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Introduction
Recent years have witnessed rapid progress both in the foun-
dations of and in applying state-of-art solvers for the propo-
sitional satisfiability problem (SAT). The study of sources
for hard SAT instances is motivated by the need for inter-
esting benchmarks for solver development and on the other
hand by theoretical analysis of different proof systems.

In this respect satisfiable instance families are espe-
cially interesting. In contrast to unsatisfiable instance fam-
ilies, there are few theoretical results for satisfiable formu-
las (Alekhnovich, Hirsch, & Itsykson); for the successful
DPLL method, restricted heuristics need to be considered.

While real-world problems serve as best benchmark in-
stances in many sense, such instances are typically very
large and unavailable in abundance. More “artificial” em-
pirically hard satisfiable CNF families include (see refer-
ences therein for more) regular random k-SAT (Boufkhad
et al.), encodings of quasi-group completion (Achlioptas et
al. 2000), XORSAT models inspired by statistical physics
(Ricci-Tersenghi, Weight, & Zecchina 2001; Jia, Moore, &
Selman 2005), and the regular XORSAT model (Haanpää et
al. 2006) motivated by expansion properties of random reg-
ular bipartite graphs.

Experimental comparison with other available generators
for notably hard satisfiable 3-CNF formulas shows that the
regular XORSAT model gives extremely hard instances for
state-of-the art clausal SAT solvers (Haanpää et al. 2006).
In this paper we generalize the regular XORSAT model for
k > 3, and investigate how this relates to the hardness of the
instances. By increasing the degree of the underlying regular
constraint graphs, we observe a sharp increase in problem
difficulty with respect to the number of variables, motivating
further analysis of regular XORSAT.

Preliminaries
Let X be a set of Boolean variables. For each x ∈ X there
are two literals, x (positive) and x̄ (negative). A clause of
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length k (a k-clause) is a disjunction of k distinct literals.
A propositional formula in k-conjunctive normal form (a k-
CNF formula) is a conjunction of k-clauses. A truth assign-
ment τ associates a truth value τ(x) ∈ {0, 1}with each vari-
able x ∈ X . A truth assignment satisfies a CNF formula if it
satisfies every clause in it. A clause is satisfied if it contains
at least one satisfied literal, where a literal x (respectively,
x̄) is satisfied if τ(x) = 1 (τ(x) = 0). The k-satisfiability
problem is to decide whether a given k-CNF formula admits
a satisfying truth assignment.

Let G = (V, E) be an undirected graph. The degree d
of a vertex is the number of vertices adjacent to it. A graph
is d-regular if all of its vertices have degree d. Graph G is
bipartite if there exist X, Y ⊆ V such that X ∪ Y = V ,
X ∩ Y = ∅, and every edge is incident to one vertex in X
and one in Y . Such a pair (X, Y ) is a bipartition of G.

The Regular d-XORSAT Model
We now describe the regular d-XORSAT model for gener-
ating satisfiable d-CNF formulas. The regular (3-)XORSAT
model was originally introduced in (Haanpää et al. 2006).

A regular d-XORSAT instance with n variables is con-
structed as follows. Let X = {xi}n

i=1 be an associated set
of n Boolean variables and let Y = {yi}n

i=1 be a set of n
elements, each corresponding to an equation in a system of
n linear equations over X . A constraint graph G = (V, E)
with bipartition (X, Y ) characterizes the occurrences of the
variables in the equations, that is, {xj , yi} is an edge of
G if and only if the variable xj ∈ X occurs in the equa-
tion yi ∈ Y . In the regular d-XORSAT model a constraint
graph G is selected uniformly at random from the set of all
d-regular graphs with bipartition (X, Y ). Once a constraint
graph G has been selected, construct a system of linear equa-
tions based on G as follows. Let A = (aij) be the n × n
matrix whose entries are defined for all i, j = 1, . . . , n by

aij =
{

1 if {xj , yi} ∈ E,
0 if {xj , yi} /∈ E.

Select uniformly at random a ~z ∈ {0, 1}n and let ~b ∈
{0, 1}n so that~b ≡ A~z (mod 2). The system of linear equa-
tions is now A~x ≡ ~b (mod 2), where ~x = (x1, . . . , xn)
is a column vector of variables. By construction A~z ≡ ~b
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(mod 2) and thus the system always has at least one so-
lution. Finally, transform the system A~x ≡ ~b (mod 2)
into a k-CNF formula by introducing for every equation∑d

k=1 xjk
≡ bi (mod 2) a set of 2d−1 clauses that forbid

the combinations of truth values that violate the equation,
i.e., all clauses on the variables xjk

with an even (respec-
tively, odd) number of positive literals if bi = 1 (bi = 0).

The Generator
The process described in (Haanpää et al. 2006) for gener-
ating d-regular bipartite graphs uniformly at random (u.a.r.)
is unfortunately inefficient for d > 3. Thus we use the fol-
lowing (although not u.a.r.) approach to generate d-regular
bipartite graphs with 2n vertices.

1. Let G = Kn,n (the complete 2n-vertex bipartite graph)
and H be the 2n-vertex graph with no edges.

2. Repeat d times:

2a) Obtain G′ by relabeling the vertices of G = (V, E)
with a permutation π : 2n → 2n selected uniformly at
random.

2b) Let M ′ be a maximum matching of G′ and M =
π−1(M ′) (restore to the original vertex labeling).

2c) Add the edges of M to H .
2d) Remove the edges of M from G.

3. Return H .

An O(d|E|) algorithm (Schrijver 1999) is used for finding
maximum matchings in d-regular bipartite graphs. See the
accompanying web page for implementations of the original
regular XORSAT generator and the described variation.

Experiments
We investigate the hardness of regular d-XORSAT for var-
ious d with the complete DPLL-based SAT solver zChaff

(Fig. 1) (http://www.princeton.edu/˜chaff/zchaff.html)
and the local search solver WalkSAT (Fig. 2)
(http://www.cs.washington.edu/homes/kautz/walksat/),
plotting the median number of decisions/flips over
15 instances. A comparison with satisfiable random
k-XORSAT (Ricci-Tersenghi, Weight, & Zecchina
2001) with clauses-to-variables ratio 1 is presented in
Fig. 3 using the DPLL-solver Satz (http://www.laria.u-
picardie.fr/˜cli/EnglishPage.html). See the accompanying
web page for comparisons running other solvers.

Conclusions
By increasing the degree of the underlying regular constraint
graphs, we observe a sharp increase in problem difficulty
with respect to the number of variables. Regular d-XORSAT
gives instances with only 50 variables on which state-of-the-
art SAT solvers make in the order of 106 decisions, the in-
stances being harder than satisfiable random XORSAT.

Interesting further work includes theoretical analysis of
the behavior of DPLL (with learning) and local search meth-
ods on regular d-XORSAT. A related research problem is to
find a satisfiable k-CNF family on which the lower bound
for DPLL converges to Ω(2n) as k → ∞.
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Figure 1: zChaff on regular d-XORSAT
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Figure 2: WalkSAT on regular d-XORSAT
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Figure 3: Satz: Regular d-XORSAT v random k-XORSAT
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