
Under onsideration for publiation in Theory and Pratie of Logi Programming 1Extended ASP Tableaux andRule Redundany in Normal Logi Programs∗MATTI JÄRVISALO and EMILIA OIKARINENHelsinki University of Tehnology (TKK)Department of Information and Computer SieneP.O. Box 5400, FI-02015 TKK, Finland(e-mail: matti.jarvisalo�tkk.fi, emilia.oikarinen�tkk.fi)submitted 20 February 2008; revised 12 September 2008; aepted 18 September 2008AbstratWe introdue an extended tableau alulus for answer set programming (ASP). The proofsystem is based on the ASP tableaux de�ned in [Gebser&Shaub, ICLP 2006℄, with anadded extension rule. We investigate the power of Extended ASP Tableaux both theo-retially and empirially. We study the relationship of Extended ASP Tableaux with theExtended Resolution proof system de�ned by Tseitin for sets of lauses, and separate Ex-tended ASP Tableaux from ASP Tableaux by giving a polynomial-length proof for a familyof normal logi programs {Πn} for whih ASP Tableaux has exponential-length minimalproofs with respet to n. Additionally, Extended ASP Tableaux imply interesting insightinto the e�et of program simpli�ation on the lengths of proofs in ASP. Closely relatedto Extended ASP Tableaux, we empirially investigate the e�et of redundant rules onthe e�ieny of ASP solving.KEYWORDS: Answer set programming, tableau method, extension rule, proof omplexity,problem struture 1 IntrodutionAnswer set programming (ASP) (Marek and Truszzy«ski 1999; Niemelä 1999;Gelfond and Leone 2002; Lifshitz 2002; Baral 2003) is a delarative problem solvingparadigm whih has proven suessful for a variety of knowledge representation andreasoning tasks (see (Soininen et al. 2001; Nogueira et al. 2001; Erdem et al. 2006;Brooks et al. 2007) for examples). The suess has been brought forth by e�ientsolver implementations suh as smodels (Simons et al. 2002), dlv (Leone et al. 2006),
noMore++ (Anger et al. 2005), cmodels (Giunhiglia et al. 2006), assat (Lin andZhao 2004), and clasp (Gebser et al. 2007). However, there has been an evident lakof theoretial studies into the reasons for the e�ieny of ASP solvers.Solver implementations and their inferene tehniques an be seen as determinis-ti implementations of the underlying rule-based proof systems. A solver implements
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2 M. Järvisalo and E. Oikarinena partiular proof system in the sense that the propagation mehanisms applied bythe solver apply the deterministi dedution rules in the proof system, whereas thenondeterministi branhing/splitting rule of the proof system is made deterministithrough branhing heuristis present in typial solvers. From the opposite point ofview, a solver an be analyzed by investigating the power of an abstration of thesolver as the proof system the solver implements. Due to this strong interplay be-tween theory and pratie, the study of the relative e�ieny of these proof systemsreveals important new viewpoints and explanations for the suesses and failuresof partiular solver tehniques.A way of examining the best-ase performane of solver algorithms is providedby (propositional) proof omplexity theory (Cook and Rekhow 1979; Beame andPitassi 1998), whih onentrates on studying the relative power of the proof sys-tems underlying solver algorithms in terms of the shortest existing proofs in thesystems. A large (superpolynomial) di�erene in the minimal length of proofs avail-able in di�erent proof systems for a family of Boolean expressions reveals that solverimplementations of these systems are inherently di�erent in strength. While suhproof omplexity theoreti studies are frequent in the losely related �eld of propo-sitional satis�ability (SAT), where typial solvers have been shown to be based onre�nements of the well-known Resolution proof system (Beame et al. 2004), this hasnot been the ase for ASP. Espeially, the inferene tehniques applied in urrentstate-of-the-art ASP solvers have been haraterized by a family of tableau-styleASP proof systems for normal logi programs only very reently (Gebser and Shaub2006b), with some related proof omplexity theoreti investigations (Anger et al.2006) and generalizations (Gebser and Shaub 2007). The lose relation of ASPand SAT and the respetive theoretial underpinning of pratial solver tehniqueshas also reeived little attention up until reently (Giunhiglia and Maratea 2005;Gebser and Shaub 2006a), although the �elds ould gain muh by further studieson these onnetions.This work ontinues in part bridging the gap between ASP and SAT. In�uenedby Tseitin's Extended Resolution proof system (Tseitin 1969) for lausal formu-las, we introdue Extended ASP Tableaux, an extended tableau alulus based onthe proof system in (Gebser and Shaub 2006b). The motivations for ExtendedASP Tableaux are many-fold. Theoretially, Extended Resolution has proven tobe among the most powerful known proof systems, equivalent to, for example, ex-tended Frege systems; no exponential lower bounds for the lengths of proofs areknown for Extended Resolution. We study the power of Extended ASP Tableaux,showing a tight orrespondene with Extended Resolution.The ontributions of this work are not only of theoretial nature. Extended ASPTableaux is in fat based on adding struture into programs by introduing addi-tional redundant rules. On the pratial level, the struture of problem instanes hasan important role in both ASP and SAT solving. Typially, it is widely believed thatredundany an and should be removed for pratial e�ieny. However, the powerof Extended ASP Tableaux reveals that this is not generally the ase, and suhredundany removing simpli�ation mehanisms an drastially hinder e�ieny.In addition, we ontribute by studying the e�et of redundany on the e�ieny of



Theory and Pratie of Logi Programming 3a variety of ASP solvers. The results show that the role of redundany in programsis not as simple as typially believed, and ontrolled addition of redundany may infat prove to be relevant in further strengthening the robustness of urrent solvertehniques.The rest of this artile is organized as follows. After preliminaries on ASP andSAT (Setion 2), the relationship of Resolution and ASP Tableaux proof systemsand onepts related to the omplexity of proofs are disussed (Setion 3). By in-troduing the Extended ASP Tableaux proof system (Setion 4), proof omplexityand simpli�ation are then studied with respet to Extended ASP Tableaux (Se-tion 5). Experimental results related to Extended ASP Tableaux and redundantrules in normal logi programs are presented in Setion 6.2 PreliminariesAs preliminaries we review basi onepts related to answer set programming (ASP)in the ontext of normal logi programs, propositional satis�ability (SAT), andtranslations between ASP and SAT.2.1 Normal Logi Programs and Stable ModelsWe onsider normal logi programs (NLPs) in the propositional ase. In the followingwe will review some standard onepts related to NLPs and stable models.A normal logi program Π onsists of a �nite set of rules of the form
r : h← a1, . . . , an,∼b1, . . . ,∼bm, (1)where eah ai and bj is a propositional atom, and h is either a propositional atom,or the symbol ⊥ that stands for falsity. A rule r onsists of a head, head(r) = h,and a body, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. The symbol �∼� denotes defaultnegation. A default literal is an atom a, or its default negation ∼a.The set of atoms ourring in a program Π is atom(Π), and
dlit(Π) = {a,∼a | a ∈ atom(Π)}is the set of default literals in Π. We use the shorthands L+ = {a | a ∈ L} and

L− = {a | ∼a ∈ L} for a set L of default literals, and ∼A = {∼a | a ∈ A} for aset A of atoms. This allows the shorthand
head(r)← body(r)+ ∪∼body(r)−for (1). A rule r is a fat if body(r) = ∅. Furthermore, we use the shorthands

head(Π) = {head(r) | r ∈ Π} and
body(Π) = {body(r) | r ∈ Π}.In ASP, we are interested in stable models (Gelfond and Lifshitz 1988) (or answersets) of a program Π. An interpretation M ⊆ atom(Π) de�nes whih atoms of Πare true (a ∈ M) and whih are false (a 6∈ M). An interpretation M ⊆ atom(Π) isa (lassial) model of Π if and only if body(r)+ ⊆M and body(r)− ∩M = ∅ imply



4 M. Järvisalo and E. Oikarinen
head(r) ∈ M for eah rule r ∈ Π. A model M of a program Π is a stable modelof Π if and only if there is no model M ′ ⊂M of ΠM , where

ΠM = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩M = ∅}is alled the Gelfond-Lifshitz redut of Π with respet to M . We say that a pro-gram Π is satis�able if it has a stable model, and unsatis�able otherwise.The positive dependeny graph of Π, denoted by Dep+(Π), is a direted graphwith atom(Π) and
{〈b, a〉 | ∃r ∈ Π suh that b = head(r) and a ∈ body(r)+}as the sets of verties and edges, respetively. A non-empty set L ⊆ atom(Π) is aloop in Dep+(Π) if for any a, b ∈ L there is a path of non-zero length from a to bin Dep+(Π) suh that all verties in the path are in L. We denote by loop(Π) theset of all loops in Dep+(Π). A NLP is tight if and only if loop(Π) = ∅. Furthermore,the external bodies of a set A of atoms in Π is

eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩A = ∅}.A set U ⊆ atom(Π) is unfounded if eb(U) = ∅. We denote the greatest unfoundedset, that is, the union of all unfounded sets, of Π by gus(Π).A splitting set (Lifshitz and Turner 1994) for a NLP Π is any set U ⊆ atom(Π)suh that for every r ∈ Π, if head(r) ∈ U , then body(r)+ ∪ body(r)− ⊆ U . Thebottom of Π relative to U is
bottom(Π, U) = {r ∈ Π | atom({r}) ⊆ U},and the top of Π relative to U is

top(Π, U) = Π \ bottom(Π, U).The top an be partially evaluated with respet to an interpretation X ⊆ U . Theresult is a program eval(top(Π, U), X) that ontains the rule
head(r)← (body(r)+ \ U),∼(body(r)− \ U)for eah r ∈ top(Π, U) suh that body(r)+ ∩ U ⊆ X and (body(r)− ∩ U) ∩X = ∅.Given a splitting set U for a NLP Π, a solution to Π with respet to U is a pair 〈X, Y 〉suh that X ⊆ U , Y ⊆ atom(Π) \ U , X is a stable model of bottom(Π, U), and Yis a stable model of eval(top(Π, U), X). In this work we will apply the splitting settheorem (Lifshitz and Turner 1994) that relates solutions with stable models.Theorem 2.1 ((Lifshitz and Turner 1994)) Given a normal logi program Πand a splitting set U for Π, an interpretation M ⊆ atom(Π) is a stable model of Πif and only if 〈M ∩ U, M \ U〉 is a solution to Π with respet to U .2.2 Propositional Satis�abilityLet X be a set of Boolean variables. Assoiated with every variable x ∈ X thereare two literals, the positive literal, denoted by x, and the negative literal, denoted



Theory and Pratie of Logi Programming 5by x̄. A lause is a disjuntion of distint literals. We adopt the standard onventionof viewing a lause as a �nite set of literals and a CNF formula as a �nite set oflauses. The set of variables appearing in a lause C (a set C of lauses, respetively)is denoted by var(C) (var(C), respetively).A truth assignment τ assoiates a truth value τ(x) ∈ {false, true} with eahvariable x ∈ X . A truth assignment satis�es a set of lauses if and only if it satis�esevery lause in it. A lause is satis�ed if and only if it ontains at least one satis�edliteral, where a literal x (x̄, respetively) is satis�ed if τ(x) = true (τ(x) = false,respetively). A set of lauses is satis�able if there is a truth assignment that satis�esit, and unsatis�able otherwise. 2.3 SAT as ASPThere is a natural linear-size translation from sets of lauses to normal logi pro-grams so that the stable models of the enoding represent the satisfying truthassignments of the original set of lauses faithfully, that is, there is a bijetiveorrespondene between the satisfying truth assignments and stable models of thetranslation (Niemelä 1999). Given a set C of lauses, this translation nlp(C) in-trodues a new atom c for eah lause C ∈ C, and atoms ax and âx for eahvariable x ∈ var(C). The resulting NLP is then
nlp(C) = {ax ← ∼âx. âx ← ∼ax | x ∈ var(C)} ∪ (2)

{⊥ ← ∼c | C ∈ C} ∪ (3)
{c← ax | x ∈ C, C ∈ C, x ∈ var(C)} ∪ (4)
{c← ∼ax | x̄ ∈ C, C ∈ C, x ∈ var(C)}. (5)The rules (2) enode that eah variable must be assigned an unambiguous truthvalue, the rules in (3) that eah lause in C must be satis�ed, while (4) and (5)enode that eah lause is satis�ed if at least one of its literals is satis�ed.Example 2.2 The set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of lauses is representedby the normal logi program

nlp(C) = { ax ← ∼âx. âx ← ∼ax. ay ← ∼ây. ây ← ∼ay.

⊥ ← ∼c1. ⊥ ← ∼c2. ⊥ ← ∼c3. ⊥ ← ∼c4.

c1 ← ax. c1 ← ay. c2 ← ax. c2 ← ∼ay.

c3 ← ∼ax. c3 ← ay. c4 ← ∼ax. c4 ← ∼ay }.2.4 ASP as SATContrarily to the ase of translating SAT into ASP, there is no modular1 and faith-ful translation from normal logi programs to propositional logi (Niemelä 1999).
1 Intuitively, for a modular translation, adding a set of fats to a program leads to a loal hangenot involving the translation of the rest of the program (Niemelä 1999).



6 M. Järvisalo and E. OikarinenMoreover, any faithful translation is potentially of exponential size when additionalvariables are not allowed (Lifshitz and Razborov 2006)2. However, for any tightprogram Π it holds that the answer sets of Π an be haraterized faithfully by thesatisfying truth assignments of a linear-size propositional formula alled Clark'sompletion (Clark 1978; Fages 1994) of Π, de�ned using a Boolean variable xa foreah a ∈ atom(Π) as
C(Π) =

∧

h∈atom(Π)∪{⊥}

(

xh ↔
∨

r∈rule(h)

(

∧

b∈body(r)+

xb ∧
∧

b∈body(r)−

x̄b

))

, (6)where rule(h) = {r ∈ Π | head(r) = h}. Notie that there are the speial ases(i) if h is ⊥ then the equivalene beomes the negation of the right hand side,(ii) if h is a fat, then the equivalene redues to the lause {xh}, and (iii) if anatom h does not appear in the head of any rule then the equivalene redues to thelause {x̄h}.In this work, we will onsider the lausal representation of Boolean formulas.A linear-size lausal translation of C(Π) is ahieved by introduing additionally anew Boolean variable xB for eah B ∈ body(Π). Using the new variables for thebodies, we arrive at the lausal ompletion
comp(Π) =

⋃

B∈body(Π)

{

xB ≡
∧

a∈B+

xa ∧
∧

b∈B−

x̄b

}

∪
⋃

B∈body(rule(⊥))

{{x̄B}} (7)
∪

⋃

h∈head(Π)\{⊥}

{

xh ≡
∨

B∈body(rule(h))

xB

} (8)
∪

⋃

a∈atom(Π)\head(Π)

{{x̄a}}, (9)where the shorthands x ≡
∧

xi∈X xi and x ≡
∨

xi∈X xi stand for the sets of lauses
{x, x̄1, . . . , x̄n} ∪

⋃

xi∈X{x̄, xi} and ⋃xi∈X{x, x̄i} ∪ {x̄, x1, . . . , xn}, respetively.Example 2.3 For the normal logi program Π = {a← b,∼a. b← c. c← ∼b}, thelausal ompletion is
comp(Π) = {{x{b,∼a}, xa, x̄b}, {x̄{b,∼a}, x̄a}, {x̄{b,∼a}, xb},

{x{c}, x̄c}, {x̄{c}, xc}, {x{∼b}, xb}, {x̄{∼b}, x̄b}, {xa, x̄{b,∼a}},

{x̄a, x{b,∼a}}, {xb, x̄{c}}, {x̄b, x{c}}, {xc, x̄{∼b}}}, {x̄c, x{∼b}}.

2 However, polynomial-size propositional enodings using extra variables are known, see (Ben-Eliyahu and Dehter 1994; Lin and Zhao 2003; Janhunen 2006). Also, ASP as PropositionalSatis�ability approahes for solving normal logi programs have been developed, for example,
assat (Lin and Zhao 2004) (based on inrementally adding�possibly exponentially many�loopformulas) and asp-sat (Giunhiglia et al. 2006) (based on generating a supported model (Brassand Dix 1995) of the program and testing its minimality�thus avoiding exponential spaeonsumption).



Theory and Pratie of Logi Programming 73 Proof Systems for ASP and SATIn this setion we review onepts related to proof omplexity (Cook and Rek-how 1979; Beame and Pitassi 1998) in the ontext of this work, and disuss therelationship of Resolution and ASP Tableaux (Gebser and Shaub 2006b).3.1 Propositional Proof Systems and ComplexityFormally, a (propositional) proof system is a polynomial-time omputable predi-ate S suh that a propositional expression E is unsatis�able if and only if thereis a proof P for whih S(E, P ) holds. A proof system is thus a polynomial-timeproedure for heking the orretness of proofs in a ertain format. While proofheking is e�ient, �nding short proofs may be di�ult, or, generally, impossiblesine short proofs may not exist for a too weak proof system. As a measure ofhardness of proving unsatis�ability of an expression E in a proof system S, the(proof) omplexity of E in S is the length of the shortest proof for E in S. For afamily {En} of unsatis�able expressions over inreasing number of variables, the(asymptoti) omplexity of {En} is measured with respet to the sizes of En.For two proof systems S and S′, we say that S′ polynomially simulates S iffor all families {En} it holds that CS′(En) ≤ p(CS(En)) for all En, where p is apolynomial, and CS and CS′ are the omplexities in S and S′, respetively. If Ssimulates S′ and vie versa, then S and S′ are polynomially equivalent. If there isa family {En} for whih S′ does not polynomially simulate S, we say that {En}separates S from S′. If S simulates S′, and there is a family {En} separating Sfrom S′, then S is more powerful than S′.3.2 ResolutionThe well-known Resolution proof system (RES) for sets of lauses is based on theresolution rule. Let C, D be lauses, and x a Boolean variable. The resolution rulestates that we an diretly derive C ∪ D from {x} ∪ C and {x̄} ∪ D by resolvingon x.A RES derivation of a lause C from a set C of lauses is a sequene of lauses
π = (C1, C2, . . . , Cn), where Cn = C and eah Ci, where 1 ≤ i < n, is either(i) a lause in C (an initial lause), or (ii) derived with the resolution rule from twolauses Cj , Ck, where j, k < i (a derived lause). The length of π is n, the numberof lauses ourring in it. Any derivation of the empty lause ∅ from C is a RESproof for (the unsatis�ability of) C.Any RES proof π = (C1, C2, . . . , Cn = ∅) an be represented as a direted ayligraph, in whih the leafs are initial lauses and other nodes are derived lauses.There are edges from Ci and Cj to Ck if and only if Ck has been diretly derivedfrom Ci and Cj using the resolution rule. Many Resolution re�nements, in whihthe struture of the graph representation is restrited, have been proposed andstudied. Of partiular interest here is Tree-like Resolution (T-RES), in whih it isrequired that proofs are represented by trees. This implies that a derived lause,



8 M. Järvisalo and E. Oikarinenif subsequently used multiple times in the proof, must be derived anew eah timefrom initial lauses.
T-RES is a proper RES re�nement, that is, RES is more powerful than T-RES (Ben-Sasson et al. 2004). On the other hand, it is well known that the DPLL method (Davisand Putnam 1960; Davis et al. 1962), the basis of most state-of-the-art SAT solvers,is polynomially equivalent to T-RES. However, on�it-learning DPLL is more pow-erful than T-RES, and polynomially equivalent to RES under a slight generaliza-tion (Beame et al. 2004). 3.3 ASP TableauxAlthough ASP solvers for normal logi programs have been available for many years,the dedution rules applied in suh solvers have only reently been formally de�nedas a proof system, whih we will here refer to as ASP Tableaux or ASP-T (Gebserand Shaub 2006b).An ASP tableau for a NLP Π is a binary tree of the following struture. Theroot of the tableau onsists of the rules Π and the entry F⊥ for apturing that ⊥is always false. The non-root nodes of the tableau are single entries of the form Taor Fa, where a ∈ atom(Π) ∪ body(Π). As typial for tableau methods, entries aregenerated by extending a branh (a path from the root to a leaf node) by applyingone of the rules in Figure 1; if the prerequisites of a rule hold in a branh, thebranh an be extended with the entries spei�ed by the rule. For onveniene, weuse shorthands tl and f l for default literals:

tl =

{

Ta, if l = a is positive,
Fa, if l = ∼a is negative; and

f l =

{

Ta, if l = ∼a is negative,
Fa, if l = a is positive.A branh is losed under the dedution rules (b)�(i) if the branh annot beextended using the rules. A branh is ontraditory if there are the entries Taand Fa for some a. A branh is omplete if it is ontraditory, or if there is theentry Ta or Fa for eah a ∈ atom(Π) ∪ body(Π) and the branh is losed underthe dedution rules (b)�(i). A tableau is ontraditory, if all its branhes in areontraditory, and non-ontraditory otherwise. A tableau is omplete if all itsbranhes are omplete. A ontraditory tableau from Π is an ASP-T proof for (theunsatis�ability of) Π. The length of an ASP-T proof is the number of entries in it.Example 3.1 An ASP-T proof for the NLP Π = {a ← b,∼a. b ← c. c ← ∼b} isshown in Figure 2, with the rule applied for deduing eah entry given in paren-theses. For example, the entry Fa has been dedued from a ← b,∼a in Π and theentry T{b,∼a} in the left branh by applying the rule (g) Bakward True Body. Onthe other hand, T{b,∼a} has been dedued from a← b,∼a in Π and the entry Tain the left branh by applying the rule (i§), that is, rule (i) by the fat that theondition § �Bakward True Atom� is ful�lled (in Π, the only body with atom a in
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Tφ Fφ

(♮)(a) Cut
h← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}(b) Forward True Body F{l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li() Bakward False Body
h← l1, . . . , ln
T{l1, . . . , ln}

Th(d) Forward True Atom h← l1, . . . , ln
Fh

F{l1, . . . , ln}(e) Bakward False Atom
h← l1, . . . , li, . . . , ln

f li

F{l1, . . . , li, . . . , ln}(f) Forward False Body T{l1, . . . , li, . . . , ln}

tli(g) Bakward True Body
FB1, . . . ,FBm

Fh

(♭)(h) FB1, . . . ,FBi−1, FBi+1, . . . ,FBm

Th

TBi

(♯)(i)(♮): Appliable when φ ∈ atom(Π) ∪ body(Π).(♭): Appliable when one of the following onditions holds:
§ (�Forward False Atom�), † (�Well-Founded Negation�), or ‡ (�Forward Loop�).(♯): Appliable when one of the following onditions holds:
§ (�Bakward True Atom�), † (�Well-Founded Justi�ation�), or ‡ (�Bakward Loop�).(§): Appliable when body(rule(h)) = {B1, . . . , Bm}.(†): Appliable when
{B1, . . . , Bm} ⊆ body(Π) and h ∈ gus({r ∈ Π | body(r) 6∈ {B1, . . . Bm}}).(‡): Appliable when h ∈ L, L ∈ loop(Π), and eb(L) = {B1, . . . , Bm} all hold.Fig. 1. Rules in ASP Tableaux.the head is {b,∼a}). The tableau in Figure 2 has two losed branhes:

(Π ∪ {F⊥},Ta,T{b,∼a},Fa) and
(Π ∪ {F⊥},Fa,F{b,∼a},Fb,T{∼b},Tc,T{c},Tb).These branhes share the ommon pre�x (Π ∪ {F⊥}).Any branh B desribes a partial assignment A on atom(Π)∪body(Π) in a naturalway, that is, if there is an entry Ta (Fa, respetively) in B for a ∈ atom(Π) ∪

body(Π), then (a, true) ∈ A ((a, false) ∈ A, respetively). ASP-T is a sound andomplete proof system for normal logi programs, that is, there is a omplete non-
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Ta Fa

F{b,∼a}
Fb
T{∼b}
Tc
T{c}
Tb
×

(e)()(b)(d)(b)(d)Fa (g)
×

F⊥

a← b,∼a
b← c

T{b,∼a} (i�)c← ∼b

Fig. 2. An ASP-T proof for Π = {a← b,∼a. b← c. c← ∼b}.ontraditory ASP tableau from Π if and only if Π is satis�able (Gebser and Shaub2006b). Thus the assignment A desribed by a omplete non-ontraditory branhgives a stable model M = {a ∈ atom(Π) | (a, true) ∈ A} of Π.As argued in (Gebser and Shaub 2006b), urrent ASP solver implementationsare tightly related to ASP-T, with the intuition that the ut rule is made determin-isti with deision heuristis, while the dedution rules desribe the propagationmehanism in ASP solvers. For instane, the noMore++ system (Anger et al. 2005)is a deterministi implementation of the rules (a)�(g),(h§),(h†), and (i§), while
smodels (Simons et al. 2002) applies the same rules with the ut rule restritedto atom(Π).Interestingly, ASP-T and T-RES are polynomially equivalent under the trans-lations comp and nlp. Although the similarity of unit propagation in DPLL andpropagation in ASP solvers is disussed in (Giunhiglia and Maratea 2005; Gebserand Shaub 2006a), here we want to stress the diret onnetion between ASP-Tand T-RES. In detail, T-RES and ASP-T are equivalent in the sense that (i) given anarbitrary NLP Π, the length of minimal T-RES proofs for comp(Π) is polynomiallybounded in the the length of minimal ASP-T proofs for Π, and (ii) given an arbi-trary set C of lauses, the length of minimal ASP-T proofs for nlp(C) is polynomiallybounded in the length of minimal T-RES proofs for C.Theorem 3.2 T-RES and ASP-T are polynomially equivalent proof systems in thesense that(i) onsidering tight normal logi programs, T-RES under the translation comp polyno-mially simulates ASP-T, and(ii) onsidering sets of lauses, ASP-T under the translation nlp polynomially simulates
T-RES.In the following we give detailed proofs for the two parts of Theorem 3.2 followedby illustrating examples.In the proof of the �rst part of Theorem 3.2, we use a onept of a (binary) uttree orresponding to an ASP-T proof. Given an ASP-T proof T for a normal logi



Theory and Pratie of Logi Programming 11program Π, the orresponding ut tree is obtained as follows. Starting from theroot of T , we replae eah non-leaf entry generated by a dedution rule in T by anappliation of the ut rule on the orresponding entry. For example, the ut tree T ′orresponding to the ASP-T proof T in Figure 2 is given in Figure 3 (left).Proof of Theorem 3.2 (i)Let T be an ASP-T proof for a tight normal logi program Π. Without loss ofgenerality, we will assume that branhes in T have not been extended further afterthey have beome ontraditory. We now show that we an onstrut a T-RESproof π for comp(Π) using the ut tree T ′ orresponding to T . Furthermore, weshow that for suh a proof π it holds that, given any pre�x p of an arbitrarybranh B in T ′ there is a lause C ∈ π ontraditory to the partial assignmentin p, that is, there is the entry Fa (Ta) for a ∈ atom(Π) ∪ body(Π) in p for eahorresponding positive literal xa (negative literal x̄a) in C.Consider �rst the partial assignment in an arbitrary (full) branhB in T ′. Assumethat there is no lause in comp(Π) ontraditory to the partial assignment in B,that is, we an obtain a truth assignment τ based on the entries in B suh that everylause in comp(Π) is satis�ed in τ . But this leads to ontradition sine comp(Π) issatis�ed if and only if Π is satis�ed. Thus there is a lause C ∈ comp(Π) ontradi-tory to the partial assignment in B, and we take the lause C into our resolutionproof π.Assume that we have onstruted π suh that for any pre�x p of length n for anybranh B in T ′, there is a lause C ∈ π ontraditory to the partial assignment in p.Consider an arbitrary pre�x p of length n− 1. Now, in T ′ we have the pre�xes p′and p′′ of length n whih have been obtained through extending p by applying theut rule on some a ∈ atom(Π)∪ body(Π). In other words, p′ is p with Ta appendedin the end (p′′ is p with Fa appended in the end). Sine p′ (p′′, respetively) isof length n, there is a lause C (D, respetively) in π ontraditory to the partialassignment in p′ (p′′, respetively). Now there are two possibilities. If C = {x̄a}∪C′and D = {xa} ∪ D′, we an resolve on xa adding C′ ∪ D′ to π. Thus we have alause C′∪D′ ∈ π ontraditory to the partial assignment in the pre�x p. Otherwisewe have that x̄a 6∈ C or xa 6∈ D, and hene either C ∈ π or D ∈ π is ontraditoryto the partial assignment in the pre�x p.When reahing the root of T ′, we must have derived ∅ sine it is the only lauseontraditory with the empty assignment. Furthermore, the T-RES derivation π isof polynomial length with respet to T ′ (and T ).The following example illustrates the RES proof onstrution used above in theproof of Theorem 3.2 (i).Example 3.3 Consider again the tight NLP Π = {a ← b,∼a. b ← c. c ← ∼b}from Example 2.3 and the ASP-T proof T for Π in Figure 2. We now onstruta T-RES proof for the ompletion comp(Π) (see Example 2.3 for details) usingthe strategy from the proof of Theorem 3.2 (i). First, T is transformed into a uttree T ′ given in Figure 3 (left). Consider now the two leftmost branhes in T ′. Thepartial assignment in the branh with entries Ta and F{b,∼a} is ontraditory
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Ta Fa

T{∼b}

F{b,∼a}

Tb

F{∼b}

Fb

FcTc

F{c}T{c}

T{b, ∼a}

T{b, ∼a}F{b,∼a}

{xa}

{xb} {x{b,∼a}, xa, x̄b}

{xb, x̄{∼b}} {x{∼b}, xb}

{xc, x̄{∼b}}

{x{c}, x̄c}

{xa, x̄{b,∼a}}

∅

{x̄a}

{x̄a, x{b,∼a}} {x{b,∼a}, xa}

{xb, x̄{c}}

{x̄{b,∼a}, x̄a}

{xb, x̄c}Fig. 3. Left: ut tree based on the ASP-T proof in Figure 2. Right: resulting T-RES proof.to lause {x̄a, x{b,∼a}} in comp(Π), and the partial assignment in the branh withentries Ta and T{b,∼a} is ontraditory to lause {x̄{b,∼a}, x̄a} in comp(Π). Thuswe resolve on x{b,∼a} and obtain the lause {x̄a}, whih is ontraditory to thesingle entry Ta in the pre�x of the two leftmost branhes in T ′. Similarly, we anonstrut a resolution tree for lause {xa} orresponding to the right side of T ′. We�nish the proof by resolving on xa. The omplete T-RES proof orresponding to theut tree T ′ is shown in Figure 3 (right).Proof of Theorem 3.2 (ii)Let π = (C1, . . . , Cn = ∅) be a T-RES refutation of a set C of lauses. Reall thateah derived lause Ci in π is obtained by resolving on x from Cj = C ∪ {x} and
Ck = D ∪ {x̄} for some j, k < i.An ASP-T proof T for nlp(C) is obtained from π as follows. We start from Cn,whih is obtained from lauses Cj = {x} and Ck = {x̄} by resolving on x ∈ var(C),and apply in T the ut rule on ax orresponding to x. Then we reursively ontinuethe same way with Cj (Ck, respetively) in the generated branh with Fax (Tax,respetively). Sine π is tree-like, eah lause in the pre�x (C1, . . . , Cmax{j,k}) of πis either used in the derivation of Cj or Ck, but not in both. By onstrution whenreahing C1 the branhes of T orrespond one-to-one to the paths in π (seen as atree) from Cn to the leaf lauses of π. For a partiular leaf lause C, we have foreah literal l ∈ C (l = x or l = x̄) ontraditing entries for ax in the orrespondingbranh of T , that is, Fax if l = x and Tax if l = x̄. Now we an diretly deduefor eah Fax the entry F{ax} and for eah Tax the entry F{∼ax}. These entriestogether will allow us to diretly dedue Fc (all the bodies of rules with atom c asthe head are false). Sine we have ⊥ ← ∼c ∈ nlp(C), we an dedue Tc, and thebranh beomes ontraditory.The following example illustrates the strategy used in the proof of Theorem 3.2 (ii).



Theory and Pratie of Logi Programming 13Example 3.4 Reall the set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of lauses and theorresponding normal logi program nlp(C) presented in Example 2.2. The set C oflauses has a T-RES refutation π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅). Nowwe onstrut an ASP-T proof T for nlp(C) from π as done in the proof of Theo-rem 3.2 (ii). The resulting ASP-T proof T is presented in Figure 4. In the tableauwe have omitted entries of the form T{l} and F{l} for bodies onsisting of a singledefault literal. The empty lause is obtained resolving on y from {y} and {ȳ}, andthus we start with applying the ut rule on ay. The lause {ȳ} is obtained resolvingon x from {x, ȳ} and {x̄, ȳ}. We ontinue in the branh with Tay by applying theut rule on ax. Consider now the branh with Tay and Tax in the tableau. Thebranh orresponds to the lause {x̄, ȳ} in C. Thus we arrive in a ontraditionby deduing Fc4 from c4 ← ∼ax and c4 ← ∼ay, and Tc4 from ⊥ ← ∼c4. Otherbranhes beome ontraditory similarly.
Fc1

Tc1

×

Fay

nlp(C)
F⊥

Fax

Tay

Tax Fax
Tax

×
Tc3

×

Fc3Fc2

Tc2

×

Fc4

Tc4Fig. 4. An ASP-T proof for nlp(C) resulting from a T-RES proof
π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅) for C in Example 3.4.4 Extended ASP TableauxWe will now introdue an extension rule3 to ASP-T, whih results in Extended ASPTableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is thatone an de�ne names for onjuntions of default literals.De�nition 4.1 Given a normal logi program Π and two literals l1, l2 ∈ dlit(Π),the (elementary) extension rule in E-ASP-T adds the rule p ← l1, l2 to Π, where

p 6∈ atom(Π) ∪ {⊥}.It is essential that p is a new atom for preserving satis�ability. After an appliationof the extension rule one onsiders the program Π′ = Π∪{p← l1, l2} instead of theoriginal programΠ. Notie that atom(Π′) = atom(Π)∪{p}. Thus when the extensionrule is applied several times, the atoms introdued in previous appliations of therule an be used in de�ning further new atoms (see the forthoming Example 4.2).
3 Notie that the extension rule introdued here di�ers from the one proposed in (Hai et al. 2003)in the ontext of theorem proving.



14 M. Järvisalo and E. OikarinenWhen onvenient, we will apply a generalization of the elementary extension rule.By allowing one to introdue multiple bodies for p, the general extension rule addsa set of rules
⋃

i

{p← li,1, . . . , li,ki
| p 6∈ atom(Π) ∪ {⊥} and li,k ∈ dlit(Π) for all 1 ≤ k ≤ ki}into Π. Notie that equivalent onstruts an be introdued with the elementaryextension rule. For example, bodies with more than two literals an be deomposedwith balaned parentheses using additional new atoms.Example 4.2 Consider a normal logi program Π suh that atom(Π) = {a, b}.We apply the general extension rule and add a de�nition for the disjuntion ofatoms a and b, resulting in a program Π ∪ {c← a. c← b}. An equivalent onstrutan be introdued by applying the elementary extension rule twie: add �rst a rule

d← ∼a,∼b, and then add a rule c← ∼d,∼d.An E-ASP-T proof for (the unsatis�ability of) a program Π is an ASP-T proof
T for Π ∪ E, where E is a set of extending (program) rules generated with theextension rule in E-ASP-T. The length of an E-ASP-T proof is the length of T plusthe number of program rules in E.A key point is that appliations of the extension rule do not a�et the existeneof stable models.Theorem 4.3 Extended ASP Tableaux is a sound and omplete proof system fornormal logi programs.ProofLet T be an E-ASP-T proof for normal logi program Π with the set E of extend-ing rules, that is, an ASP-T proof for Π ∪ E. Sine ASP-T is sound and omplete,there is a omplete non-ontraditory branh in T if and only if Π ∪ E is satis�-able. The set atom(Π) is a splitting set for Π ∪ E, sine head(r) 6∈ atom(Π) ∪ {⊥}for every extending rule r ∈ E. Furthermore, bottom(Π ∪ E, atom(Π)) = Π and
top(Π ∪ E, atom(Π)) = E. By Theorem 2.1, Π ∪E is satis�able if and only if thereis a solution to Π ∪ E with respet to atom(Π), that is, there is a stable model
M ⊆ atom(Π) for Π and a stable model N for eval(E, M). Sine the rules in E aregenerated using the extension rule (reall also⊥ 6∈ head(E)), there is a unique stablemodel for eval(E, M) for eah M ⊆ atom(Π). Thus there is a solution to Π∪E withrespet to atom(Π) if and only if Π is satis�able, and moreover, Π∪E is satis�ableif and only if Π is satis�able, and E-ASP-T is sound and omplete.4.1 The Extension Rule and Well-Founded DedutionAn interesting question regarding the possible gains of applying the extension rulein E-ASP-T with the ASP tableau rules is whether the additional extension ruleallows one to simulate well-founded dedution (rules (h†),(h‡),(i†), and (i‡)) with



Theory and Pratie of Logi Programming 15the other dedution rules ((b)�(g),(h§),(i§))4. We now show that this is not the ase;the extension rule does not allow us to simulate reasoning related to unfoundedsets and loops. This is implied by Theorem 4.4, whih states that, by removingrules (h†),(h‡),(i†), and (i‡) from E-ASP-T, the resulting tableau method beomesinomplete for NLPs.Theorem 4.4 Using only tableau rules (a)�(g), (h§) and (i§), and the extensionrule does not result in a omplete proof system for normal logi programs.ProofConsider the NLP Π = {⊥ ← ∼a. a ← b. b ← a}. Although Π is unsatis�able,in the proof system having only the tableau rules (a)�(g),(h§), and (i§), we anonstrut a omplete and non-ontraditory tableau with a single branh
T = (Π ∪ {F⊥},F{∼a} (e),Ta (),T{b} (i§),Tb (g),T{a} (i§))for Π.Consider an arbitrary set E of extending rules generated using the extension rulein E-ASP-T. Reall that head(E) ∩ (atom(Π) ∪ {⊥}) = ∅. We an form a ompletenon-ontraditory tableau T ′ for Π ∪ E as follows.First, de�ne H0 = atom(Π) ∪ {⊥} and
Hi = {h ∈ head(E) |

⋃

r∈rule(h)

(body(r)+ ∪ body(r)−) ⊆
⋃

j<i

Hj}.Thus the sets Hi are used to de�ne a level numbering for the atoms de�ned in theextension E. Furthermore, we de�ne
Ei = {r ∈ Π ∪ E | head(r) ∈

⋃

j≤i

Hj}for all i ≥ 0. Notie that E0 = Π, and Π ∪ E =
⋃

i≥0 Ei. We now show usingindution that for eah i ≥ 0, the only branh B in T an be extended into aomplete non-ontraditory branh for Ei using tableau rules (b)�(g), (h§), and (i§).The base ase (i = 0) holds by de�nition. Assume that the laim holds for i− 1,that is, B an be extended into a omplete non-ontraditory branh B′ for Ei−1.Consider now arbitrary r ∈ Ei. By de�nition body(r)+∪body(r)− ⊆ atom(Ei−1) foreah r ∈ Ei. Sine B′ is omplete, it ontains entries for eah a ∈ atom(Ei−1), andwe an dedue an entry for body(r) using ASP tableau rule (b) or (f) (dependingon the entries in B′). If the entry T(body(r)) has been dedued, we an dedue Thfor h = head(r) using (d). Otherwise, we have dedued the entries F(body(r′)) forevery r′ ∈ Ei suh that h = head(r′), and we an dedue Fh using (h§). Thuswe have dedued entries for all a ∈ atom(Ei) ∪ body(Ei) and the branh is non-ontraditory. Furthermore it is easy to hek that the branh is losed under thetableau rules (b)�(g),(h§), and (i§).
4 Notie that the proof system onsisting of tableau rules (a)�(g),(h§), and (i§) amounts to om-puting supported models (Gebser and Shaub 2006b).



16 M. Järvisalo and E. OikarinenThus we obtain a omplete and non-ontraditory tableau for Π ∪ E. Sine weannot generate a ontraditory tableau for Π with tableau rules (a)�(g),(h§), and(i§), we annot generate one for Π∪E either. This is in ontradition with the fatthat Π is unsatis�able. 5 Proof ComplexityIn this setion we study proof omplexity theoreti issues related to E-ASP-T fromseveral viewpoints: we will
• onsider the relationship between E-ASP-T and the Extended Resolution proofsystem (Tseitin 1969),
• give an expliit separation of E-ASP-T from ASP-T, and
• relate the extension rule to the e�et of program simpli�ation on prooflengths in ASP-T.5.1 Relationship with Extended ResolutionThe system E-ASP-T is motivated by Extended Resolution (E-RES), a proof systemoriginally introdued in (Tseitin 1969). The system E-RES onsists of the resolutionrule and an extension rule that allows one to expand a set of lauses by iterativelyintroduing equivalenes of the form x ≡ l1 ∧ l2, where x is a new variable, and l1and l2 are literals in the urrent set of lauses. In other words, given a set C oflauses, one appliation of the extension rule adds the lauses {x, l̄1, l̄2}, {x̄, l1},and {x̄, l2} to C. The system E-RES is known to be more powerful than RES; infat, E-RES is polynomially equivalent to, for example, extended Frege systems, andno superpolynomial proof omplexity lower bounds are known for E-RES. We willnow relate E-ASP-T with E-RES, and show that they are polynomially equivalentunder the translations comp and nlp.Theorem 5.1 E-RES and E-ASP-T are polynomially equivalent proof systems inthe sense that(i) onsidering tight normal logi programs, E-RES under the translation comp polyno-mially simulates E-ASP-T, and(ii) onsidering sets of lauses, E-ASP-T under the translation nlp polynomially simu-lates E-RES.Proof(i): Let T be an E-ASP-T proof for a tight NLP Π, that is, T is an ASP-T prooffor Π ∪ E, where E is the set of extending rules generated in the proof. We usethe shorthand xl for the variable orresponding to default literal l in comp(Π∪E),that is, xl = xa (xl = x̄a, respetively) if l = a (l = ∼a, respetively) for a ∈

atom(Π ∪ E). By Theorem 3.2 there is a polynomial RES proof for comp(Π ∪ E).Now onsider comp(Π). We apply the extension rule in E-RES in the same orderin whih the extension rule in E-ASP-T is applied when generating the set E of



Theory and Pratie of Logi Programming 17extending rules. In other words, we apply the extension rule in E-RES as follows foreah rule r = h ← l1, l2 in E. If body(r) = {l1, l2} ∈ body(Π), then there are thelauses x{l1,l2} ≡ xl1 ∧ xl2 in comp(Π). If this is the ase, we generate the lauses
xh ≡ x{l1,l2} with the extension rule in E-RES. Otherwise, that is, if body(r) doesnot have a orresponding propositional variable in comp(Π), we generate the lauses
xh ≡ x{l1,l2} and x{l1,l2} ≡ xl1 ∧ xl2 . Denote the resulting set of extending lausesby E′. Now we notie that comp(Π) ∪ E′ = comp(Π ∪ E), and therefore the RESproof for comp(Π ∪ E) is an E-RES proof for comp(Π) in whih the extension rulein E-RES is applied to generate the lauses in E′.(ii): Let π = (C1, . . . , Cn = ∅) be an E-RES proof for a set C of lauses. Let E bethe set of lauses in π generated with the extension rule. We introdue shorthandsfor atoms orresponding to literals, that is, al = ax (al = ∼ax) if l = x (l = x̄) for
x ∈ var(C ∪E). Now, an E-ASP-T proof for nlp(C) is generated as follows. First, weadd the following rules to nlp(C) with the extension rule in E-ASP-T:

ax ← al1 , al2 for eah extension x ≡ l1 ∧ l2; (10)
c← al for eah literal l ∈ C for a lause C ∈ π suh that C 6∈ C; and (11)
p1 ← c1 and pi ← ci, pi−1 for eah Ci ∈ π and 2 ≤ i < n. (12)Then, from i = 1 to n − 1 apply the ut rule on pi in the branh with Tpj forall j < i. We now show that for eah i the branh with Fpi and Tpj for all j < ibeomes ontraditory without further appliation of the ut rule. First, dedue Fcifrom Fpi using the rule (12) for i. One of the following holds for Ci ∈ π: either(a) Ci ∈ C, (b) Ci is a derived lause, or () Ci ∈ E.(a) If Ci ∈ C we an dedue Tci from ⊥ ← ∼ci ∈ nlp(C), and the branh beomesontraditory.(b) If Ci is a derived lause, that is, Ci is obtained from Cj and Ck for j, k < i resolvingon x, then Ci = (Ck ∪Cj)\{x, x̄}. For all the literals l ∈ Ci we dedue fal from therules (11) in the extension. From Tpj and Tpk we dedue Tcj and Tck using therule (12) in the extension for j and k, respetively. Furthermore beause we haveentries fal for eah l in (Ck ∪Cj) \ {x, x̄}, we dedue Tax and Fax and the branhbeomes ontraditory. Reall that there is a rule c← al for eah lause C ∈ π andliteral l ∈ C either in nlp(C) or in the extension (rules in (11)).() If Ci ∈ E, then Ci is of the form {x, l̄1, l̄2}, {x̄, l1}, or {x̄, l2} for x ≡ l1 ∧ l2.For instane, if Ci = {x̄, l1}, then from ci ← ∼ax and ci ← al1 we dedue Taxand fal1 . The branh beomes ontraditory as T{al1 , al2} and tal1 are deduedfrom a rule (10) in the extension. The branh beomes ontraditory similarly, if Ciis of the form {x, l̄1, l̄2} or {x̄, l2}.Finally, onsider the branh with Tpi for all i = 1 . . . n−1. The empty lause Cn in πis obtained by resolving Cj = {x} and Ck = {x̄} in π for some j, k < n. Thus we andedue Tcj and Tck from rules (12) for j and k, respetively, and furthermore, Taxand Fax from cj ← ax and ck ← ∼ax, resulting in a ontradition in the branh.The obtained ontraditory ASP tableau is of linear length with respet to π.



18 M. Järvisalo and E. Oikarinen5.2 Pigeonhole Priniple Separates Extended ASP Tableaux from ASPTableauxTo exemplify the strength of E-ASP-T, we now onsider a family of normal logiprograms {Πn} whih separates E-ASP-T from ASP-T, that is, we give an expliitpolynomial-length proof for Πn for whih ASP-T has exponential-length minimalproofs with respet to n. We will onsider this family also in the experiments re-ported in this artile.The program family {PHPn+1
n } in question is the following typial enoding ofthe pigeonhole priniple as a normal logi program:

PHPn+1
n = {⊥ ← ∼pi,1, . . . ,∼pi,n | 1 ≤ i ≤ n + 1} ∪ (13)

{⊥ ← pi,k, pj,k | 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n} ∪ (14)
{pi,j ← ∼p′i,j . p′i,j ← ∼pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}. (15)In the program above, pi,j has the interpretation that pigeon i sits in hole j. Therules in (13) require that eah pigeon must sit in some hole, and the rules in (14)require that no two pigeons an sit in the same hole. The rules in (15) enfore thatfor eah pigeon and eah hole, the pigeon either sits in the hole or does not sit inthe hole. Eah PHPn+1

n is unsatis�able sine there is no bijetive mapping from an
(n + 1)-element set to an n-element set.Theorem 5.2 The omplexity of {PHPn+1

n } with respet to n is(i) polynomial in E-ASP-T, and(ii) exponential in ASP-T.Proof(i): In (Cook 1976) an extending set of lauses is added to a lausal enoding CPHP ofthe pigeonhole priniple5 so that RES has polynomial-length proofs for the resultingset of lauses. By Theorem 5.1 (ii) there is a polynomial-length E-ASP-T proof for
nlp(CPHP) = {pi,j ← ∼p′i,j. p′i,j ← ∼pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n} ∪

{⊥ ← ∼ci | 1 ≤ i ≤ n + 1} ∪

{⊥ ← ∼cijk | 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n} ∪

{ci ← pi,j | 1 ≤ j ≤ n, 1 ≤ i ≤ n + 1} ∪

{cijk ← ∼pi,k. cijk ← ∼pj,k | 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n}.For simpliity, we keep the names of the atoms pi,j unhanged in the translation.In more detail, let π = (C1, C2, . . . , Cm = ∅) be the polynomial-length E-RES

5 The partiular enoding, for whih there are no polynomial-length RES proofs (Haken 1985), is
CPHP =

S

1≤i≤n+1
{{

Wn
j=1

pi,j}} ∪
S

1≤i<j≤n+1,1≤k≤n{{¬pi,k ∨ ¬pj,k}}.



Theory and Pratie of Logi Programming 19proof6 for the lausal representation CPHP. Let
EXTl = {el

i,j ← el+1
i,j . el

i,j ← el+1
i,l , el+1

l+1,j | 1 ≤ i ≤ l and 1 ≤ j ≤ l − 1}for 1 < l ≤ n, where eah en+1
i,j is pi,j . The extension EXTl orresponds the set ofextending lauses in (Cook 1976) similarly to the set of rules (10) in part (ii) of theproof of Theorem 5.1. Furthermore, E(π) onsists of the sets of rules (11) and (12)de�ned in the proof of Theorem 5.1 (ii). By applying the strategy from the proofof Theorem 5.1 (ii), we obtain a polynomial-length ASP-T proof for

nlp(CPHP) ∪
⋃

1<l≤n

EXTl ∪ E(π).Now, we use the same strategy to onstrut a polynomial ASP-T proof for theprogram
EPHPn+1

n = PHPn+1
n ∪

⋃

1<l≤n

EXTl ∪ E′(π),where E′(π) onsists of rules c← al for eah literal l ∈ C for eah lause C ∈ π (thatis, rules as in (11) but without the restrition C 6∈ CPHP) together with the rulesin (12). The only di�erene omes in step (a) in the proof of Theorem 5.1 (ii), thatis, when we have dedued Fc orresponding to C ∈ CPHP. Sine we do not have therule ⊥ ← ∼c in EPHPn+1
n , we annot dedue Tc to obtain a ontradition. Instead,we an dedue a ontradition without using the ASP-T ut rule through a programrule in PHPn+1

n that orresponds to the lause C. For instane, if C = {¬pi,k,¬pj,k},we have the rules c ← ∼pi,k and c ← ∼pj,k in E′(π) and the rule ⊥ ← pi,k, pj,k in
PHPn+1

n . From Fc, we dedue Tpi,k and Tpj,k. From F⊥ and ⊥ ← pi,k, pj,k, we de-due F{pi,k, pj,k}, and furthermore, from Tpi,k and F{pi,k, pj,k}, we dedue Fpj,k.This results in a polynomial-length E-ASP-T proof for PHPn+1
n .(ii): Assume now that there is a polynomial ASP-T proof for PHPn+1

n . By The-orem 3.2, there is a polynomial T-RES proof for comp(PHPn+1
n ). Notie that theompletion comp(PHPn+1

n ) onsists of the lausal enoding CPHP of the pigeonholepriniple and additional lauses (tautologies) for rules of the form pi,j ← ∼p′i,j,
p′i,j ← ∼pi,j . It is easy to see that these additional tautologies do not a�et thelength of the minimal T-RES proofs for comp(PHPn+1

n ). Thus there is a polynomial-length T-RES proof for the lausal pigeonhole enoding. However, this ontraditsthe fat that the omplexity of the lausal pigeonhole priniple is exponential withrespet to n for (Tree-like) Resolution (Haken 1985).We an also easily obtain a non-tight program family to witness the separationdemonstrated in Theorem 5.2. Consider the family
{PHPn+1

n ∪ {pi,j ← pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}},

6 The polynomial-length E-RES proof for CPHP is not desribed in detail in (Cook 1976). Detailson the struture of the RES proof an be found in (Järvisalo and Junttila 2008). The intuitiveidea is that the extension allows for reduing PHP
n+1
n to PHP

n
n−1 with a polynomial numberof resolution steps.



20 M. Järvisalo and E. Oikarinenwhih is non-tight with the additional self-loops {pi,j ← pi,j}, but preserves (un)satis-�ability of PHPn+1
n for all n. Sine the self-loops do not ontribute to the proofsfor PHPn+1

n , ASP-T still has exponential-length minimal proofs for these programs,while the polynomial-length E-ASP-T proof presented in the proof of Theorem 5.2is still valid.The generality of the arguments used in the proof of Theorem 5.2 is not limited tothe spei� family PHPn+1
n of NLPs. For understanding the general idea behind theexpliit onstrution of EPHPn+1

n , it is informative to notie the following. Insteadof onsidering PHPn+1
n , one an apply the argument in the proof Theorem 5.2using any tight NLP Π whih represents a set of lauses C for whih (i) there is nopolynomial-length RES proof, but for whih (ii) there is a polynomial-length E-RESproof . By property (ii) we know from Theorem 5.1 (ii) that there is a polynomial-length E-ASP-T proof for Π.5.3 Program Simpli�ation and ComplexityWe will now give an interesting orollary of Theorem 5.2, addressing the e�et ofprogram simpli�ation on the length of proofs in ASP-T.Tightly related to the development of e�ient solver implementations for ASPprograms arising from pratial appliations is the development of tehniques forsimplifying programs. Pratially relevant programs are often generated automat-ially, and in the proess a large number of redundant onstraints is produed.Therefore e�ient program simpli�ation through loal transformation rules is im-portant. While various satis�ability-preserving loal transformation rules for sim-plifying logi programs have been introdued (see (Eiter et al. 2004) for example),the e�et of applying suh transformations on the lengths of proofs has not reeivedattention.Taking a �rst step into this diretion, we now show that even simple transfor-mation rules may have a drasti negative e�et on proof omplexity. Consider theloal transformation rule

red(Π) = Π \ {r ∈ Π | head(r) 6∈
⋃

B∈body(Π)

(B+ ∪B−) and head(r) 6= ⊥}.A polynomial-time simpli�ation algorithm red∗(Π) is obtained by losing pro-gram Π under red. Notie that we have red∗(EPHPn+1
n ) = PHPn+1

n . Thus, byTheorem 5.2, red∗ transforms a program family having polynomial omplexity inASP Tableaux into one with exponential omplexity with respet to n.The rules removed by red∗ are redundant with respet to satis�ability of theprogram in the sense that red∗ preserves visible equivalene (Janhunen 2006). Thevisible equivalene relation takes the interfaes of programs into aount: atom(Π)is partitioned into v(Π) and h(Π) determining the visible and the hidden atoms in Π,respetively. Programs Π1 and Π2 are visibly equivalent, denoted by Π1 ≡v Π2, ifand only if v(Π1) = v(Π2) and there is a bijetive orrespondene between the stablemodels of Π1 and Π2 mapping eah a ∈ v(Π1) onto itself. Now if one de�nes v(Π) =

atom(red∗(Π)) = v(red∗(Π)), that is, assuming that the atoms removed by red∗ are



Theory and Pratie of Logi Programming 21hidden in Π, one an see that red∗(Π) ≡v Π. Hene, even though there is a bijetiveorrespondene between the stable models of EPHPn+1
n and red∗(EPHPn+1

n ) =

PHPn+1
n , red∗ auses a superpolynomial blow-up in the length of proofs in ASP-Tand the related solvers, if applied before atually proving EPHPn+1

n .6 ExperimentsWe experimentally evaluate how well urrent state-of-the-art ASP solvers an makeuse of the additional struture introdued to programs using the extension rule. Forthe experiments, we ran the solvers 7 smodels (Simons et al. 2002) (version 2.33, awidely used lookahead solver), clasp (Gebser et al. 2007) (version 1.1.0, with manytehniques�inluding on�it learning�adopted from DPLL-based SAT solvers),and cmodels (Giunhiglia et al. 2006) (version 3.77, a SAT-based ASP solver runningthe on�it-learning SAT solver zCha� (Moskewiz et al. 2001) version 2007.3.12 asthe bak-end). The experiments were run on standard PCs with 2-GHz AMD 3200+proessors under Linux. Running times were measured using /usr/bin/time.First, we investigate whether ASP solvers are able to bene�t from the extensionin EPHPn+1
n . We ompare the number of deisions and running times of eah ofthe solvers on PHPn+1

n , CPHPn+1
n = PHPn+1

n ∪
⋃

1<l≤n EXTl, and EPHPn+1
n . ByTheorem 5.2 the solvers should in theory be able to exhibit polynomially salingnumbers of deisions for EPHPn+1

n . In fat with on�it-learning this might alsobe possible for CPHPn+1
n due to the tight orrespondene with on�it-learningSAT solvers and RES (Beame et al. 2004). The results for n = 10 . . . 12 are shownin Table 1. While the number of deisions for the on�it-learning solvers clasp

7 We note that the detailed results reported here di�er somewhat from those reported in theonferene version of this work (Järvisalo and Oikarinen 2007). This is due to the fat that, forthe urrent artile, we used more reent versions of the solvers.Table 1. Results on PHPn+1
n , CPHPn+1

n , and EPHPn+1
n with timeout (-) of 2hours.Time (s) DeisionsSolver n PHPn+1

n CPHPn+1
n EPHPn+1

n PHPn+1
n CPHPn+1

n EPHPn+1
n

smodels 10 34.02 119.69 8.65 164382 144416 0
smodels 11 486.44 1833.48 21.70 1899598 1584488 0
smodels 12 - - 49.28 - - 0
clasp 10 6.81 7.29 10.05 337818 216894 38863
clasp 11 58.48 45.00 82.07 1840605 882393 203466
clasp 12 579.28 509.43 941.23 12338982 6434939 1467623

cmodels 10 1.60 1.69 7.87 8755 8579 12706
cmodels 11 8.20 8.51 43.96 24318 23758 42782
cmodels 12 46.33 54.26 122.72 88419 94917 88499



22 M. Järvisalo and E. Oikarinenand cmodels is somewhat redued by the extensions, the solvers do not seem to beable to reprodue the polynomial-length proofs, and we do not observe a dramatihange in the running times. With a timeout of 2 hours, smodels gives no answer for
n = 12 on PHPn+1

n or CPHPn+1
n . However, for EPHPn+1

n smodels returns withoutany branhing, whih is due to the fat that smodels' omplete lookahead notiesthat by branhing on the ritial extension atoms (as in part (ii) of the proof ofTheorem 5.2) the false branh beomes ontraditory immediately. With this inmind, an interesting further study out of the sope of this work would be thepossibilities of integrating on�it learning tehniques with (partial) lookahead.In the seond experiment, we study the e�et of having a modest number ofredundant rules on the behavior of ASP solvers. For this we apply the proedureAddRandomRedundany(Π, n, p) shown in Algorithm 1. Given a program Π,the proedure iteratively adds rules of the form ri ← l1, l2 to Π, where l1, l2 arerandom default literals urrently in the program and ri is a new atom. The numberof introdued rules is p% of the integer n.Algorithm 1 AddRandomRedundany(Π, n, p)1. For i = 1 to ⌊ p

100n⌋:1a. Randomly selet l1, l2 ∈ dlit(Π) suh that l1 6= l2.1b. Π := Π ∪ {ri ← l1, l2}, where ri 6∈ atom(Π) ∪ {⊥}.2. Return ΠIn Figure 5, the median, minimum, and maximum number of deisions and run-ning times for the solvers on AddRandomRedundany(PHPn+1
n , n, p) are shownfor p = 50, 100, . . . , 450 over 15 trials for eah value of p. The mean number ofdeisions (left) and running times (right) on the original PHPn+1

n are presentedby the horizontal lines. Notie that the number of added atoms and rules is linearto n, whih is negligible to the number of atoms (in the order of n2) and rules (n3)in PHPn+1
n . For similar running times, the number of holes n is 10 for clasp and

smodels and 11 for cmodels. The results are very interesting: eah of the solversseems to reat individually to the added redundany. For cmodels (b), only a fewadded redundant rules are enough to worsen its behavior. For smodels (), the num-ber of deisions dereases linearly with the number of added rules. However, therunning times grow fast at the same time, most likely due to smodels' lookahead.We also ran the experiment for smodels without using lookahead (d). This had avisible e�et on the number of deisions ompared to smodels on PHPn+1
n .The most interesting e�et is seen for clasp (a); clasp bene�ts from the addedrules with respet to the number of deisions, while the running times stay similaron the average, ontrarily to the other solvers. In addition to this robustness againstredundany, we believe that this shows promise for further exploiting redundanyadded in a ontrolled way during searh; the added rules give new possibilities tobranh on de�nitions whih were not available in the original program. However,
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p(d) smodels without lookahead: deisions (left), time in seonds (right)Fig. 5. E�ets of adding randomly generated redundant rules to PHPn+1
n .



24 M. Järvisalo and E. Oikarinenfor bene�ting from redundany with running times in mind, optimized lightweightpropagation mehanisms are essential.As a �nal remark, an interesting observation is that the e�et of the transfor-mation presented in (Anger et al. 2006), whih enables smodels to branh on thebodies of rules, having an exponential e�et on the proof omplexity of a partiularprogram family, an be equivalently obtained by applying the ASP extension rule.This may in part explain the e�et of adding redundany on the number of deisionmade by smodels. 7 ConlusionsWe introdue Extended ASP Tableaux, an extended tableau alulus for normallogi programs under the stable model semantis. We study the strength of thealulus, showing a tight orrespondene with Extended Resolution, whih is amongthe most powerful known propositional proof systems. This sheds further light onthe relation of ASP and propositional satis�ability solving and their underlyingproof systems, whih we believe to be for the bene�t of both of the ommunities.Our experiments show the intriate nature of the interplay between redundantproblem struture and the hardness of solving ASP instanes. We onjeture thatmore systemati use of the extension rule is possible and may even yield perfor-mane gains by onsidering in more detail the strutural properties of programs inpartiular problem domains. One ould also onsider implementing branhing onany possible formula inside a solver. However, this would require novel heuristis,sine hoosing the formula to branh on from the exponentially many alternativesis nontrivial and is not applied in urrent solvers. We �nd this an interesting futurediretion of researh. Another important researh diretion set forth by this studyis a more in-depth investigation into the e�et of program simpli�ation on thehardness of solving ASP instanes.8 AknowledgementsThe authors thank Ilkka Niemelä for omments on a manusript of this artile.Finanial support from Helsinki Graduate Shool in Computer Siene and Engi-neering, Aademy of Finland (grants #211025 and #122399), Emil Aaltonen Foun-dation, Nokia Foundation, Finnish Foundation for Tehnology Promotion TES,Jenny and Antti Wihuri Foundation (MJ), and Finnish Cultural Foundation (EO)is gratefully aknowledged. ReferenesAnger, C., Gebser, M., Janhunen, T., and Shaub, T. 2006. What's a head withouta body? In Proeedings of the 17th European Conferene on Arti�ial Intelligene (ECAI2006), G. Brewka, S. Coradeshi, A. Perini, and P. Traverso, Eds. IOS Press, 769�770.Anger, C., Gebser, M., Linke, T., Neumann, A., and Shaub, T. 2005. Thenomore++ approah to answer set solving. In Proeedings of the 12th InternationalConferene on Logi for Programming, Arti�ial Intelligene, and Reasoning (LPAR
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