length
one, and ainary clausdength two. The set of binary clauses in a CNF formHl#s
denoted byF,. The resolution rule states that, given two clauSes= {l, a1, ..., a,}
andCy = {=l, by, ..., by}, the claus€; ® Cy = {aq,...,an,b1,...,bn}, called the
resolventC; ®; Cy (or simply C; ® Cs when clear from context) of; andC», can
be inferred byresolvingon the literall. For a CNF formulaF, let F; denote the set of
clauses int’ that contain the literal. The resolution operatap; can be lifted to sets of
clauses by defining; @, F., = {C®, C' |C € F, C' € F;}.

3 Clause Elimination and Addition

Clause elimination procedures[11] are an important family of CNF simplification
technigques which are to an extent orthogonal with resaidltiased techniques [12].
Intuitively, clause elimination refers to removing from ENormulas clauses that are
redundantwith respect to some specific redundancy property) in thees¢hat satisfi-
ability is preserved under removal.

Definition 1. Given a CNF formulaF’, a specific clause elimination procedufst
removes clauses that have a specific prop@tiyom F' until fixpoint. In other words,
PE on inputF’ modifiesF’ by repeating the following until fixpoint: if there is a claus
C € FthathaspP, letF := F\ {C}.

Clause Addition Proceduresthe dual of clause elimination procedures, add to (instead
of removing from) CNF formulas clauses that aeglundant(with respect to some
specific redundancy property) in the sense that satistiaislpreserved under adding.

Definition 2. Given a CNF formulaF’, a specific clause addition proceduRA adds
clauses that have a specific propefyto F' until fixpoint. In other wordsP A on input
F modifiesF’ by repeating the following until fixpoint: if there is a clau€’ that has
P,letF:= FU{C}.

While clause elimination procedures have been studied aplbieed to a much
broader extent than clause addition, the latter has alrpemyen important both from
the theoretical and the practical perspectives, as we situss further in Sedil 7.

For establishing concrete instantiations of clause eltidm and addition proce-
dures, redundancy properties on which such proceduressed mn need to be defined.
We will now review various such properties, following [11].

3.1 Notions of Redundancy

A clause is a&autologyif it contains bothw: and—x for some variable:. Given a CNF
formula F, a clauseC; € F' subsumeganother) claus€’; € F' in F if and only if
C1 C Cy, and thenCs is subsumed by, .

Given a CNF formula and a claugg € F, (hidden literal addition HLA(F, C)
is theuniqueclause resulting from repeating the following clause esiemsteps until
fixpoint: if there is a literal, € C such that there is a claugk Vv 1) € F, \ {C} for
some literal, letC' := C' U {~l}.

For a clause”, (asymmetric literal additiopnALA (F, C) is theuniqueclause re-
sulting from repeating the following until fixpoint:if, . . . , [, € C and thereis a clause
(IyV---Vip Vi) e F\{C} for some literal, let C' := C U {~i}.

Given a CNF formula’ and a claus€’, a literall € C blocksC w.r.t. F' if () for
each claus€’ € F with - € C’, the resolvent ®; C"’ is a tautology, o(ii) -l € C,
i.e.,C isitself a tautology. A claus€' is blockedw.r.t. F' if there is a literal that blocks
C w.rt. F. For such ar, we say that” is blockedoni € C w.r.t. F'.

What follows is a list of properties based on which variowsisk elimination pro-
cedures[11,12] can be defined.

S (subsumption C'is subsumed i
HS (hidden subsumptign HLA(F,C) is subsumed i
AS (asymmetric subsumptipn ALA(F, C) is subsumed irF".

T (tautology C'is a tautology.
HT (hidden tautology HLA(F,C) is a tautology.
AT (asymmetric tautology =~ ALA(F,C) is a tautology.
BC (blocked C'is blocked w.r.t.F.
HBC (hidden blockej HLA(F,C) is blocked w.r.t.F.

ABC (asymmetric blocked ALA(F,C) is blocked w.r.t.F.

As concrete exampleC gives the clause elimination procedunecked clause
elimination(BCE) [12], andHT hidden tautology eliminatio(HTE) [11].

A relevant question is how the above-listed properties atated to each other.
Especially, if anyC' having propertyP also has propert?’, then we know that a

clause elimination procedure based Bhcan remove at least the same clauses as a
clause elimination procedure based Bn(similarly for clause addition procedures).
The relationships between these properties (first analgzdterelative effectiveness

in the special case aflause elimination procedurdn [11]) are illustrated in Figl]2.
The properties prefixed with R are new and will be defined next.

| ABC [« RAT]

preserve
logical equivalence

Fig. 2. Relationships between clause redundancy properties. 4@ 'dm7P to P’ means that

any clause that has properB/ also has propertf. A missing edge fron to P’ means that

there are clauses with propef®/ that do not have propertp. Clause elimination and addition

procedures based on the properties insidepteeerve logical equivalendsox preserve logical

equivalence under elimination and addition![11].

|
|
|
[aT [« HBC|—{RHT]
|
|
|
|

4 Extended Notions of Redundancy

Clause elimination procedures can be extended by using$oéution rule as a specific
kind of “look-ahead step” within the procedures. This tuarspecific clause elimination
procedurePE based on propert® into the clause elimination proceduRéPE based
on a propertyRP. Analogously, a specific clause addition procedB based on
propertyP turns into the clause addition procedik¥® A based on a properigP.

Definition 3. Given a CNF formulaF' and a clauseC' € F, C has propertyRP iff
either (i) C has the propertiP, or (ii) there is a literall € C such that for each clause
C’ € F with =l € C’, each resolvent i€ ®; C’ hasP (in this caseC’ hasRP onl).

Example 1.Consider the formuld = (a VbV) A(-zVeVd) A(aVbVc). The
only resolventofa VbV z) onzis (a VbV ¢V d) which is subsumed bfz vV b V ¢).
Therefore(a VV b Vv x) has propertyRS (resolution subsumption).

The intuition is that the “resolution look-ahead” step caweal additional redun-
dant clauses, resulting in the hierarchy shown in Eig. 2idéaiat the propertRT
(resolution tautology) is the same as the propB@/(blocked).

Proposition 1. For any CNF formulaF' and clause” that hasRAT onl € C w.r.t. F,
F is satisfiability-equivalent té” U {C'}.

Proof. By definition, sinceC' hasRAT onl € C w.r.t. F, all resolvent’ ®; F.,; are
asymmetric tautologies w.r.E' (and w.r.t. the largeF’ U (C ®; F-;) as well). Hence

F is logically equivalent toF’ U (C' ®; F—;). Now consider a truth assignmenthat
satisfiesF’, but falsifiesC'. SinceC is falsified byr, and allC’ € C ®, F-, are satisfied
by 7 due to logical equivalence df andF U (C ®; F.;), T satisfies at least two literals
in each clause i, (at least one more besidé). Hence the truth assignmentthat
is a copy ofr except forr’(l) = 1 satisfiesF’ andC'. O

Proposition 2. The set of clauses that haRe\S is a proper subset of the set of clauses
that haveRAT.

Proof. Assume a claus€ hasRAS oni € C' w.r.t. F. If C' hasAS, thenC hasAT [11]
and hence alsBAT. Otherwise, take any resolvefit € C' ®; F-;. By definition,C’
hasAS. Since clauses withhS are a proper subset of the clauses wifh, C hasRAT
onl w.rt. F. Moreover, letF' := (a V =b) A (—a V b). Now (a V —=b) hasRAT ona
w.r.t. F'. However,(a vV —b) does not hav® AS w.r.t. F'. O

Proposition 3. The set of clauses that ha#@3C is a proper subset of the set of clauses
that haveRAT.

Proof. Let C be clause that ha&BC onl € C w.r.t. F. W.l.o.g. assumé€' to be non-
tautological. By [11, Lemma 19}, € C. Take the resolvent” = C ®; C"” for any
C" € F.,. First, we show thahLA (F, C) C ALA(F,C"). C" overlaps withC" in all
literals except-l. W.l.o.g. assum€&’ ¢ F (otherwiseC’ is subsumed by and thus
also hasAT w.r.t. F'). Therefore, by the definition cALA, [€ ALA(F,C’). Hence
C C ALA(F,C"). Due to monotonicity oALA under the assumptiof’ ¢ F, we
haveALA (F,C) C ALA(F,C"). By definition of ABC, the clauseALA(F, C) ®; C"
is a tautology, and hence there is Bne ALA(F,C) \ {I} with =’ € C”. Now,
I € ALA(F,C") sinceALA(F,C) C ALA(F,C"), and—l’ € ALA(F,C") since
C' = C ®; C". ThusC’ hasAT on! w.r.t. F', which implies thatC hasRAT w.r.t. F.
For proper containment, consider the forméla= (a VbV eV d) A(aVbVz) A
(mxVeVAd)A(maVyVz)A(-bVyV-z)A(-eV —yVz)A(-dV -y V-z). No
clause inF hasABC. Yet(a V b V x) hasRAT onz w.r.t. F'. O

Proposition 4. The set of clauses which hal®HT is a proper subset of the set of
clauses that havBAT.

Proof. AssumeC hasRHT onl € C w.r.t. F. If C' hasHT, thenC hasAT [11] and
hence als®AT. Otherwise, take an§’ € C ®,; F;. By definition,C’ hasHT. Since
clauses witHHT are a proper subset of the clauses withi, C hasRAT onl w.r.t. F.
Moreover, letF' := (a VbV a) A (mzVe)AlaVbVe)A(—a)A(=b) A (—c). Now
(aVbVz)hasRAT onz w.r.t. F', but(a Vv bV z) does not hav® HT. O

5 Inprocessing as Deduction

We will now introduce generic rules for inprocessing CNFiotas. The rules describe
inprocessing as a transition system. States in the transilystem are described by
tuples of the formpy [p] o, wherep andp are CNF formulas, and is a sequence of
literal-clause pairs. For inprocessing a given CNF forndtléhe initial state ig” [0] (),
where() denotes the empty CNF formula, afjcthe empty sequence.

Generally, a state [p] o has the following interpretation.

— is a CNF formula that consists of the setioBdundantclauses. Irredundant
means here that all clauses¢gnare considered to be “hard” in the sense that, in
order to satisfy the input CNF formulg, all clauses inp are to be satisfied.

— pis a CNF formulathat consists @fdundant clausesn contrast to the irredundant
clausesp, these clauses can be removed from consideration.

— o denotes a sequence of literal-clause paitswith [€ C that are required for
solution reconstruction, as explained in detail in Sedi. 6.

For some intuition on why we separateand p, note thatlearned clausesi.e.,
clauses added through conflict analysis in CDCL solvers na@tained separately
from the clauses in the input formula, and can be forgotten fiemoved) since in pure
CDCL they are entailed by the input formula. However, in th@rengeneric context of
inprocessing SAT solving captured by our framework, clause may not be entailed
by the original formulaF’. This is discussed in detail in Selt. 7 using clause addition
as an example. In addition, for elimination techniques l{sasBCE, variable elimi-
nation, and their variants) only the clausessimeed to be considered when checking
redundancy. Nevertheless, the clauses @an be used for e.g. unit propagation.

5.1 Rules of Inprocessing

Our abstract framework for inprocessing SAT solving is base four rules: IEARN,
FORGET, STRENGTHEN, and WEAKEN, presented in Fid.]3. These rules characterize
the set of legal next states [p’ | o’ of a given current state [p] o in the form

elplo
o' [p']o"

Given a CNF formuld’, a statepy, [p, | ok is reachable from the stafé[(] () iff there
is a sequencépo [po] oo, - - -, @k [pr] ok) such thali) go = F, po = 0, andog = (),
and (i7) for eachi = 1,...,k, one of the rules in Fid.13 allows the transition from
©i—1 [pi—1]0i—1t0p; [pi] o;. This sequence is called a derivationgf A p;, from F.

The inprocessing rules aoarrectin the sense that they preserve satisfiability, i.e.,
starting from the staté&' [0] (), the following invariant holds forall =1, ... k:

‘ Formulasp; and(p; A p;) arebothsatisfiability-equivalent td.

The intuition behind these rules is as follows.

LEARN Allows for introducing (earning) a new clause”' to the current redundant
formulap. In the generic setting, the preconditipis thaty A p andp A p A C are
satisfiability-equivalent.

FORGET Allows for forgettinga clause” from the current set of redundant clauges

STRENGTHEN Allows for strengthening» by moving a claus€' in the redundant for-
mulap A C to .

WEAKEN Allows for weakeningpy by moving a claus€’ in the current irredundant
formulap A C to p. In the generic setting, the preconditiois thaty andy A C are
satisfiability-equivalent. (The literdlis related to instantiations of the rule based
on specific redundancy properties, as further explaine@at® and Sedfl]7.)

elplo plpnClo plpnClo pNClplo |
elpnClo elplo eNC|plo elpnClo,l:C

LEARN FORGET STRENGTHEN WEAKEN

Fig. 3. Inprocessing rules

Notice that for unsatisfiable CNF formulas the generic pnelition ¢ allows for
learning the empty clause toin a single step. Similarly, for satisfiable CNF formulas
the generic preconditioh allows for weakeningy by movingall clauses iny to p.
However, in practice mostly polynomial-time checkableurediancy properties are of
interest. Such properties are further discussed in Secid Gact(7.

Proposition 5. The inprocessing rules in Figl 3 are sound and complete iti tha

(7) If Fis unsatisfiable, then there is a derivation of an unsatiséigh, A pr, where
k > 0, from F’ using the rules (completeness).

(77) If there is a derivation of an unsatisfiablg, A pi, wherek > 0, from F' using the
rules, thenF' is unsatisfiable (soundness).

Proof. (i) SinceF is unsatisfiable, the £ARN rule can be used for learning the triv-
ially unsatisfiable empty clausg@:) We observe the following for any=1,..., k. If
LEARN s applied to enter statg; [p; | o; from ;1 [pi—1] oi—1, by the preconditiot,
wi—1 andy; A p; are satisfiability-equivalent. If SRENGTHENoOr WEAKEN is applied,
we havep; 1 Ap;—1 = ¢; A p;. If FORGETIs applied, we have,;_1 Ap;—1 | @i A p;.
The claim then follows by induction o=k, .. ., 1. O

One could question whether the preconditiai LEARN, i.e., o Apandp Ap A C
are satisfiability-equivalent, could be weakened godnd ¢ A C are satisfiability-
equivalent”. In other words, must the redundant clausgshia taken into account for
LEARN? To observe that must indeed be included fnconsider the CNF formula con-
sisting of the single clausg). From the initial state [()] () we obtainf [a] () through
WEAKEN. In casep were ignored irt, it would then be possible to applyElarN and
derivef) [aA—a] (). However, this would violate the invariant of preservingsfability,
sincea A —a is unsatisfiable.

6 Instantiating the Rules based orRAT

In contrast to the very generic preconditiohand b under which the inprocessing
rules were defined in the previous section, in practical SéiVisg redundant clauses
are learned and forgotten based on polynomial-time conbppritdundancy proper-
ties. In this section we give an instantiation of the inpssieg rules based on the
polynomial-time computable properiyAT. RAT is of special interest to us since,
as will be shown in Secl] 7, known SAT solving techniquesluditig preprocessing,
inprocessing, clause learning, and resolution, can beissgheven when restricting the
inprocessing rules usin@AT. Moreover, under this property, a model of the original
formula can be reconstructed in linear-time based on anyetnafdany derivablep;,
usingoy. This is important from the practical perspective due tofttot that in many
applications a satisfying assignment for the original ifpumula F' is required.

Preconditions based orRAT. The preconditions of the inprocessing rules based on
the propertyRAT are the following for a given state; [p;] o;.

|[LEARN: § is "ChasRAT w.rt.o; Ap/'. |

Notice that LEARN under this precondition does not preserve logical equieFor
example, consider the formula = (a V b). The LEARN rule can changéu V b) [0] {)
into (a Vv b) [C] (), with C = (—a V —b), sinceC hasRAT on —a w.r.t. F'. The truth
assignment = {a = 1,b = 1} satisfiesF’ but does not satisfy A C.

‘WEAKENZ b is “ChasRATonlw.r.t.gpi”.‘

Through weakening; by moving a claus€' € ¢; to p;1+1, the newp;,; may have
more models tham;, sinceRAT does not preserve logical equivalence.

6.1 Solution Reconstruction

When the WEAKEN rule is used for a transition from a stafge [p;]o; to a state
©i+1 [pi+1] oit1, the set of models ap; 1 can be a proper superset of the set of mod-
els of p;. For the practically relevant aspect of mapping any modet,of back to a
model ofp;, a literal pairl:C, whereC'is the clause moved frog; to p; 11, is concate-
nated to the solution reconstruction stagk, . This is important when the redundancy
property used does not guarantee preserving logical dgas@. More concretely, this
is required ifC hasRAT but not e.gAT.

For certain polynomial-time checkable redundancy prageré can be used for
mapping models back to models of the original formula indingme, as explained
next. We describe a genernwodel reconstruction algorithtiat can be applied in con-
junction with the inprocessing rules in case the precoowlitf andb of LEARN and
WEAKEN are restricted tRR AT. In particular, for any CNF formul&’ and state» [p | o
that is reachable fron" [()] () using the inprocessing rules, given a modelf , the
reconstruction algorithm (Fi@l 4) outputs a modeFo$olely based om andr.

Reconstruction (literal-clause pair sequence o, model 7 of)

1 while o is not empty do

2 remove the last literal-clause pair [:C from o

3 if C'is not satisfied by 7 then 7 := (v \ {{ =0}) U {{ =1}
4 return v

Fig. 4. Pseudo-code of the model reconstruction algorithm.

While the reconstruction algorithm may leave some varmhieassigned in the
output assignment (model @f), such variables can be arbitrarily assigned afterwards
for establishing a full model of".

Example 2.Consider the state; [p;] o; with ¢; = (a V b) A (ma V —b), p; = 0
ando; = (). Apply WEAKEN to reachy; 1 [pit1]oit1, Wherep,11 = (a V b),
pi+1 = (ma V —b), ando;11 = (—a:(—a V —b)). The assignment = {a = 1,b = 1}
satisfiesp; 1 but noty;. The model reconstruction procedure will transforninto
{a = 0,b = 1} which satisfiesp;.

Proposition 6. Given any CNF formuld’, if a statey [p] o is derivable fromF’ using
the inprocessing rules under preconditions base®aT, then, given any model of
¢, Reconstruction(o;, 7) returns a model of".

Proof. Follows from the proof of Propositidd 1. Assume th4t is the last element in
o, T is the current truth assignment, and thaeMXEN was applied to mové’ from
vi—1 to p; based on the fact that hasRAT on! w.r.t. ;_;. By the proof of Proposi-
tion[d, there are at least two literals that are satisfied lyevery clause containing!
in p;—1 \ {C}. Hence, in case(l) = 0, we can flip this assignmenttd/) = 1. O

Interestingly, due to the generality of the inprocessiniggt-as explained in the
next section—this reconstruction algorithm covers moéebnstruction for various
simplification techniques that do not preserve logical egjence, including specific
reconstruction algorithms proposed for different caugmiehtion techniques [18,11]
and variable elimination [18], and combinations theredhwither important techniques
such as equivalence reasoningl[24,3].

7 Capturing SAT Solving Techniques with the Inprocessing Ries

In this section we show how various existing inference tépies—including both
known techniques and novel ideas—can be expressed as Siomplginations of the
LEARN, FORGET, STRENGTHEN, and WEAKEN rules. One should notice, however,
that the inprocessing rules can be shown to naturally cagptuther inprocessing tech-
niques. However, due to the page limit we are unable to déstwrsher techniques
within this version of the paper. We also give examples of lmeorrect variants of
these techniques can be detected.

Clause elimination proceduresbased on redundancy propefycan be expressed as
derivingp [p] o from ¢ A C'[p]o in a single step with the precondition th@thas
the propertyP w.r.t. ¢. One step of clause elimination is simulated by two applbcat
steps of the inprocessing rules: 1. applfeX¥EN to move a redundant clause from
o to p; 2. apply FORGET to removeC from p. As explained in Seck]6, the generic
inprocessing rules can be instantiated ushtWI' as the redundancy property of the
preconditiong andb. SinceRAT covers all of the other clause redundancy properties
discussed in Sedtl 3 ah#l 4 (such as blocked clauses, hiddeiogies, etc; also recall
Fig.[2), it follows that all of the clause elimination proeceds based on these properties
are captured by our inprocessing rules, even when restfgittie precondition tRAT.

As an example of incorrect clause elimination, consideridiea of eliminatingC
if it has the property? w.r.t. ¢ A p (and not w.r.t. justp), allowing weakening> based
onp, i.e., also in case a clausegrsubsumeg’. This would allow using e.g. redundant
learned clauses ip, which can be forgotten later on, for weakenipgTo see that this
variant is incorrect consider; [p; | o; wherep; = (a vV =b) A (ma V b) A (ma V =b) A
(aVbVe)A(aVbV-c)andp; = (0. Note thatp; is unsatisfiable. The clauge\V b) has
AT w.rt. ¢;, sinceALA(y;, (a V b)) contains all literals, and hence applyingARN
givespi+1 = w; andp;+1 = (aVb). Now, (aVbd) € p;+1 subsumesaVbVe) € g1,
and incorrectly applying WAKEN would givep; 12 = vi+1 \ (a VbV ¢) andp;2 =
pi+1/\(aVbVc). Howeverp, . - is satisfiable, and the satisfiability-equivalence invatria

is broken sincep; 12 A p;y2 is unsatisfiable. As a consequenités not correct to use
the clauses irp to eliminate an irrredundant clausgsuch as hidden or asymmetric
tautologies, blocked clauses, etahless the clauses, based on which the eliminated
clause is redundant, are added¢oor are already part ofp.

Pure Literal Elimination is an additional well-known clause elimination procedure:
derivep [p] o fromp AC' [p] o given thatC contains gure literall (such that-l does
not appear iny). It is easy to observe that this rule is also covered by comicessing
rule: Any clause inp that contains a pure literahasRT (and thusRAT) onl w.r.t. ¢.
Notice that due to the WAKEN precondition, only the irredundant clausesieed to
be considered, i.e., redundant (e.g., learned) clausestilarontain—i.

Clause addition proceduresbased on redundancy propef® can be expressed as
derivingp [p A C']o from ¢ [p] o in a single step with the precondition th@thas the
property? w.r.t. ¢ A p. One step of clause addition is simulated by applyirpRN

to addC to p. Similarly to clause elimination, the generic inprocegsiales can be
instantiated usin®R AT as the redundancy property of the preconditioAgain, since
RAT covers all of the other clause redundancy properties digclinn Sec{.I3 arld 4, it
follows that all of the clause addition procedures basedesé properties are captured
by the generic inprocessing rules.

Notice that some clause addition procedures do not presegieal equivalence
(recall Fig[2), and hence can restrict the set of models afp. For such procedures,
the inprocessing rules can be applied for checking coresstrAs an example, consider
blocked clause additiofBCA): for adding a claus&’ to p, it is required thatC' is
blocked w.r.tyo A p. If C is only blocked w.r.ty, then BCA is not sound. Consider the
formulaypg = (aV—=b) A(—aVb)A(aVe)A(—cVb)A(—aV—c). Notice that(—a V —c)
hasRT (is blocked) on-c w.r.t. ¢g. Hence(—a VvV —¢) can be moved fronp, to be part
of p; by applying the VEAKEN rule: 1 = ¢ \ {(—a V —¢)}, p1 = po U {(—a V —c)},
ando; = o9 U {—c:(—a VvV —¢)}. Now the clauséc vV —b) is aRT onc w.r.t. @1, but not
w.r.t. o1 A p1. Adding (¢ vV —b) to p to getps = p1 U {(c Vv —b)} andyps = ¢ makes
2 A po unsatisfiable.

This brings us to an interesting observation of the framé&w@ontinuing the above,
if (—a V —c¢) was removed (BRGET) after moving it top (sop2 = p1 \ {(—a V —¢)},
w2 = @1, andoy = o1), then adding(c vV —b) to p via LEARN would be allowed
(p3 = p2 \ {(mcV =b)}, p3 = @2, @andos = o3) since(c vV —b) hasRT onc w.r.t.
w3 A p3. Now o3 A ps ACNF (03) is unsatisfiable, whet@€NF (o3) is the conjunction of
clauses inrs. Yet this does not cause a problem. The reconstruction rdethsures that
for every assignment satisfyinga model of the original formul&’ can be constructed.
Thus it also holds for assignments that satigfix p. This illustrates thal. EARN may
add clauses te that are not entailed by the clauses in the original formula

Clause Learningbased on conflict graphs, which is central in modern CDCLeslvy
can be simulated by the inprocessing rules. Since any cbalfiase based on a con-
flict graph is derivable by trivial resolution from the cunteclause database [25], the
inprocessing rules can simulate clause learning by siinglétie steps of the resolution
derivation, as explained next.

Resolution can also be simulated by the inprocessing rules in a stfaigveard way:
Foranyyp, (CvD)isanAT w.rt.oA(CVz)A(DV—z), and thugCV D) can be learned
by applying LEARN. This implies thatall resolution-based simplification techniques
can also be simulated. An exampleHyper Binary ResolutiofHBR) [3]: Given a
clause of the forn{l v I; - - - V l;) andk binary clauses of the forrl’ v —l;), where

1 < i < k, the hyper binary resolution rule allows to infer thgper binary resolvent

(I v 1) in one step. In essencHBR, simply encapsulates a sequence of specifically
related resolution steps into one step.

Variable Elimination (VE) can also be simulated by our inprocessing rules. When
applied in a bounded settirig [A[E is currently one of the most effective preprocessing
techniques applied in SAT solvers. Variable eliminatioraageneral version ofE for
inprocessing can be characterized as the rule

NPz Npg [P NPz N p-g]o
PN Pz Oz Pz [p]aa xi‘%’maﬁﬂmﬁﬂm’

whereF; denotes the clauses in a CNF formiiiahat contain literal, andF; ®; F,;

is the lifting of the resolution operator to sets of claugessentially, VE eliminates a
variablex by producing all possible resolvents w.r:t.and removes at the same time
all clauses containing. Although not discussed in earlier work, our characteigrat
takes into account the common practice that resolventsageltindant clauses jndo
not need to be produced.

To see that our inprocessing rules simul€te, first apply LEARN to add the resol-
ventsy, ® ¢, to p (all resolvents havAT w.r.t.). Second, apply BRENGTHENtO
move the resolvents fromto ¢. Now all clauses inp,, haveRS onz w.r.t. ¢, and all
clauses inp_, haveRS on —x w.r.t. o, and hence WAKEN can be applied for making
the clauses ip,, andy-, redundant, after which they can be removed usiog@&ET.

Notice that two variants oVE are distinguished [7]. The firs{ E by clause dis-
tribution adds all the clauses ¢f, ® ¢—. to ¢. The secondVE by substitutionadds
only a subset ofp, ® ¢, to ¢ in a satisfiability-preserving way. As a consequence,
the latter variant may reduce the amount of unit propagationthe resulting formula
compared to the former. However, under the inprocessiresythe clauses produced
by clause distributiorbut not bysubstitutioncan alternatively be added tanstead of
©, S0 that these clauses can be used subsequently for unggatipn but can still be
considered redundant and thus be ignored in consecvtivsteps.

Partial Variable Elimination , as described below, is a novel variant\VOE, which
can also be naturally expressed via our inprocessing rGliegen a variable: and two
subsets of clauses, C ¢, andS-, C -, if there are non-empty, andS-, such
that all resolvents of, ® (¢-, \ S-z) andS-, ® (p, \ S;) are tautologies, then we
can applyVE partially by replacingS, A S, in ¢ by S, ® S—,. We refer to this as
Partial Variable Elimination(PVE). In practice, theVE rule is bounded by applying
it only when the number of clauses is not increased. It isalgtpossible thaPVE
on z decreases the number of clauses, e.4S.if = 1 or |S_.| = 1, while VE on
2 would increase the number of clauses. The correctneB¥@f is immediate by the
inprocessing rules, using a similar argument as in the csélo

Extended Resolutioncan also be simulated. This shows thatirN, although perhaps
not evident by its simple definition, is extremely powerfuka when restricting the
precondition taRAT only.

For a given CNF formuld’, the extension ruld23] allows for iteratively adding
definitions of the formz = a A b (i.e. the CNF formulgz vV —a vV =b) A (-2 V a) A
(-z Vb)) to F, wherez is a new variable and, b are literals in the current formula. The
resulting formulaF’ A E then consists of the original formulaand theextensior¥, the
conjunction of the clauses iteratively addedasing the extension rule. lBxtended
Resolution23] one can first apply thextension ruldo add a conjunction of clauses
(anextensioh F to a CNF formulaF’, before using the resolution rule to construct a
resolution proof ofF" A E. This proof system is extremely powerful: surpassing the
power of Resolution, it can even polynomially simulate exied Frege systems.

However, it is easy to observe that theArN rule simulates the extension rule: the
clause(x vV —a V —b) hasRAT onz w.r.t. ¢ A p and can thus be added tdy applying
LEARN. The clause$—xVa) and(—zVb) haveRAT on—z w.r.t. oA (zV—aV-b) Ap.

From a practical perspective, it follows that our inprocegsramework captures
also the deduction applied in the recently proposed exdessdif CDCL solvers that
apply the Extension rule in a restricted fashion([26,27].

Finally, we would like to point out that the inprocessingasitapture various additional
techniques that have proven important in practice. Whilameeunable (due to the page
limit) to provide a more in-depth account of these techngyaled how they are simu-
lated by the inprocessing rules, such techniques incluslexamples3elf-subsumption
(which has proven important both when combined with vagaddimination [7] and
when applied during search [28129]), equivalence reagd@#i 3], including e.g. equiv-
alent literal substitution, and also more recent techrggiat can be defined for remov-
ing and adding literals from/to clauses (suchhailen literal eliminatiorf13]).

8 Conclusion

Guaranteeing correctness of new inference techniquedagedeand implemented in
state-of-the-art SAT solvers is becoming increasingly-trosial as complex combi-
nations of inference techniques are implemented withinstileers. We presented an
abstract framework that captures the inference of inpiggsSAT solvers via four
clean inference rules, providing a unified generic view fixagtessing, and furthermore
captures sound solution reconstruction in a unified waydttiteon to providing an in-
depth understanding of the inferences underlying inpingssolvers, we believe that
this framework opens up possibilities for developing namerocessing and learning
techniques that may lift the performance of SAT solvers duether.

References

1. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a searctrilgn for propositional satisfia-
bility. IEEE Trans. Computerd8(5) (1999) 506-521

2. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., MalS.: Chaff: engineering an
efficient SAT solver. In: Proc. DAC, ACM (2001) 530-535

3. Bacchus, F.: Enhancing Davis Putnam with extended biméayse reasoning. In:
Proc. AAAI, AAAI Press (2002) 613-619

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

Bacchus, F., Winter, J.: Effective preprocessing withdnresolution and equality reduction.
In: Proc. SAT 2003. Volume 2919 of LNCS., Springer (2004)-3885

. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasirgalée elimination resolution for

preprocessing SAT instances. In: Proc. SAT. Volume 3542NES., Springer (2005)

. Gershman, R., Strichman, O.: Cost-effective hypertotiem for preprocessing CNF for-

mulas. In: Proc. SAT. Volume 3569 of LNCS., Springer (20083-4429

. Eén, N., Biere, A.: Effective preprocessing in SAT tlgbwariable and clause elimination.

In: Proc. SAT. Volume 3569 of LNCS., Springer (2005) 61-75

. Jin, H., Somenzi, F.: An incremental algorithm to chedfs§ability for bounded model

checking. Electronic Notes in Theoretical Computer Saerk9(2) (2005) 51-65

. Han, H., Somenzi, F.: Alembic: An efficient algorithm folNE preprocessing. In:

Proc. DAC, IEEE (2007) 582-587

Piette, C., Hamadi, VY., Sais, L.: Vivifying proposita clausal formulae. In: Proc. ECAI,
10S Press (2008) 525-529

Heule, M.J.H., Jarvisalo, M., Biere, A.: Clause eliation procedures for CNF formulas.
In: Proc. LPAR-17. Volume 6397 of LNCS., Springer (2010) 3571

Jarvisalo, M., Biere, A., Heule, M.J.H.: Simulatingatiit-level simplifications on CNF.
Journal of Automated Reasoning (2012) OnlineFirst 2011.

Heule, M.J.H., Jarvisalo, M., Biere, A.: Efficient CNifnplification based on binary impli-
cation graphs. In: Proc. SAT. Volume 6695 of LNCS. (2011)-2215

Heule, M.J.H., Jarvisalo, M., Biere, A.: Covered ckadimination. In: LPAR-17 Short
Papers. (201t t p: //arxi v. or g/ abs/ 1011. 5202.

Biere, A.: Rre,i}coSAT@SC’09. In: SAT 2009 Competitive Event Booklet. (209

Soos, M.: CryptoMiniSat 2.5.0, SAT Race 2010 solver dpson (2010)

Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoS&TSAT Race 2010. FMV Technical
Report 10/1, Johannes Kepler University, Linz, Austrial(@0

Jarvisalo, M., Biere, A.: Reconstructing solutionteablocked clause elimination. In:
Proc. SAT. Volume 6175 of LNCS., Springer (2010) 340-345

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SARd SAT modulo theories: From an
abstract Davis-Putnam-Logemann-Loveland procedure tolDP). Journal of the ACM
53(6) (2006) 937-977

Nieuwenhuis, R., Oliveras, A.: On SAT modulo theoried aptimization problems. In:
Proc. SAT. Volume 4121 of LNCS., Springer (2006) 156-169

Larrosa, J., Nieuwenhuis, R., Oliveras, A., RodrigGezbonell, E.: A framework for certi-
fied boolean branch-and-bound optimization. Journal obAsted Reasoningf(1) (2011)
Andersson, G., Bjesse, P., Cook, B., Hanna, Z.: A progfrenapproach to solving combi-
national design automation problems. In: Proc. DAC, ACMO2)0725-730

Tseitin, G.S.: On the complexity of derivation in propiesal calculus. In: Automation of
Reasoning 2. Springer (1983) 466—-483

Li, C.M.: Integrating equivalency reasoning into DaRigtnam procedure. In: Proc. AAAI,
AAAI Press (2000) 291-296

Beame, P., Kautz, H.A., Sabharwal, A.: Towards undedétg and harnessing the potential
of clause learning. J. Artif. Intell. Re22 (2004) 319-351

Audemard, G., Katsirelos, G., Simon, L.: A restrictidneatended resolution for clause
learning SAT solvers. In: Proc. AAAI, AAAI Press (2010)

Huang, J.: Extended clause learning. Artificial Ingghcel74(15) (2010) 1277-1284
Han, H., Somenzi, F.: On-the-fly clause improvement. Proc. SAT. Volume 5584 of
LNCS., Springer (2009) 209-222

Hamadi, Y., Jabbour, S., Sais, L.: Learning for dynasalisumption. In: Proc. ICTAI, IEEE
(2009) 328-335

http://arxiv.org/abs/1011.5202

