
Journal of Algorithms: Algorithms in Cognition, Informatics
and Logic 63 (2008) 90–113

www.elsevier.com/locate/jalgor

The effect of structural branching on the efficiency of clause
learning SAT solving: An experimental study ✩

Matti Järvisalo ∗,1, Ilkka Niemelä

Helsinki University of Technology (TKK), Department of Information and Computer Science, P.O. Box 5400, FI-02015, TKK, Finland

Received 22 October 2007

Available online 8 March 2008

Abstract

The techniques for making decisions (branching) play a central role in complete methods for solving structured instances of
propositional satisfiability (SAT). Experimental case studies in specific problem domains have shown that in some cases SAT
solvers can determine satisfiability faster if branching in the solver is restricted to a subset of the variables at hand. The underlying
idea in these approaches is to prune the search space substantially by restricting branching to strong backdoor sets of variables which
guarantee completeness of the search. In this paper we present an extensive experimental evaluation of the effects of structure-
based branching restrictions on the efficiency of solving structural SAT instances. Previous work is extended in a number of ways.
We study state-of-the-art solver techniques, including clause learning and related heuristics. We provide a thorough analysis of
the effect of branching restrictions on the inner workings of the solver, going deeper than merely measuring the solution time.
Extending previous studies which have focused on input-restricted branching, we also consider relaxed branching restrictions that
are based on underlying structural properties of the variables.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Backdoor sets; Branching heuristics; Clause learning; Problem structure; Propositional satisfiability

1. Introduction

Propositional satisfiability (SAT) solving procedures (or SAT solvers) have been found to be extremely efficient
as back-end search engines in solving large industrial-scale combinatorial problems. Typical examples of such real-
world application domains of SAT solvers include automated planning [2,3], bounded model checking (BMC) of
hardware and software [4–7], and electronic design automation applications such as automated test pattern generation

✩ Research supported by Academy of Finland under grants #211025 and #122399. The authors thank Tommi Junttila for several insightful
discussions on the topic and for help on understanding the inner workings of the Boolean circuit tools in the BC package [T. Junttila, The BC
package and a file format for constrained Boolean circuits, available at http://www.tcs.hut.fi/~tjunttil/bcsat/]. Additionally, the authors thank the
anonymous reviewers for several comments and suggestions which helped considerably in improving the article.

* Corresponding author.
E-mail addresses: matti.jarvisalo@tkk.fi (M. Järvisalo), ilkka.niemela@tkk.fi (I. Niemelä).

1 Financial support of HeCSE Graduate School in Computer Science and Engineering, Emil Aaltonen Foundation, Jenny and Antti Wihuri
Foundation, Finnish Foundation for Technology Promotion (TES), and Nokia Foundation is gratefully acknowledged.
0196-6774/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2008.02.005

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 91
(ATPG) [8,9]. Most recently, we have witnessed applications of SAT solving techniques in new exciting fields such as
bioinformatics [10,11] and logical cryptanalysis [12,13].

While local search SAT solvers have proven very successful in solving random satisfiability problem instances,
breakthroughs in applying SAT solvers in relevant structural real-world problem domains are due to complete SAT
solving procedures, on which we will also concentrate in this work. Typical SAT solvers aimed at solving such
structured problems are based on the CNF-level (clausal) Davis–Putnam–Logemann–Loveland procedure (DPLL)
[14,15].

As SAT solvers have become a standard tool for solving various increasingly difficult industrial problems, there
is a demand for more and more robust and efficient solvers. Research on boosting the efficiency of DPLL solvers
has concentrated on incorporating techniques such as intelligent branching heuristics (for example, [16–18]), novel
propagation mechanisms (for example, binary clause [19] and equivalence reasoning [20,21]), efficient propagator
implementations (watched literals [18]), randomization and restarts [22,23], and clause learning [24]. Out of these
concepts, clause learning can be regarded as the most important progressive step. This is witnessed by a sequence of
further improved solvers (see, for example, [18,24–26]), and also by theory [27]. While new propagation mechanisms,
such as equivalence reasoning, have been successfully implemented into DPLL, most clause learning solvers still rely
on standard unit propagation as the sole propagator. The integration of more sophisticated propagators with clause
learning is not trivial, and typically DPLL based solvers with equivalence reasoning do not incorporate clause learning.
As for intelligent decision (or branching) heuristics, while non-clause learning solvers incorporate heuristics based on
literal counting [16] and/or one-step lookahead [17], branching in clause learning solvers is also driven by learning.
Most clause learning solvers implement variations of—or build on top of—the variable state independent decaying
sum (VSIDS) heuristic [18] which values the variables that have played an active role in reaching recent conflicts.
Moreover, clause learning enables non-chronological backtracking (or backjumping). In fact, as noted for example
in [23], since search space traversal is guided tightly by clause learning in modern solvers with the help of unit
propagation and restarts, clause learning solvers can be seen as performing a process quite unlike the search performed
by implementations of the basic DPLL.

Nevertheless, branching heuristics, that is, deciding on which variable to next set a value during search, play an
important role in the efficiency of search. Due to an increasing need for solving large structural problems, techniques
for making effective decisions during search are vital. Intuitively, the inherent structure of the problem domain is
reflected in individual variables in the SAT encoding, and making decisions on structurally irrelevant variables may
have an exponential effect on the running times of SAT solvers.

In addition to developing more effective (dynamic) branching heuristics, a complementary view on branching is
provided by the concept of (static) branching restrictions. The idea behind branching restrictions is to limit the set
of variables the solver is allowed to branch on to a small subset I instead of the set N of all variables in the SAT
instance at hand. The solver will then apply its own dynamic heuristics on the variables in I . The motivation behind
branching restrictions is that, by selecting I so that the solver remains complete, the search space size is radically
reduced from the order of 2|N | to 2|I | where |I | � |N |. In this work we focus on studying the effect of such static
branching restrictions on the efficiency of state-of-the-art SAT solvers.

An example of a natural branching restriction is provided by the set of so called input variables. In SAT based
approaches to structured problems such as bounded model checking (of both hardware and software) and automated
planning, the CNF encoding is often derived from a transition relation, where the behavior of the underlying system
is dependent on the input—initial state, nondeterministic choices, etc.—of the system. Problems such as ATPG that
deal with logical circuit designs serve as additional examples of domains where system input is naturally present.
The key point is that since the system behavior is determined by its input, input-restricted branching DPLL remains
complete. Furthermore, experimental case studies in specific problem domains [28–30] have shown that in some cases
SAT solvers benefit from restricting the variables the solver is allowed to branch on to those variables that model the
input of the underlying system.

The concept of a (strong) backdoor set [31,32] of variables is closely related to restricting branching so that the
resulting solving method is still complete. A unit propagation backdoor is a set of variables such that, once all of these
variables have values, all the other variables are set values by unit propagation. Thus one backdoor set—although not
necessarily of minimal size—is the set of input variables. A motivation behind the concept of backdoor sets is the
intuition of improving search efficiency by backdoor-based branching. In other words, the idea is to restrict the SAT

92 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
solver to branch on a subset of variables which together determine the values of all of the other values through unit
propagation. However, deciding whether a backdoor set of a given size exists is intractable in general [33].

With this in mind, knowledge of the underlying structural properties of variables in the instance at hand makes it
easier to apply branching restrictions when solving the instance. Unfortunately, the correspondence between struc-
tural properties—such as functional dependencies—in a real-world problem and the propositional variables in a CNF
encoding of the problem is not evident. However, in SAT based approaches direct CNF encodings of a problem
domain are rarely used. Typically, the problem is first encoded as a general propositional formula. Boolean circuits
(see [34], for example) offer a compact representation for an arbitrary propositional formula φ in a DAG-like structure
which reflects naturally the structure of φ, including functional dependencies. For solving such a general propositional
problem encoding, the Boolean circuit is then translated into an equi-satisfiable CNF formula by introducing addi-
tional variables for the subformulas of φ. However, the underlying structure is no more evident in the resulting CNF
that is fed to the SAT solver. Knowledge of the circuit structure is thus crucial, since without it finding functional
dependencies—such as input variables—or other structural properties of the original problem encoding from the re-
sulting CNF formula is nontrivial and requires specialized techniques [35–37].

In this paper we present an extensive experimental evaluation of the effect of structure-based branching restrictions
on the efficiency of solving structural SAT instances. While clause learning SAT solvers typically work on the CNF
level, we derive the branching restrictions from the Boolean circuit structure underlying the CNF formulas. The
motivation for the starting point of this work is that the set of input variables—when the underlying circuit structure is
known—provides an easily detectable backdoor. Our emphasis is on the interplay between structure-based branching
restrictions and typical clause learning based search techniques in modern complete SAT solvers. The aim is to provide
a detailed picture of the effect of branching restrictions on the inner workings of modern clause learning solvers, and
to understand how important underlying structural properties of variables are in making decisions in clause learning
SAT solvers. Rather than directly aiming at improving specific SAT solvers through applying branching restrictions,
we provide an detailed analysis of the effect of imposing such restrictions on current highly optimized SAT solving
technology.

The novel aspects of this work include the following. Previous case studies on restricted branching that we are
aware of, including [28–30,38], concentrate usually only on running times of solvers, and shed little light on the
effect of the restriction to the inner workings of SAT solvers. Furthermore, in many cases modern solver techniques
are not used. In contrast, we analyze in detail the effect of input-restricted branching on the effectivity of state-
of-the-art clause learning and branching heuristics. Additionally, previous studies consider mainly input-restricted
branching as the only structural way of restricting the decision making in SAT solvers. In this work we devise and
apply controlled schemes for allowing branching additionally on CNF variables other than inputs based on underlying
structural properties of the problems. The structural properties—such as the number of occurrences of subformulas—
are determined from the general propositional formulas which are represented as Boolean circuits. We relate the
differences in efficiency resulting from different structural properties to the effectivity of clause learning techniques.
In addition to extending previous work, this study complements known experimental studies on comparing SAT solver
techniques, such as clause learning schemes [39], restarts [23], and comparisons of branching heuristics (see [16,40]
for examples).

The rest of the article is structured as follows. In Section 2 we define Boolean circuits, describe the translation
from circuits to CNF formulas we use in the experiments in order to apply a state-of-the-art clausal SAT solver in the
experiments, and review the main techniques applied in current clause learning SAT solvers. The experiment setup
is described in Section 3, and the main results and analysis is presented in Section 4. Before concluding, a review of
known results related to branching restrictions is presented in Section 5.

2. Background

In this section we review basic concepts related to propositional satisfiability and define constrained Boolean
circuits which we use as the representation form for arbitrary propositional formulas. We also discuss the relationship
between constrained Boolean circuits and clausal propositional (CNF) formulas, and present the translation from
constrained Boolean circuits to CNF applied in this work.

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 93
2.1. Propositional satisfiability

Given a Boolean variable x, there are two literals, the positive literal, denoted by x, and the negative literal,
denoted by ¬x, where ¬ is the negation (not). A clause is a disjunction (∨, or) of distinct literals and a CNF formula
is a conjunction (∧, and) of clauses.

Given a CNF formula F , a (partial) assignment for F is a (partial) function τ : vars(F) → {t, f}, where t and f
stand for true and false, respectively. With slight abuse of notation, we define for negative literals τ(¬x) = ¬τ(x),
where ¬f = t and ¬t = f. A clause is satisfied by τ if it contains at least one literal l such that τ(l) = t. If τ(l) = f
for every literal l in a clause, the clause is falsified by τ . An assignment τ satisfies F if it satisfies every clause in it.
A formula is satisfiable if there is an assignment that satisfies it, and unsatisfiable otherwise.

2.2. Constrained Boolean circuits

In this work we use Boolean circuits (see [34], for example) for representing arbitrary propositional formulas.
Boolean circuits offer a natural way of presenting propositional formulas in a compact DAG-like structure with sub-
formula sharing, which helps in lowering the number of additional variables needed.

More formally, a Boolean circuit over a finite set G of gates is a set C of equations of the form g := f (g1, . . . , gn),
where g,g1, . . . , gn ∈ G and f : {f, t}n → {f, t} is a Boolean function, with the additional requirements that (i) each
g ∈ G appears at most once as the left-hand side in the equations in C, and (ii) the underlying directed graph
〈G,E(C) = {〈g′, g〉 ∈ G × G | g := f (. . . , g′, . . .) ∈ C}〉 is acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g

is a parent of g′. If g := f (g1, . . . , gn) is in C, then g is an f -gate (or of type f), otherwise it is an input gate. A gate
with no parents is an output gate. A (partial) assignment for C is a (partial) function τ : G → {f, t}. An assignment τ

is consistent with C if τ(g) = f (τ(g1), . . . , τ (gn)) for each g := f (g1, . . . , gn) in C.
A constrained Boolean circuit Cτ is a pair 〈C, τ 〉, where C is a Boolean circuit and τ is a partial assignment for C.

With respect to a 〈C, τ 〉, each 〈g, v〉 ∈ τ is a constraint, and g is constrained to v if 〈g, v〉 ∈ τ . An assignment τ ′
satisfies Cτ if (i) τ ′ is consistent with C, and (ii) τ ′ ⊇ τ . If some assignment satisfies Cτ then Cτ is satisfiable and
otherwise unsatisfiable.

In this work we consider Boolean circuits with the following Boolean functions as gate types:

• NOT(v) is t if and only if v is f.
• OR(v1, . . . , vn) is t if and only if at least one of v1, . . . , vn is t.
• AND(v1, . . . , vn) is t if and only if all v1, . . . , vn are t.
• IMPLY(v1, v2) is t if and only if (i) v1 is f, or (ii) v2 is t.
• ITE(v1, v2, v3) is t if and only if (i) v1 and v2 are t, or (ii) v1 is f and v3 is t.
• EQUIV(v1, . . . , vn) is t if and only if (i) all v1, . . . , vn are f, or (ii) all v1, . . . , vn are t.
• EVEN(v1, . . . , vn) is t if and only if an even number of v1, . . . , vn are t.
• ODD(v1, . . . , vn) is t if and only if an odd number of v1, . . . , vn are t.
• CARDu

l (v1, . . . , vn) is t if and only if at least l and at most u of v1, . . . , vn are t.

Example 1. A Boolean circuit and its graphical representation is shown in Fig. 1. The circuit models a full-adder with
the constraint that the carry-out bit c1 is t. One satisfying truth assignment for the circuit is{〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, t〉, 〈b0, f〉, 〈c0, t〉}.

2.3. Translating Boolean circuits to CNF

In order to exploit clausal SAT solvers in solving instances of Boolean circuit satisfiability, the circuit has to be
translated to CNF. In this work we apply the CNF translation provided in the BCTools package [1]. The translation
procedure works as follows.

94 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
Fig. 1. A constrained Boolean circuit 〈C, τ 〉.

Table 1
CNF translation for constrained Boolean circuits

Gate g Clauses for g ⇒ f (g1, . . . gn) Clauses for f (g1, . . . gn) ⇒ g

g := IMPLY(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2) (g̃ ∨ g̃1), (g̃ ∨ ¬g̃2)

g := EQUIV(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ ¬g̃2) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ g̃2)

g := EVEN(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ ¬g̃2) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ g̃2)

g := ODD(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ ¬g̃2), (¬g̃ ∨ g̃1 ∨ g̃2) (g̃ ∨ ¬g̃1 ∨ g̃2), (g̃ ∨ g̃1 ∨ ¬g̃2)

g := OR(g1, . . . , gn) (¬g̃ ∨ g̃1 ∨ · · · ∨ g̃n) (g̃ ∨ ¬g̃1), . . . , (g̃ ∨ ¬g̃n)

g := AND(g1, . . . , gn) (¬g̃ ∨ g̃1), . . . , (¬g̃ ∨ g̃n) (g̃ ∨ ¬g̃1 ∨ · · · ∨ ¬g̃n)

g := ITE(g1, g2, g3) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ g̃3) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ ¬g̃3)

〈g, t〉 ∈ τ (g̃)

〈g, f〉 ∈ τ (¬g̃)

Step 1. The circuit is normalized as follows. Non-binary EVEN-, ODD-, and EQUIV-gates are decomposed. For exam-
ple, g := ODD(g1, g2, g3) is transformed into g := ODD(g1, g

′) and g′ := ODD(g2, g3), where g′ is a new gate. Based
on a heuristic choice, the CARDu

l -gates are decomposed by (i) applying the equations

CARDu
l (g1, . . . , gn) ⇔ CARD∞

l (g1, . . . , gn) ∧ ¬CARD∞
u+1(g1, . . . , gn)

and

CARD∞
l (g1, . . . , gn) ⇔ (

g1 ∧ CARD∞
l−1(g2, . . . , gn)

) ∨ CARD∞
l (g2, . . . , gn)

with dynamic programming, or by (ii) substituting them with a binary adder-comparator circuit when the lower (upper)
bound is close to the number of children (close to zero).

Step 2. The normalized circuit Cτ resulting from Step 1 is translated into CNF with the standard “Tseitin-style”
translation. A variable g̃ is introduced for each gate g. For encoding the functionalities of gates, gates of the form
g := NOT(g1) are not translated; instead, ¬g̃1 is substituted for g̃. For the other gate types, the idea is to represent the
logical equivalence g ⇔ f (g1, . . . , gn) as clauses; hence for each g := f (g1, . . . , gn) the corresponding introduced
clauses are as shown in Table 1.

2.4. The anatomy of modern SAT solvers

Most modern complete SAT solvers are based on the DPLL procedure [14,15]. Given a CNF formula F as in-
put, DPLL is a depth-first search procedure building a partial assignment τ from the variables in F to {t, f} through
(i) branching and (ii) unit propagation (UP). In branching, the current assignment τ is extended with τ(x) = v, where
v ∈ {f, t}, for some unassigned variable x. Unit propagation extends the current partial assignment τ with τ(l) = t if
there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F such that τ(li) = f for each 1 � i � k, where l and each li are literals. Vari-
ables assigned by branching in the current assignment are decision variables, and those assigned by UP are implied
variables.

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 95
Most complete SAT solvers aimed at solving structured instances enhance DPLL with conflict analysis (or clause
learning) [24] which is applied when a conflict is reached, that is, when unit propagation would assign the opposite
value to an already assigned variable. If there is a conflict at decision level zero, the formula F is determined unsatis-
fiable. In other cases, the conflict is analyzed, and a learned clause (or conflict clause), which describes the “cause”
of the conflict, is added to F . After this, clause learning solvers typically apply non-chronological backtracking (or
conflict driven backjumping) based on the conflict clause. We will now give a more detailed intuition into the main
techniques centered around clause learning in modern SAT solvers. To complement this description, we refer the
reader for example to [24].

A clause is called known if it either appears in the original CNF formula or has been learned earlier during the
search. Conflict analysis is based on a conflict graph, which captures the way the current conflict has been reached.
The nodes of the graph are labeled by the variable assignments. There are directed edges from each τ(li) = f to
τ(l) = t if and only if the assignment τ(l) = t has been made by UP based on the assignments τ(li) = f with a known
clause (l1 ∨ · · · ∨ lk ∨ l). After this, a conflict clause is formed based on a conflict cut in the conflict graph.

The decision level of a decision variable x is one more than the number of decision variables in the branch before
branching on x. The decision level of an implied variable x is the number of decision variables in the branch when
x is assigned a value. The decision level of DPLL at any stage is the number of variables currently assigned by
branching. A conflict cut is any cut in the conflict graph with all the decision variable assignments on one side (the
reason side) and at least one of the assignments on the conflict variable on the other side (the conflict side). Those
nodes on the reason side with at least one edge going to the conflict side in a conflict cut form a cause of the conflict;
with the associated assignments, UP can arrive at the conflict at hand. The literals satisfied by the negations of these
assignments form the conflict clause associated with the conflict cut.

The strategy for fixing a conflict cut is called the learning scheme. Typically implemented clause learning schemes
are based on unique implication points (UIPs) [24]. A UIP in the conflict graph is a node u on the current decision
level d such that all paths from the assignment on the decision variable x at level d to the assignments on the conflict
variable go through u. Such a conflict clause causes the value of the UIP to be immediately flipped by UP when
backtracking. UIP learning enables (conflict driven) backjumping in which DPLL non-chronologically backtracks to
the maximal decision level of the variables other than the UIP in the conflict clause. A popular version of UIP learning
is the 1-UIP scheme, where a cut with the UIP “closest” to the conflict variable assignments is chosen. Different
learning schemes are evaluated in [39], showing the robustness of the 1-UIP scheme.

In clause learning solvers, decision heuristics are also typically bound with the clause learning scheme. One popular
implementation is the VSIDS heuristic [18] which is based on incrementing the heuristic values of variables/literals
associated with conflicts (for example, all literals in the conflict clause [18], or all variables in the conflict clause and
on the conflict side in each conflict [26]). Furthermore, all heuristic values are decremented by a predetermined factor
regularly, typically after every nth conflict, with the intuition that the variables causing recent conflicts are especially
relevant.

Restarts are also often implemented in modern solvers. When a restart occurs, the decisions and unit propaga-
tions made so far are undone, and the search continues from decision level zero. Intuitively, restarts help in escaping
from getting stuck in hard-to-prove subformulas, and have shown to boost the efficiency of combinatorial search al-
gorithms [22]. An evaluation of the effect of different restart strategies for clause learning SAT solvers is presented
in [23].

3. Experiment setup

We evaluate the effect of structural branching restrictions on the behavior of modern clause learning solver tech-
niques. Before detailed discussion of the results, we describe the used Boolean circuit satisfiability benchmarks and
BCMinisat, the Boolean circuit front-end for the successful clause learning SAT solver Minisat [26] (version 1.14,
available at http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/) which we used for the experiments.
BCMinisat is part of the BCTools [1] package developed by Tommi Junttila.

96 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
3.1. Benchmarks

The benchmark set used in the experiments consists of instances from a number of real-life application domains,
for which Boolean circuits offer a natural representation form. In selecting the benchmarks, the aim was to obtain a
set of instances from multiple problem domains with varying structural properties. The selected benchmark set in-
cludes instances from verification of super-scalar processors [41], integer factorization based on hardware multiplier
designs [42], equivalence checking of hardware multipliers, bounded model checking (BMC) for deadlocks in asyn-
chronous parallel systems modeled as labeled transition systems (LTSs) [43], and linear temporal logic (LTL) BMC
of finite state systems with a linear encoding [44].

Verification of superscalar processors. Boolean circuits encoding the problem of formally verifying the correctness
of pipelined superscalar processors. The circuits are result of the translation from the logic of equality with uninter-
preted functions to propositional logic presented in [41].

Bounded model checking for deadlocks in LTSs. Circuits resulting from a translation scheme (using so called
interleaving and process semantics) for BMC for deadlocks in a variety of asynchronous systems modeled as labeled
transition systems [43].

Linear temporal logic BMC of finite state systems. Linear size Boolean circuits encodings of BMC for finding bugs
in finite state system designs violating properties specified in linear temporal logic (LTL) [44].

Integer factorization based on hardware multiplier designs. These circuits encode the problem of finding factors
of (both divisible and prime) numbers. The problem encodings are based on two hardware binary multiplier designs,
the adder tree and Braun multipliers. For a fixed n, both multipliers take as input two integers a = (a1, . . . , an) and
b = (b1, . . . , bn) as binary vectors, and output the product o = (o1, . . . , o2n). Both designs consist of O(n2) gates.
However, the multipliers are structurally very unsimilar. The propagation delays (maximum of path lengths from
inputs to outputs) are O(n) for Braun, and O(log(n logn)) for adder tree. While Braun consists of a grid of full-
adders, adder tree applies adders in a tree-like fashion, summing up partial products. The circuits are obtained using
the genfacbm benchmark generator [42].

Equivalence checking of hardware multipliers. These circuits encode the problem of equivalence checking the
results of the correct adder tree and Braun multipliers. A Boolean circuit describing an instance of the equivalence
checking problem for given n-bit adder tree (output bits oa = (oa

1, . . . , o
a
2n)) and Braun multipliers (output bits ob =

(ob
1, . . . , o

b
2n)) is constructed as follows:

• The inputs of the multipliers are made equivalent by sharing the input gates a1, . . . , an, b1, . . . , bn.
• Bit-wise equivalence of the outputs oa and ob is enforced by introducing gates o

eq
i := EQUIV(oa

i , o
b
i) for i =

1, . . . ,2n.
• As a single output gate introduce out := AND(o

eq
1 , . . . , o

eq
2n).• Constrain out to 0 (false).

Since the multiplier designs produce equivalent results for any two multiplicands, we arrive at unsatisfiable equiva-
lence checking instances. In constructing these equivalence checking instances, the braun and atree multiplier circuits
were obtained using the genfacbm generator [42].

The set of Boolean circuit satisfiability benchmarks (a total of 38 instances) is available at

http://www.tcs.hut.fi/~mjj/benchmarks/.

Structural properties of the normalized and simplified circuits are listed in Table 2.
For the experiments, we obtain a total of 570 CNF instances from these circuits as explained next. For solving the

instances, we use a farm of standard PCs with 2-GHz AMD 3200+ processors and 2 GBs of memory running Debian

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 97
Table 2
Properties of the Boolean circuit benchmarks. sat: satisfiability of the instance; #inputs: the number of input variables in the CNF translation
(percentage out of all variables in parentheses); circuit heights: max-min/max-max (maximum of the minimal/maximal length of paths from an
output gate to the inputs); circuit depths: med-min/max-min (median/maximum of the minimal length of paths from an input gate to the outputs),
med-max (median of the maximal length of paths from an input gate to the outputs). Notice that here NOT-gates do not contribute to the length of
the paths, since they are not translated

Instance sat #inputs Height Depth

max-min max-max med-min max-min med-max

Super-scalar processor verification

fvp.2.0.3pipe.1 no 186 (8.2) 5 36 4 5 30
fvp.2.0.3pipe_2_ooo.1 no 305 (11.7) 5 47 1 5 25
fvp.2.0.4pipe_1_ooo.1 no 544 (10.4) 5 75 1 5 27
fvp.2.0.4pipe_2_ooo.1 no 547 (9.8) 5 75 1 7 27
fvp.2.0.5pipe_1_ooo.1 no 845 (8.9) 5 117 1 6 28

Equivalence checking hardware multipliers

eq-test.atree.braun.8 no 16 (2.3) 6 30 1 1 30
eq-test.atree.braun.9 no 18 (2.0) 7 37 1 1 34
eq-test.atree.braun.10 no 20 (1.8) 7 38 1 1 38

Integer factorization

atree.sat.34.0 yes 60 (0.6) 11 103 1 1 66
atree.sat.36.50 yes 64 (0.6) 10 111 1 1 71
atree.sat.38.100 yes 68 (0.6) 11 121 1 1 80
atree.unsat.32.0 no 57 (0.7) 10 90 1 1 53
atree.unsat.34.50 no 60 (0.6) 11 101 1 1 66
atree.unsat.36.100 no 64 (0.6) 10 109 1 1 71
braun.sat.32.0 yes 61 (2.2) 3 62 1 1 61
braun.sat.34.50 yes 65 (2.1) 3 66 1 1 65
braun.sat.36.100 yes 69 (2.0) 3 70 1 1 69
braun.unsat.32.0 no 60 (2.2) 3 62 1 1 61
braun.unsat.34.50 no 64 (2.0) 3 66 1 1 65
braun.unsat.36.100 no 68 (1.9) 3 70 1 1 69

BMC for deadlocks in LTSs

dp_12.i.k10 no 480 (16.0) 2 47 1 1 19
key_4.p.k28 no 967 (10.9) 3 56 1 1 20
key_4.p.k37 yes 1507 (9.8) 3 74 1 1 26
key_5.p.k29 no 1212 (10.7) 3 58 1 1 22
key_5.p.k37 yes 1796 (9.8) 3 74 1 1 26
mmgt_4.i.k15 no 456 (10.9) 2 33 1 1 19
q_1.i.k18 no 566 (13.1) 2 49 1 1 22

LTL BMC by linear encoding

1394-4-3.p1neg.k10 no 1845 (5.6) 4 28 2 4 8
1394-4-3.p1neg.k11 yes 2023 (5.5) 4 30 2 4 8
1394-5-2.p0neg.k13 no 1940 (5.0) 4 34 2 3 10
brp.ptimonegnv.k23 no 461 (6.7) 3 115 2 3 49
brp.ptimonegnv.k24 yes 481 (6.7) 3 120 2 3 51
csmacd.p0.k16 no 1794 (2.9) 3 169 3 13 16
dme3.ptimo.k61 no 6375 (26.3) 4 603 6 7 470
dme3.ptimo.k62 yes 6506 (26.3) 4 615 6 7 480
dme3.ptimonegnv.k58 no 5982 (26.3) 4 568 6 7 441
dme3.ptimonegnv.k59 yes 6113 (26.3) 4 580 6 7 451
dme5.ptimo.k65 no 10750 (26.8) 4 611 6 7 461

GNU Linux, with a timeout of 1 hour and a memory limit of 1 GB. The Boolean circuit benchmarks were selected
based on the performance of BCMinisat without permuting the CNF variable numbering, so that the running times of
BCMinisat on each of the 38 Boolean circuit instances is less than 30 minutes.

98 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
3.2. Simplification and CNF translation in BCMinisat

BCMinisat accepts as input Boolean circuits with the functions listed in Section 2.2 as gate types. The front-
end also does circuit-level preprocessing, including Boolean propagation, substructure sharing, and cone-of-influence
reduction [45] to the circuit. The resulting normalized and simplified circuit is translated into CNF applying the
translation in Section 2.3, and fed to Minisat for solving.

For each Boolean circuit satisfiability instance, we obtain 15 CNF instances by randomly permuting the CNF vari-
able numbering with the -permute_cnf option of BCMinisat, making the total number of CNF formulas 570.
Permuting the instances is justified by the fact that the aim of this work is to study the robustness of heuristic clause
learning SAT solver techniques. This is in contrast with peak performance studies, where the fact that the variable num-
bering of the CNF instances can reflect the encoded circuit structure may allow for optimizations in the solvers. For
example, a solver could be optimized by assuming that input variables are numbered consecutively with small/large
numbers.

3.3. The clause learning CNF solver Minisat

Minisat implements 1-UIP clause learning and a variation of the VSIDS heuristic [18]. After each conflict the
heuristic values of each variable on the conflict side and in the conflict clause is incremented by one, and the values
of all variables are decremented by 5%. In the beginning, all heuristic values are set to zero. To avoid hindering
efficiency by learning massive amounts of clauses, the solver also uses a scheme for forgetting learned clauses that
have not occurred on the conflict side in recent conflicts. Additionally, a restart strategy is applied.

We implemented the considered structural branching restrictions to BCMinisat, and modified Minisat so that its
branching can be restricted to a given set of variables. For ensuring that restricting branching does not make decision
making more time-consuming, we do not increment heuristic values for unbranchable variables, and additionally set
the heuristic values of all branchable variables to one to make sure that time is not wasted on finding branchable
variables even in the beginning of the search.

4. Results and analysis

We start by considering the effect of restricting branching in Minisat to inputs variables on the efficiency of
the solver. After detailed analysis of input-restricted branching, we will consider the effects of relaxing the input-
restriction using various structural properties of the benchmarks. Notice that in the following the main hypotheses are
implicitly bound to Minisat since we use Minisat (and its modifications) for the experiments.

4.1. Effects of input-restricted branching

Motivated by the fact that input variables provide an easy-to-detect and relatively small strong backdoor set, and
the intuitive drop in the size of the search space achieved by applying input-restricted branching, we consider the
following hypothesis as the starting point.

Hypothesis 1. The set of input variables, being a relatively small strong backdoor set, provides a branching restriction
from which clause learning SAT solvers using the VSIDS heuristic benefit.

Table 3 gives the minimum, median, and maximum number of decisions for BCMinisat and input-restricted
BCMinisat (BCMinisatinputs) for each Boolean circuit satisfiability benchmark instance. For reference, we also in-
clude the number of decisions for Minisat (column Minisat) and for Minisat using the SatELite preprocessor (column
SatELite) without permuting the CNF variable numbering.

For the instances based on integer factorization and equivalence checking, for which the number of unassigned
input variables is 2% or less out of all unassigned variables, BCMinisatinputs shows an advantage over BCMinisat with
respect to the number of decisions. However, for the hardware verification and BMC instances, the overall performance
of BCMinisatinputs is much worse, with timeouts on all verification and half of the LTL BMC instances. The possible
gains of input-restricted branching seems to correlate with a very low relative number of input variables.

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 99
Table 3
Number of decisions for Minisat (Minisat) and Minisat with the SatELite preprocessor (SatELite) without permuting the variable numbering;
Minimum (min), median (med), and maximum (max) of number of decisions for BCMinisat and BCMinisatinputs with number of timeouts
in parenthesis; ud: the number of unbranchable variables which have better heuristic values than the best branchable variable per decision for
BCMinisatinputs (median of averages); bb: the fraction of increments on branchable variables from the number of all increments to heuristic values
during search (median)

Instance Number of decisions ud bb

BCMinisat BCMinisatinputs

Minisat SatELite min med max min med max

Super-scalar processor verification

fvp.2.0.3pipe.1 62449 54857 61531 384386 1225134 – (15) – (15) – (15) – –
fvp.2.0.3pipe_2_ooo.1 42183 70684 75962 184798 426489 – (15) – (15) – (15) – –
fvp.2.0.4pipe_1_ooo.1 160696 204285 188992 209048 271982 – (15) – (15) – (15) – –
fvp.2.0.4pipe_2_ooo.1 305488 284037 1033607 2094617 5241781 – (15) – (15) – (15) – –
fvp.2.0.5pipe_1_ooo.1 363318 478431 336281 746231 1838599 – (15) – (15) – (15) – –

Equivalence checking hardware multipliers

eq-test.atree.braun.8 373730 180449 285665 339805 65785 73834 82372 88.5 0.02
eq-test.atree.braun.9 825947 1230057 898917 1055511 1317785 323688 385398 389890 106.6 0.02
eq-test.atree.braun.10 4794412 6334818 3755375 4540598 5089443 1428957 1590390 1787295 127.9 0.01

Integer factorization

atree.sat.34.0 348591 142916 156733 228792 761620 24820 208880 277896 21.9 0.04
atree.sat.36.50 495386 732282 251218 721474 937152 316590 571533 788762 18.4 0.04
atree.sat.38.100 1152065 1057515 284980 1095192 – (1) 190330 498092 1082729 – –
atree.unsat.32.0 196353 174606 141419 163508 180973 123502 138797 162546 15.3 0.04
atree.unsat.34.50 282481 290073 248371 287351 404418 223130 244382 301464 18.0 0.04
atree.unsat.36.100 528948 816433 527237 623889 915810 431576 480469 578331 19.4 0.03
braun.sat.32.0 96452 196844 27480 82122 140150 5675 81269 135093 25.6 0.05
braun.sat.34.50 148494 191325 30717 152224 353464 43924 110614 223306 25.3 0.05
braun.sat.36.100 522255 615534 129771 447716 589449 86134 374884 752645 19.4 0.05
braun.unsat.32.0 115569 157657 107617 122550 156004 96894 119437 150121 10.4 0.06
braun.unsat.34.50 257780 311640 215624 263845 341855 213199 258446 316819 9.1 0.06
braun.unsat.36.100 741218 635655 514725 623671 807610 533575 640111 674470 8.9 0.06

BMC for deadlocks in LTSs

dp_12.i.k10 522359 1176291 513935 639756 987595 2497570 – (10) – (10) – –
key_4.p.k28 102892 109422 121552 147063 169386 138361 184875 220107 3.7 0.53
key_4.p.k37 697731 286767 56784 321552 1549271 7574 663152 – (1) – –
key_5.p.k29 264905 216840 193139 223867 310207 230844 343255 405686 3.9 0.5
key_5.p.k37 1069064 245622 104496 421324 1540174 19027 1041807 – (3) – –
mmgt_4.i.k15 322085 332035 210288 287599 457009 582998 1105986 2170048 4.2 0.41
q_1.i.k18 350247 282173 168156 353421 507246 375493 929019 1349785 3.7 0.49

LTL BMC by linear encoding

1394-4-3.p1neg.k10 151664 105315 141822 155295 164900 138468 148545 156839 6.6 0.34
1394-4-3.p1neg.k11 236405 12190 72988 128708 203647 34619 55575 189434 9.0 0.32
1394-5-2.p0neg.k13 141788 153719 125840 143928 158320 146144 156527 186468 6.7 0.32
brp.ptimonegnv.k23 119438 197011 106338 130577 259025 193839 302930 356313 4.1 0.28
brp.ptimonegnv.k24 77692 45315 43013 96775 162114 13699 74907 260481 5.5 0.27
csmacd.p0.k16 326348 534784 229192 316082 376280 269520 341751 381248 4.9 0.28
dme3.ptimo.k61 438418 822795 314659 549686 1658757 – (15) – (15) – (15) – –
dme3.ptimo.k62 815566 779476 427100 688505 1545603 – (15) – (15) – (15) – –
dme3.ptimonegnv.k58 700030 348887 324770 568864 962967 – (15) – (15) – (15) – –
dme3.ptimonegnv.k59 557504 234645 303921 480073 1136938 – (15) – (15) – (15) – –
dme5.ptimo.k65 571986 1461903 497190 735741 1839619 – (15) – (15) – (15) – –

In Fig. 2 we have a cumulative plot of the number of solved instances as a function of time, showing a drastic
decrease in performance for the input-restricted branching Minisat.

100 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
Fig. 2. Comparison of BCMinisat and BCMinisatinputs: cumulative number of solved instances.

Fig. 3. Comparison of BCMinisat and BCMinisatinputs: running times on unsatisfiable (left) and satisfiable (right) instances.

The effect of input-restricted branching varies depending on whether unsatisfiable or satisfiable instances are con-
sidered (Fig. 3). On unsatisfiable instances input-restriction results in a clear efficiency decrease, with timed out runs
shown on the horizontal line. For satisfiable instances, there seems to be no clear winner, although when selecting
from the relative small set of input variables, the probability of choosing a satisfying assignment is intuitively greater.
However, BCMinisatinputs does timeout on several satisfiable instances, while BCMinisat timeouts only once.

We make additional observations by looking at statistics over all instances solved by both BCMinisat and
BCMinisatinputs.

A noticeable point is that, while BCMinisatinputs makes less decisions, for example, on the equivalence checking
instances, unrestricted BCMinisat is at least as efficient as BCMinisatinputs when looking at running times. Interest-
ingly, this is due to the fact that unrestricted BCMinisat often manages more decisions per second (see Fig. 4; over
the set of CNF instances solved by both BCMinisat and BCMinisatinputs).

We also examine the maximal decision levels visited by BCMinisat and BCMinisatinputs on the different instance
families (Fig. 5). The intuitive drop in the worst-case behavior of Minisat resulting from input-restricted branching
is reflected in the maximal decision levels for the families based on integer factorization and equivalence checking,
where the number of input variables is very low (see column #inputs in Table 2). For the LTS BMC instances, however,
the decision levels are greater for the input-restricted branching solver, although the number of input variables is still
only around 10% out of all unconstrained variables.

On the equivalence checking instances, we notice that the number of decisions for BCMinisatinputs is more than
the brute-force upper bound, that is, the size of the search space. For example, for eq-test.atree.braun.10
around 1.4–1.8 × 106, compared to the brute-force bound 220 ≈ 1.0 × 106. Considering that we are using a state-of-
the-art clause learning solver, we hypothesize that this surprising result is mostly due to conflict clause forgetting;

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 101
Fig. 4. Comparison of BCMinisat and BCMinisatinputs: number of decisions/second.

Fig. 5. Comparison of BCMinisat and BCMinisatinputs: maximal decision levels.

when forgetting a conflict clause C, the solver may have to re-examine the search space characterized as unsatisfiable
by C. To verify this, we disabled conflict clause forgetting in Minisat (that is, we disabled calls to reduce_DB()),
and ran this modified Minisat on the eq-test.atree.braun benchmarks. Comparison of the minimum, median,
and maximum number of decisions for the original BCMinisatinputs and the modified BCMinisatinputs without conflict
clause forgetting is presented in Table 4, along with the search space size when applying input-restricted branching. We
notice that with conflict clause forgetting disabled, the number of decisions for BCMinisatinputs no more exceeds the
search space size. Hence, the conflict clause forgetting mechanism applied in Minisat plays an evident role in causing
the peculiar behavior of BCMinisatinputs on the equivalence checking instances. However, we note that by disabling
conflict clause forgetting, we witnessed an approximately ten-fold increase in the running times of BCMinisatinputs on
these instances. Conflict clause forgetting seems to be an integral part of the design of Minisat; this also explains why
we did not run BCMinisatinputs without forgetting on the other instance families.

We have this far observed that, opposed to Hypothesis 1, the clause learning solver Minisat, with the VSIDS
heuristics, shows an evident reduction in efficiency when restricting Minisat to branch only on input variables, thus
invalidating Hypothesis 1.

102 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
Table 4
Comparison of the minimum, median, and maximum number of decisions for the original BCMinisatinputs and BCMinisatinputs without conflict

clause forgetting. The search space size when applying input-restricted branching is given in column 2|inputs|

Instance Number of decisions 2|inputs|

BCMinisatinputs BCMinisatinputs without forgetting

min med max min med max

eq-test.atree.braun.8 65785 73834 82372 56286 57325 57969 65536
eq-test.atree.braun.9 323688 385398 389890 234077 235732 238285 262114
eq-test.atree.braun.10 1428957 1590390 1787295 951504 966054 975877 1048576

Fig. 6. Comparison of BCMinisat and BCMinisatinputs: average length of conflict clauses.

However, we have not yet provided explanations for this result, and this will be our next objective. A major aspect
is to attempt to give an explanation for the fact that input-restricted branching Minisat manages fewer decision per
second.

Since the clause learning mechanism and the VSIDS heuristics, which is tightly bound with the learning mecha-
nism, are key factors in the efficiency of Minisat, we will look for explanations for the performance of BCMinisatinputs

by considering the effect of the input-restriction on the behavior of clause learning and VSIDS. Thus, we consider the
following hypotheses.

Hypothesis 2. By restricting branching to input variables, clause learning becomes less effective.

Hypothesis 3. By restricting branching to input variables, the solver is forced to make heuristically unimportant
decisions.

An important aspect in the effectiveness of clause learning is the length of conflict clauses, that is, the number of
literals in the clauses. Since a conflict clause describes an unsatisfiable part of the search space, shorter conflict clauses
are intuitively exponentially more effective than longer ones. In Fig. 6 we have a comparison of the average lengths of
conflict clauses in the solved instances. With input-restricted branching the conflict clauses are typically longer. This
supports Hypothesis 2.

Further explanation for the reduced number of decisions per second and the increase in the length of conflict clauses
is provided by comparing BCMinisat and BCMinisatinputs with respect to the number of variables assigned by unit
propagation (Fig. 7) and the number of conflicts per decision (Fig. 8).

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 103
Fig. 7. Comparison of BCMinisat and BCMinisatinputs: number of propagations/decision.

Fig. 8. Comparison of BCMinisat and BCMinisatinputs: number of conflicts/decision.

We observe that, on the average, BCMinisatinputs does both more propagation per decision and ventures more often
into conflicts. At the same time, the conflicts BCMinisatinputs ventures into result in longer (and thus less effective)
conflict clauses using the 1-UIP conflict learning scheme. This leads us to conjecture the following. The combination
of increased number of conflicts per decision and propagations per second results in a decrease in the number of
decisions the solver is able to make per second. In other words, the input-restricted solver uses relatively more time on
propagation and especially, due to the increased number on conflicts per decision, on conflict analysis. Additionally,
the increase in time used for conflict analysis does not pay off, since the resulting conflict clauses are longer and thus
relatively ineffective. It is very interesting to notice that an increase in the number of propagations does not seem to
result in increased solver performance. This is surprising, since it is common to think that the more the solver can unit
propagate, the better. It seems that the effectivity of clause learning depends more on the specific value assignments
that have been made rather than how many assignments have been made, and is in support of Hypothesis 3. This is
very much in contrast with DPLL solvers without clause learning, in which unit propagation plays an important role
in pruning the search space due to standard backtracking and lack of conflict analysis.

104 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
Fig. 9. The ratio of the running time of the unrestricted-branching Minisat to the running time of input-restricted Minisat as a function of the relative
number of decisions on input variables: unsatisfiable (left) and satisfiable instances (right).

Considering Hypothesis 3 further, we observe that the VSIDS heuristic does not seem to work as intended with
input-restricted branching. The number of unbranchable variables which have better heuristic values than the best
branchable variable can be high per decision (median of averages: ud in Table 3). For example, for eq-test.
atree.braun.10 on the average there are, per decision, over 100 unbranchable variables with better heuristic
scores than the best branchable one. From another point of view, the fraction of increments on branchable variables
from the number of all increments to heuristic values during search can be in some cases even as low as 1% (median:
bb in Table 3). Since the heuristic scores of the variables on which BCMinisatinputs is allowed to branch are very
infrequently updated, the input-restriction results in the risk of degenerating VSIDS into a random heuristic. Together
these two observations strongly support Hypothesis 3.

The evidence provided thus far in support of Hypotheses 2 and 3 leads one to question how often the original
BCMinisat, without any restriction on which variables to branch on, actually branches on input variables.

Hypothesis 4. Input variables are seldom decision variables.

To investigate the validity of Hypothesis 4, we recorded the number of decisions unrestricted-branching Minisat
made on input variables. We calculate for all instances the ratio of the number of decisions Minisat made on input
variables (dinputs) to the total number of decisions (d) Minisat made on the instance, that is, dinputs

d
. We then obtain

the relative number of decisions on input variables for Minisat by dividing dinputs

d
by the ratio of the number of input

variables to the total number of variables in the instance.
The ratio of the running time of the unrestricted-branching Minisat to the running time of input-restricted Minisat

as a function of the relative number of decisions on input variables is shown in Fig. 9 over all instances on which
neither of the solvers timed out. The (i) horizontal and (ii) vertical lines represent the instances on which unrestricted
and input-restricted Minisat have identical running times (i) and the instances on which the number of decisions
made by unrestricted Minisat on input variables correlates with the percentage of input variables in the instance (ii),
respectively. The points in the lower left part of the plots represents instances on which the unrestricted-branching
Minisat has both branched relatively few times on input variables and solved the instance faster than input-restricted
Minisat. If the relative efficiency of unrestricted Minisat would be strongly related with relatively few decision made
on input variables, this should show in the plots as most of the points being in either the lower left or the upper right
parts. However, such behavior is not visible, as the data points are rather evenly distributed around the horizontal
and vertical lines. By this observation it seems that the reason for the difference in running times for unrestricted
and input-restricted branching Minisat is not due to unrestricted Minisat making relatively few decisions on input
variables, but rather—in disagreement with Hypothesis 4—due to the fact the unrestricted solver can branch on other
relevant variables in addition to inputs.

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 105
4.1.1. Conclusions on the effects of input-restricted branching
Concerning Hypotheses 1–4, we make the following conclusions based on the experiments on input-restricted

branching.

• Although the set of input variables provides a relatively small strong backdoor set, the clause learning SAT solver
Minisat, using the VSIDS heuristic, does not benefit from the restriction as such. The performance degrades
especially on unsatisfiable instances.

• The effectivity of clause learning degrades. While the input-restricted branching solver ventures into more con-
flicts per decision, conflict clauses become longer and more time is used on conflict analysis.

• The solver runs into more conflicts and propagates more per decision. However, this does not help in making the
search more efficient, since at the same time the conflict clauses become longer and thus less effective.

• The solver is often forced to branch on variables that are unimportant with respect to heuristic scores of VSIDS.

We conjecture that, at least without fundamentally modifying the conflict learning and branching heuristics, it is
unlikely that input-restricted branching can be successfully incorporated into clause learning solvers with VSIDS.
The evidence against Hypothesis 4 leads us to conjecture that in order to regain robustness of the solver, the input-
restriction needs to be relaxed by allowing branching on additional variables.

4.2. Effects of relaxing input-restricted branching

The conclusions on the performance degrading effects of input-restricted branching lead us to the question of how
the number of variables on which the solver is allow to branch correlates with solver performance. Can the robustness
of input-restricted branching be improved while still branching on a subset of variables? Another aspect is whether
structural properties of the variables on which the solver is allowed to branch affect the performance of the solver.

In the following, we apply controlled schemes for allowing branching additionally on CNF variables other than
input variables based on structural properties of Boolean circuits. The general idea here is to allow—in addition to
input variables—branching consistently on the best p% of unconstrained non-input variables according to criteria that
are based on different aspects of the underlying circuit structure. Input variables are always included for assuring that
Minisat remains complete under the restrictions; that is, we will relax the input-restriction.

We will first investigate the following hypothesis.

Hypothesis 5. The more relaxed the branching restriction is, the better the restriction works with the solver.

The first relaxation we consider is the random restriction:

Random restriction (denoted by rnd(p)rnd(p)rnd(p)). In addition to input variables, branching is allowed on p% of randomly
chosen unconstrained non-input variables.

Intuitively, this results in allowing branching evenly across the underlying circuit structure. The random restriction
will also serve as a reference point for the other structural restrictions we will consider.

We ran BCMinisat with the random restriction with the percentage values p = 10,20,40,60,80. The results as the
cumulative number of solved instances, along with input-restricted and unrestricted branching Minisat, are shown in
Fig. 10. We observe that, inline with Hypothesis 5, allowing branching on non-input variables in addition to inputs,
the robustness of the branching-restricted Minisat increases gradually.

For more details on the effects of relaxing the input-restriction, we look at (i) the average length of conflict clauses
(on the left in Fig. 11) and (ii) the relative number of branchable variables occurring in the conflict clauses (on the
right in Fig. 11), when moving from input-restricted branching to the random restriction with p = 20 (top row in
Fig. 11), then from the random restriction with p = 20 to p = 40 (middle row in Fig. 11), and finally from p = 40 to
p = 80 (bottom row in Fig. 11).

We observe that the length of conflict clauses somewhat decreases as p is increased. At the same time, the number
of variables on which the solver is allowed to branch evidently increases. For p = 40, for example, over half of the
literals in the conflict clauses are branchable on most of the instances.

106 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
Fig. 10. Cumulative number of solved instances for the random branching restriction.

We have now seen that the solver benefits from relaxing the input-restriction. However, the random restriction does
not take into account structural properties of the selected variables. Following the intuition behind heuristics found
in implementations of DPLL without clause learning—based on literal counting [16] for example—we now turn our
attention to the following question. In the context of relaxing the input-restriction, how much do structural properties
of the variables on which the solver is additionally allowed to branch affect the relative performance of the solver?
Our hypothesis is the following.

Hypothesis 6. Structural properties, based on which branching is restricted, play an important role in the efficiency of
the solver.

First, for defining structure-based branching restrictions, we need some additional notation. Let Cτ be a simplified
and normalized constrained circuit with the sets of unconstrained gates G, input gates inputs(Cτ), and output gates
outputs(Cτ). For a gate g := f (g1, . . . , gn), the set of g’s children is children(g) = {g1, . . . , gn}, and the set of g’s
parents is parents(g). For a gate g ∈ G, the fanout fanout(g) is the number of gates whose child g or g′ := NOT(g) is.
The degree degree(g) is the sum of fanout(g) and the number of g’s children. Additionally, let Δmax

inputs(g) denote the
length of the longest path under the child relation of Cτ from g to any input gate. Here NOTs do not contribute to the
length of the paths, since they are not translated. Similarly, Δmax

outputs(g) stands for the length of the longest path under

the parent relation of Cτ from g to any output gate. Furthermore, Δmin
inputs(g) and Δmin

outputs(g) denote the lengths of the
shortest paths from g to any input and output, respectively.

We are now ready to define the structural branching restriction criteria that we apply.

Fanout-based restriction fan(p)fan(p)fan(p). Here gates are ranked according to the values fanout(g), with the criterion that
gates with large values are preferred. This is a generalization of the idea of restricting branching to gates g with
fanout(g) > 1 as suggested in the context of SAT-based ATPG [38].

Degree-based restriction deg(p)deg(p)deg(p). Here gates are ranked according to the values degree(g), with the criterion that
gates with large values are preferred. The value degree(g) is closely related to the number of occurrences of the
variable corresponding to gate g in the CNF translation of Cτ . Hence, this restriction is related to the counting based
branching heuristics such as DLIS and MOMS in which heuristic values are based on counting the number of occur-
rences of variables/literals [16].

Flow-based restriction flow(p)flow(p)flow(p). Here gates are ranked according to the values flow(g), as defined below, with the
criterion that gates with large values are preferred.

flow(g) =
{ 1

|outputs(Cτ)| , if g ∈ outputs(Cτ),∑
′ flow(g′)

′ , otherwise.
g ∈parents(g) |children(g)|

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 107
Fig. 11. Comparison of input-restricted branching and random restriction with p = 20 (top row), random restriction with p = 20 and p = 40
(middle row), and random restriction with p = 40 and p = 80 (bottom row). Left column: average length of conflict clauses, right column: relative
number of branchable variables occurring in the conflict clauses.

In other words, we compute a total flow value for each gate by pouring a constant quantity of flow down from
the output gates of the circuit. Notice that in the simplified and normalized circuit Cτ , the output gates are always
constrained by τ . Here the intuitive idea is that, if a large total flow passes through a gate g, the gate is globally very
connected with the constraints in τ , and thus g would have an important role in the satisfiability of the circuit.

Distance-based restrictions. Complementing the other restrictions based on the underlying structure of Boolean
circuits, we also consider restricting branching based on the distances of gates from inputs and outputs.

108 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
• In minmax-dist(p) gates are ranked according to the values

max
{
Δmax

inputs(g),Δmax
outputs(g)

}
,

with the criterion that gates with small values are preferred. Here the idea is to concentrate branching on variables
that are close to both input and output variables.

• In maxmin-dist(p) gates are ranked according to the values

min
{
Δmin

inputs(g),Δmin
outputs(g)

}
,

with the criterion that gates with large values are preferred. Here the idea is to concentrate branching on variables
that are far from both input and output variables (the dual of minmax-dist(p)).

In selecting the p% of variables according to a particular criterion, ties are broken randomly from the set of
variables having the break value of the criterion. For example, consider fan(p). Let k be the break value such that

100 × ∣∣{g ∣∣ fanout(g) � k
}∣∣/|G| � p

and

100 × ∣∣{g ∣∣ fanout(g) � k + 1
}∣∣/|G| < p

hold. Now branching is allowed on all gates g with fanout(g) � k + 1 and additionally on a number of randomly
chosen gates g with the break value fanout(g) = k so that the percentage p is reached.

We ran BCMinisat with all the above-mentioned branching restrictions and values p = 10,20,40,60,80. The
results as the cumulative number of solved instances are shown in Fig. 12. It is interesting to see that for the fanout
and degree based restrictions only 20% additional branching variables are enough for the restrictions to reach a level
of robustness very close to unrestricted branching Minisat. For the flow-based restriction, this holds from 40% on. The
distance-based restrictions result in very poor performance, even compared to the random restriction. In accordance
with Hypothesis 6, the choice of the structural criterion does make a difference.

We look for possible explanations for the fact that the structural property based on which branching is restricted
affects the efficiency of the solver. We compare the fanout restriction (very close to the original unrestricted solver in
performance), the max-min distance restriction (the worst behaving restriction), and also take the random restriction
as a reference. The relative number of branchable variables occurring in the conflict clauses and the average length
of conflict clauses when using these branching restriction criteria are shown in Figs. 13 and 14, respectively, with
p = 20. As shown in Fig. 14, we observe no apparent difference in the lengths of the conflict clauses when comparing
the fanout restriction with the max–min distance and random restrictions.

However, as shown in Fig. 13, we observe a visible difference in the relative number of branchable variables
occurring in the conflict clauses. Compared to the other two restrictions, with the fanout restriction the conflict learning
mechanism of Minisat produces conflict clauses consisting of a high number of variables on which the solver is
allowed to branch.

This leads us to conjecture the following: the fanout restriction works well with the conflict learning mechanism
of the solver because the produced conflict clauses participate actively in the search in the sense that the solver can
often branch on variables in the conflict clauses. Thus, we suggest that when restricting branching in a clause learning
solver, it is important to ensure that the conflict clauses generated during search contain a high number of variables
on which the solver is allowed to branch. A step into this direction is taken in a recent work [46] which studies this
possibility in the special case of At-Most-One cardinality constraints.

4.2.1. Conclusions on the effects of relaxing input-restricted branching
• Compared to strict branching restrictions, such as the input-restriction, more relaxed branching restrictions allow

the solver to better apply its clause learning and branching heuristics for making search more efficient.
• The choice of the structural criterion based on which branching is restricted plays an important role in the effi-

ciency of the solver; some structural criteria, such as fanout-based, seem to allow rather strict restrictions without
loss in efficiency, while other criteria can perform even worse than randomly restricting branching.

We conjecture that the number of variables on which the solver is allowed to branch in the conflict clauses generated
during search is a determining factor for the efficiency of the branching-restricted solver.

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 109
Fig. 12. Cumulative number of solved instances for the structural branching restrictions.

5. Related work

5.1. Experiments on branching restrictions

In the context of SAT based scheduling, the possibility of restricting branching to inputs (or control variables)
is suggested in [47], without empirical evaluation, however. For SAT based planning, input-restricted branching (or
branching on action variables) is studied in [28] showing that the DPLL solver Tableau (having no clause learning)
benefits from this restriction on a selection of instances. Considering SAT based bounded model checking (BMC),
in [29] input-restricted branching (or branching on model variables) is applied with the clause learning solver Grasp
in which the decision heuristic is not coupled with clause learning. Additionally, the work concentrates on comparing

110 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
Fig. 13. Comparison of fanout, max-min distance, and random restrictions for p = 20: relative number of branchable variables occurring in the
conflict clauses.

Fig. 14. Comparison of fanout, max-min distance, and random restrictions for p = 20: average length of conflict clauses.

the efficiency of SAT and BDD based BMC. In [30] the authors investigate the effect of restricting branching to inputs
(or independent variables, calling this the independent variables set (IVS) heuristic) on solving planning, BMC, and
crafted SAT instances using the SAT solver Sim. The presented results deal partly with clause learning. However, the
emphasis of the work in [30] is on comparing different decision heuristics that are not coupled with clause learning,
as opposed to the popular VSIDS heuristic today. Most recently, effect of input-restricted branching on the efficiency
of a variety of modern clause learning solvers in the context of SAT based ATPG is studied in [38].

In all of the above-mentioned experimental research the evaluation is based only on the running times of the
solvers. In contrast, in this work we relate the performance of a restricted branching solver in-depth to the fundamental
techniques in the solver (clause learning, VSIDS heuristics), Moreover, other structural branching restrictions have
not been previously studied systematically.

Branching variable orderings for DPLL based on structural information have also been studied [48,49]. In these
works, the solver is forced to follow an order derived from structural properties of the formula, as opposed to the
branching restrictions studied in this work where the solver is allowed to apply its own dynamic heuristic for branching
on variables in the restriction.

5.2. Related theoretical results

There are also theoretical results on the effect of restricted branching on the efficiency of the underlying inference
system of DPLL. In [30] it is noted that restricting to independent variables can result in exponential loss of efficiency
for DPLL without clause learning. Applying proof complexity theoretic arguments, again considering DPLL without
clause learning, Ref. [50] studies the effect of input-restriction and, additionally, a variety of other static and dynamic

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 111
restrictions. The result is a relative efficiency hierarchy for the considered restrictions showing that, for example, input-
restricted branching DPLL cannot simulate top-down branching DPLL, which in turn cannot simulate the standard
(unrestricted branching) DPLL. Recently, the work in [51] considers the case of input-restricted branching in DPLL
with clause learning: it is shown that this inference system cannot simulate even the basic DPLL without clause
learning.

6. Conclusions

We present an extensive experimental evaluation of the effect of structure-based branching restrictions on the
efficiency of solving structural SAT instances. The emphasis is on the interplay between structure-based branching
restrictions and clause learning based search techniques found in most modern complete SAT solvers. A starting point
for this work is provided by the fact that input variables form a relatively small strong backdoor set of variables that
is easy detect if a structural representation of the problem in the form of a formula or a circuit is available.

Our novel findings include the following. Although the set of input variables provides a relatively small strong
backdoor set, the clause learning SAT solver Minisat, using the VSIDS heuristic, does not benefit from the restriction
as such. While the input-restricted branching solver runs into more conflicts per decision, conflict clauses become
longer and more time is used on conflict analysis. The solver is often forced to branch on variables that are unimportant
with respect to heuristic scores of VSIDS. Compared to input-restricted branching, more relaxed branching restrictions
allow the solver to better apply its clause learning and branching heuristics for making search more efficient. However,
the choice of the structural criterion based on which branching is restricted plays an important role in the efficiency
of the solver.

Based on the experimental results, we make the following main conjectures.

(i) In order to regain robustness of the solver, the input-restriction needs to be relaxed by allowing branching on
additional variables.

(ii) The number of variables on which the solver is allowed to branch in the conflict clauses generated during search
is a determining factor for the efficiency of the branching-restricted solver.

Conjecture (ii) suggests that, when restricting branching, one way of modifying clause learning with respect to the
restriction is to strive to learn clauses with high numbers of variables on which the solver can branch.

A relevant direction of further study is the possibility of restricting branching based on the known structure of
known/novel CNF encodings of more general Boolean constraints. A step into this direction is taken in a recent
work [46] which studies this possibility in the special case of At-Most-One cardinality constraints. Another interesting
direction would be to investigate if solver efficiency could be increased by developing structure-aware branching
restriction techniques that act dynamically in cooperation with clause learning, especially for Boolean circuit level
SAT solvers such as [52]. Furthermore, the experimental analysis on input-restricted branching could be extended to
the case of other (possibly minimal) strong backdoor sets.

References

[1] T. Junttila, The BC package and a file format for constrained Boolean circuits, available at http://www.tcs.hut.fi/~tjunttil/bcsat/.
[2] H.A. Kautz, B. Selman, Planning as satisfiability, in: Proc. 10th European Conference on Artificial Intelligence (ECAI 1992), Wiley, 1992,

pp. 359–363.
[3] J. Rintanen, K. Heljanko, I. Niemelä, Planning as satisfiability: Parallel plans and algorithms for plan search, Artificial Intelligence 170 (12–13)

(2006) 1031–1080.
[4] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic model checking using SAT procedures instead of BDDs, in: Proc. 36th

Conference on Design Automation (DAC 1999), ACM Press, 1999, pp. 317–320.
[5] A. Biere, K. Heljanko, T. Junttila, T. Latvala, V. Schuppan, Linear encodings of bounded LTL model checking, Logical Methods in Computer

Science 2 (5:5).
[6] D. Kroening, E. Clarke, K. Yorav, Behavioral consistency of C and Verilog programs using bounded model checking, in: Proc. 40th Conference

on Design Automation (DAC 2003), ACM Press, 2003, pp. 368–371.
[7] A. Armando, J. Mantovani, L. Platania, Bounded model checking of software using SMT solvers instead of SAT solvers, in: Proc. 13th

International SPIN Workshop on Model Checking Software, in: Lecture Notes in Comput. Sci., vol. 3925, Springer, 2006, pp. 146–162.
[8] T. Larrabee, Test pattern generation using Boolean satisfiability, IEEE Trans. Comput. Design Integr. Circuits Systems 11 (1) (1992) 4–15.

112 M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113
[9] P. Stephan, R.K. Brayton, A.L. Sangiovanni-Vincentelli, Combinational test generation using satisfiability, IEEE Trans. Comput. Design
Integr. Circuits Systems 15 (9) (1996) 1167–1176.

[10] I. Lynce, J. Marques-Silva, Efficient haplotype inference with Boolean satisfiability, in: Proc. 21st National Conference on Artificial Intelli-
gence (AAAI 2006), AAAI Press, 2006.

[11] A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, K. Laderoute, Analyzing biological pathways using SAT-based approaches, in: Proc. 2nd Inter-
national Conference on Algebraic Biology (AB 2007), in: Lecture Notes in Comput. Sci., vol. 4545, Springer, 2007, pp. 155–169.

[12] I. Mironov, L. Zhang, Applications of SAT solvers to cryptanalysis of hash functions, in: Proc. 9th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2006), in: Lecture Notes in Comput. Sci., vol. 4121, Springer, 2006, pp. 102–115.

[13] D. De, A. Kumarasubramanian, R. Venkatesan, Inversion attacks on secure hash functions using SAT solvers, in: Proc. 10th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2007), in: Lecture Notes in Comput. Sci., vol. 4501, Springer, 2007,
pp. 377–382.

[14] M. Davis, H. Putnam, A computing procedure for quantification theory, J. ACM 7 (3) (1960) 201–215.
[15] M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving, Comm. of the ACM 5 (7) (1962) 394–397.
[16] J.N. Hooker, V. Vinay, Branching rules for satisfiability, J. Automat. Reasoning 15 (3) (1995) 359–383.
[17] C.M. Li, Anbulagan, Heuristics based on unit propagation for satisfiability problems, in: Proc. 15th International Joint Conference on Artificial

Intelligence (IJCAI 1997), Morgan Kaufmann, 1997, pp. 366–371.
[18] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an efficient SAT solver, in: Proc. 38th Design Automation

Conference (DAC 2001), ACM, 2001, pp. 530–535.
[19] F. Bacchus, Enhancing Davis Putnam with extended binary clause reasoning, in: Proc. 19th National Conference on Artificial Intelligence

(AAAI 2002), AAAI Press, 2002, pp. 613–619.
[20] C.M. Li, Equivalent literal propagation in Davis–Putnam procedure, Discrete Appl. Math. 130 (2) (2003) 251–276.
[21] M. Heule, H. van Maaren, Aligning CNF- and equivalence-reasoning, in: Revised Selected Papers of the 7th International Conference on

Theory and Applications of Satisfiability Testing (SAT 2004), in: Lecture Notes in Comput. Sci., vol. 3542, Springer, 2005, pp. 145–156.
[22] C.P. Gomes, B. Selman, H.A. Kautz, Boosting combinatorial search through randomization, in: Proc. 15th National Conference on Artificial

Intelligence (AAAI 1998), AAAI Press, 1998, pp. 431–437.
[23] J. Huang, The effect of restarts on the efficiency of clause learning, in: Proc. 20th International Joint Conference on Artificial Intelligence

(IJCAI 2007), AAAI Press, 2007, pp. 2318–2323.
[24] J.P. Marques-Silva, K.A. Sakallah, GRASP: A search algorithm for propositional satisfiability, IEEE Trans. Comput. 48 (5) (1999) 506–521.
[25] E. Goldberg, Y. Novikov, Berkmin: A fast and robust SAT-solver, in: Proc. 2002 Design, Automation and Test in Europe Conference (DATE

2002), IEEE Computer Soc., 2002, pp. 142–149.
[26] N. Eén, N. Sörensson, An extensible SAT-solver, in: Revised Selected Papers of the 6th International Conference on Theory and Applications

of Satisfiability Testing (SAT 2003), in: Lecture Notes in Comput. Sci., vol. 2919, Springer, 2004, pp. 502–518.
[27] P. Beame, H.A. Kautz, A. Sabharwal, Towards understanding and harnessing the potential of clause learning, J. Artificial Intelligence Res. 22

(2004) 319–351.
[28] E. Giunchiglia, A. Massarotto, R. Sebastiani, Act, and the rest will follow: Exploiting determinism in planning as satisfiability, in: Proc. 15th

National Conference on Artificial Intelligence (AAAI 1998), AAAI Press, 1998, pp. 948–953.
[29] O. Strichman, Tuning SAT checkers for bounded model checking, in: Proc. 12th International Conference on Computer Aided Verification

(CAV 2000), in: Lecture Notes in Comput. Sci., vol. 1855, Springer, 2000, pp. 480–494.
[30] E. Giunchiglia, M. Maratea, A. Tacchella, Dependent and independent variables in propositional satisfiability, in: Proc. European Conference

on Logics in Artificial Intelligence (JELIA 2002), in: Lecture Notes in Artificial Intelligence, vol. 2424, Springer, 2002, pp. 296–307.
[31] R. Williams, C.P. Gomes, B. Selman, Backdoors to typical case complexity, in: Proc. 18th International Joint Conference on Artificial Intelli-

gence (IJCAI 2003), Morgan Kaufmann, 2003, pp. 1173–1178.
[32] Y. Ruan, H.A. Kautz, E. Horvitz, The backdoor key: A path to understanding problem hardness, in: Proc. 19th National Conference on

Artificial Intelligence (AAAI 2004), AAAI Press, 2004, pp. 124–130.
[33] B. Dilkina, C.P. Gomes, A. Sabharwal, Tradeoffs in the complexity of backdoor detection, in: Proc. 13th International Conference on Principles

and Practice of Constraint Programming (CP 2007), in: Lecture Notes in Comput. Sci., vol. 4741, Springer, 2007, pp. 256–270.
[34] C.H. Papadimitriou, Computational Complexity, Addison–Wesley, 1995.
[35] É. Grégoire, R. Ostrowski, B. Mazure, L. Sais, Automatic extraction of functional dependencies, in: Revised Selected Papers of the 7th

International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), in: Lecture Notes in Comput. Sci., vol. 3542,
Springer, 2005, pp. 122–132.

[36] J.A. Roy, I.L. Markov, V. Bertacco, Restoring circuit structure from SAT instances, in: Proc. 2004 International Workshop on Logic Synthesis,
2004, available at http://www.eecs.umich.edu/~imarkov/pubs/misc/iwls04-sat2circ.pdf.

[37] Z. Fu, S. Malik, Extracting logic circuit description from conjunctive normal form descriptions, in: Proc. IEEE/ACM 20th International
Conference on VLSI Design, IEEE Computer Soc., 2007, pp. 37–42.

[38] J. Shi, G. Fey, R. Drechsler, A. Glowatz, J. Schlöffel, F. Hapke, Experimental studies on SAT-based test pattern generation for industrial
circuits, in: Proc. 6th International Conference on ASIC, vol. 2, IEEE Computer Soc., 2005, pp. 967–970.

[39] L. Zhang, C.F. Madigan, M.W. Moskewicz, S. Malik, Efficient conflict driven learning in a Boolean satisfiability solver, in: Proc. 2001
International Conference on Computer-Aided Design (ICCAD 2001), ACM Press, 2001, pp. 279–285.

[40] J.P. Marques-Silva, The impact of branching heuristics in propositional satisfiability algorithms, in: Proc. 9th Portuguese Conference on
Artificial Intelligence (EPIA 1999), in: Lecture Notes in Comput. Sci., vol. 1695, Springer, 1999, pp. 62–74.

[41] M.N. Velev, R.E. Bryant, Superscalar processor verification using efficient reductions of the logic of equality with uninterpreted functions to
propositional logic, in: Proc. 10th IFIP WG 10.5 Advanced Research Working Conference (CHARME 1999), in: Lecture Notes in Comput.
Sci., vol. 1703, Springer, 1999, pp. 37–53.

M. Järvisalo, I. Niemelä / J. Algorithms 63 (2008) 90–113 113
[42] T. Pyhälä, Factoring benchmarks for SAT-solvers, http://www.tcs.hut.fi/Software/genfacbm/, 2004.
[43] T. Jussila, K. Heljanko, I. Niemelä, BMC via on-the-fly determinization, Internat. J. Software Tools Technology Transfer 7 (2) (2005) 89–101.
[44] T. Latvala, A. Biere, K. Heljanko, T.A. Junttila, Simple bounded LTL model checking, in: Proc. 5th International Conference on Formal

Methods in Computer-Aided Design (FMCAD 2004), in: Lecture Notes in Comput. Sci., vol. 3312, Springer, 2004, pp. 186–200.
[45] T.A. Junttila, I. Niemelä, Towards an efficient tableau method for Boolean circuit satisfiability checking, in: Proc. 1st International Conference

on Computational Logic (CL 2000), in: Lecture Notes in Comput. Sci., vol. 1861, Springer, 2000, pp. 553–567.
[46] J. Marques-Silva, I. Lynce, Towards robust CNF encodings of cardinality constraints, in: Proc. 13th International Conference on Principles

and Practice of Constraint Programming (CP 2007), in: Lecture Notes in Comput. Sci., vol. 4741, Springer, 2007, pp. 483–497.
[47] J.M. Crawford, A.B. Baker, Experimental results on the application of satisfiability algorithms to scheduling problems, in: Proc. 11th National

Conference on Artificial Intelligence (AAAI 1994), AAAI Press, 1994, pp. 1092–1097.
[48] J. Huang, A. Darwiche, A structure-based variable ordering heuristic for SAT, in: Proc. 18th International Joint Conference on Artificial

Intelligence (IJCAI 2003), Morgan Kaufmann, 2003, pp. 1167–1172.
[49] F.A. Aloul, I.L. Markov, K.A. Sakallah, MINCE: A static global variable-ordering heuristic for SAT search and BDD manipulation, J. Uni-

versal Comput. Sci. 10 (12) (2004) 1562–1596.
[50] M. Järvisalo, T. Junttila, I. Niemelä, Unrestricted vs restricted cut in a tableau method for Boolean circuits, Ann. Math. Artificial Intelli-

gence 44 (4) (2005) 373–399.
[51] M. Järvisalo, T. Junttila, Limitations of restricted branching in clause learning, in: Proc. 13th International Conference on Principles and

Practice of Constraint Programming (CP 2007), in: Lecture Notes in Comput. Sci., vol. 4741, Springer, 2007, pp. 348–363.
[52] C. Thiffault, F. Bacchus, T. Walsh, Solving non-clausal formulas with DPLL search, in: Proc. 10th International Conference on Principles and

Practice of Constraint Programming (CP 2004), in: Lecture Notes in Comput. Sci., vol. 3258, Springer, 2004, pp. 663–678.

