
On the Relative Efficiency of
DPLL and OBDDs with Axiom and Join⋆

Matti Järvisalo

Department of Computer Science, University of Helsinki, Finland

Abstract. This paper studies the relative efficiency of ordered binary decision di-
agrams (OBDDs) and the Davis-Putnam-Logemann-Loveland procedure (DPLL),
two of the main approaches to solving Boolean satisfiability instances. Especially,
we show that OBDDs, even when constructed using only the rather weak ax-
iom and join rules, can be exponentially more efficient than DPLL or, equiva-
lently, tree-like resolution. Additionally, by strengthening via simple arguments
a recent result—stating that such OBDDs do not polynomially simulate unre-
stricted resolution—we also show that the opposite holds: there are cases inwhich
DPLL is exponentially more efficient out of the two considered systems. Hence
DPLL and OBDDs constructed using only the axiom and join rules are polynomi-
ally incomparable. This further highlights differences between search-based and
compilation-based approaches to Boolean satisfiability.

1 Introduction

Many algorithms for Boolean satisfiability (SAT) are based on either resolution (in-
cluding most state-of-the-art search-based solvers today) or (reduced) ordered binary
decision diagrams (OBDDs). Recently, there has been a lot ofinterest in the relative effi-
ciency of satisfiability checking methods based on resolution and OBDDs [1,2,3,4,5,6].
While OBBDs in general are known to be in cases exponentially more efficient that un-
restricted resolution [7], it has been recently shown [6] that the restrictedOBDDaj proof
system, consisting only of the rather weakAxiomandJoinrules which correspond to the
Apply OBDD operator (i.e., disallowing symbolic quantifier elimination and reorder-
ing), does not polynomially simulate unrestricted resolution. In other words, there is an
infinite family {Fn}n of unsatisfiable CNF formulas such that (i) there is a polynomial-
size resolution proof ofFn w.r.t. n for everyn, whereas (ii) minimum-sizeOBDDaj

proofs ofFn for everyn are of exponential size w.r.t.n (and of super-polynomial size
w.r.t. the number of clauses inFn). A practical implication of this result is thatOBDDaj

(under any variable ordering) does not polynomially simulate typical restarting conflict-
driven clause learning SAT solvers—often the most efficient ones for practical appli-
cations of SAT, and which have been recently shown to polynomially simulate unre-
stricted resolution [8]. However, the results in [6] leave open the question of pinpoint-
ing the (in)efficiency ofOBDDaj more exactly: Does it even polynomially simulate the
Davis-Putnam-Logemann-Loveland procedure (DPLL) [9,10] that is known to be ex-
ponentially weaker than clause learning? DoesDPLL polynomially simulateOBDDaj?

⋆ This work is financially supported by Academy of Finland (grant 132812).

In this paper we show that the answer to both of these questions is negative: 1. We
show thatDPLL (with an optimal branching heuristic) does not polynomially simulate
OBDDaj (using a suitable variable ordering). 2. Strengthening theresult of [6] via sim-
ple arguments, we show that theOBDDaj proof system (under any variable ordering)
does not polynomially simulateDPLL (known to be equivalent to the tree-like resolu-
tion refinement). HenceOBDDaj andDPLL arepolynomially incomparable.

Theorem 1. OBDDs constructed using the Axiom and Join rules andDPLL (equiva-
lently, tree-like resolution) are polynomially incomparable.

This provides further understanding on the general question of the relative efficiency
of DPLL and variants of OBDDs, highlighting further the differences between search-
based and compilation-based approaches to Boolean satisfiability.

2 Preliminaries

CNF Satisfiability. A literal is a Boolean variablex or its negation¬x. A clauseis a
disjunction (∨) of literals and a CNF formula is a conjunction (∧) of clauses. When
convenient, we view a clause as a finite set of literals and/ora CNF formula as a finite
set of clauses. The set of variables occurring in a CNF formulaF is denoted byvars(F),
and the set of literals occurring in a clauseC by lits(C). An assignmentτ is a function
that maps literals to elements in{0, 1}, where1 and0, resp., stand fortrue andfalse,
resp. Ifτ(x) = v, thenτ(¬x) = 1 − v, and vice versa. A clause issatisfiedby τ if
it contains at least one literall such thatτ(l) = 1. An assignmentτ satisfiesa CNF
formula if it satisfies every clause in the formula.

DPLL. The DPLL procedure [9,10] is a classical complete search algorithm for de-
ciding satisfiability of CNF formulas. It can be summarized as the following non-
deterministic algorithm.

DPLL(F)
If F is emptyreport satisfiableandhalt
If F contains the empty clausereturn
Elsechoose a variablex ∈ vars(F)

DPLL(Fx)
DPLL(F¬x)

HereFx denotes the formula resulting from applyingunit propagationuntil fixpoint on
F , i.e., removing all clauses containingx and all occurrences of¬x from F , and re-
peating until fixpoint for all single-literal clauses inF . Practical implementations make
DPLL deterministic by implementing a branching heuristic for choosing a variable.
However, here we do not restrict this non-deterministic choice. A DPLL proof of an
unsatisfiable CNF formulaF is a search tree of DPLL(F). The size of aDPLL proof is
the number of nodes in the tree.

Resolution.The well-known Resolution proof system (RES) is based on theresolution
rule that allows one todirectly derivethe clause(C ∪ D) \ {x,¬x} from the clauses
{x} ∪ C and{¬x} ∪ D by resolving onthe variablex. Given an unsatisfiable CNF

formulaF , aRES proof of F is a sequence of clausesπ = (C1, C2, . . . , Cm = ∅),
where eachCi, 1 ≤ i ≤ m, is either (i) a clause inF (an initial clause) or (ii) directly
derived with the resolution rule from two clausesCj , Ck where1 ≤ j, k < i. The
sizeof π, denoted by|π|, is m. Any RES proof π = (C1, C2, . . . , Cm = ∅) can be
presented as a directed acyclic graph. The clauses occurring in π label the nodes. The
edge relation is defined so that there are edges fromCi andCj to Ck, if and only if
Ck has been directly derived fromCi andCj . Tree-like Resolution(T-RES) proofs are
representable as trees. It is well-known thatT-RES proofs are polynomially equivalent
to search trees traversed by the DPLL procedure.

In Extended Resolution(E-RES) [11] one can first apply theextension ruleto add
a conjunction of clauses (anextension) to a CNF formulaF in a restricted manner,
before using the resolution rule to construct aRES proof of the resulting formula. In
more detail, for a given CNF formulaF , the extension rule allows for iteratively adding
definitions of the formx ≡ l1 ∧ l2 (i.e. the clauses(x ∨ ¬l1 ∨ ¬l2), (¬x ∨ l1), and
(¬x ∨ l2)) to F , wherex is a new variable andl1, l2 are literals in the current formula.
The resulting formulaF ∧ E then consists of the original formulaF and the extension
E, the conjunction of the clauses iteratively added toF using the extension rule.

OBDDs with Axiom and Join. A binary decision diagram(BDD) over a set of Boolean
variablesV is a rooted directed acyclic graph that consists of (i)decision nodeslabelled
with distinct variables fromV and (ii) two terminal nodes (of out-degree zero) labelled
with 0 and1. Each decision nodev has two children, low(v) and high(v). The edge
from v to low(v) (to high(v), resp.) represents assigningv to 0 (to 1, resp.). A BDD is
orderedaccording to a total variable order≺ if its variables appear in the order given by
≺ on all paths from the root to the terminal nodes. An ordered BDD is reduced(simply,
an OBDD from here on) if its (i) isomorphic subgraphs have been merged, and (ii) the
nodes that have isomorphic children have been eliminated. Given any propositional
formulaφ and a total variable order≺ overvars(φ), there is a unique OBDDB(φ,≺)
that representsφ. Thesizeof B(φ,≺), denoted bysize(Bi(φi,≺)), is the number of its
nodes.

Given an unsatisfiable CNF formulaF and a total variable order≺ over vars(F),
anOBDDaj proof of F (i.e., anOBDDaj derivationof the OBDD for0) is a sequence
ρ = (B1(φ1,≺), . . . ,Bm(φm,≺)) of OBDDs, where (i)Bm(φm,≺) is the single-node
OBDD representing0, and (ii) for eachi ∈ {1, . . . ,m}, either

– φi is a clause inF , or
– φi = φj ∧ φk for someBj(φj ,≺) andBk(φk,≺), 1 ≤ j < k < i, in ρ.

In the former caseBi(φi,≺) is anaxiom, and in the latterBi(φi,≺) is the join of
Bj(φj ,≺) andBk(φk,≺). The size of anOBDDaj proofρ is Σm

i=1size(Bi(φi,≺)).

3 DPLL does not Polynomially SimulateOBDDaj

In this section we show thatDPLL does not polynomially simulateOBDDaj. For the
separation, we consider so-calledpebbling contradictionsPeb(G), first introduced in [12],
based on the structure of a directed acyclic graph (DAG)G. Taking two variablesxi,0

andxi,1 for each node inG, Peb(G) is the conjunction of the following clauses.

– (xi,0 ∨ xi,1) for each source node (in-degree 0)i of G;
– (¬xi,0) and(¬xi,1) for each sink node (out-degree 0)i of G;
– (¬xi1,a1

∨· · ·∨¬xik,ak
∨xj,0∨xj,1) for each non-source nodej, wherei1, . . . , ik

are the predecessors ofj, and for each(a1, . . . , ak) ∈ {0, 1}k.

The following theorem helps us in achieving polynomial-sizeOBDDaj proofs.

Theorem 2 ([13]). For any Boolean functionf over n variables, and any variable
order≺, size(B(f,≺)) = O(2n/n).

Corollary 1. For any unsatisfiable CNF formulaF overn variables, and any variable
order≺, there is anOBDDaj proof ofF of size2O(n).

The following two lemmas play a key role in this work. For proving the lemmas we
rely on a similar proof strategy as the one applied in [14] used in a different context (for
showing that tree-like resolution does not polynomially simulateordered resolution).

Lemma 1. LetG be a DAG onn nodes, andj a node inG with parentsi1, . . . , ik where
k = O(log n). Consider the clauses(xi1,0 ∨ xi1,1),. . . , (xik,0 ∨ xik,1) and(¬xi1,a1

∨
· · · ∨ ¬xik,ak

∨ xj,0 ∨ xj,1) for all (a1, . . . , ak) ∈ {0, 1}k. For any variable order≺,
there is a polynomial-sizeOBDDaj derivation ofB((xj,0∨xj,1),≺) from these clauses.

Proof. Consider the unsatisfiable CNF formula consisting of the clauses(xi1,0∨xi1,1),. . . ,
(xik,0∨xik,1) and(¬xi1,a1

∨· · ·∨¬xik,ak
) for all (a1, . . . , ak) ∈ {0, 1}k. The number

of variables in this formula isO(log n), and hence by Corollary 1 there is a polynomial-
sizeOBDDaj proof of this formula for any variable order≺. Such anOBDDaj proof
can be transformed into aOBDDaj derivation ofB((xj,0 ∨ xj,1),≺

′) by defining≺′

as≺ to whichxj,0 andxj,1 have been added as the last two elements, and by replac-
ing B(φ,≺) with B(φ ∨ xj,0 ∨ xj,1,≺) for eachB(φ,≺) in the proof such that either
φ is (¬xi1,a1

∨ · · · ∨ ¬xik,ak
) or B(φ,≺) has been derived starting from the axiom

B((¬xi1,a1
∨· · ·∨¬xik,ak

),≺). For each suchB(φ,≺),B(φ∨xj,0∨xj,1,≺) isB(φ,≺)
with the terminal node0 replaced byB((xj,0 ∨ xj,1),≺). �

Lemma 2. There are polynomial-sizeOBDDaj proofs ofPeb(G) for any DAGG with
node in-degree bounded byO(log n).

Proof. Fix any ordering≺ of the variables inPeb(G) that respects a topological or-
dering ofG. Label each sourcej of G with B((xj,0 ∨ xj,1),≺). For each non-source
nodej of G with parentsi1, . . . , ik, k = O(log n), replacej with the polynomial-
sizeOBDDaj derivation ofB((xj,0 ∨ xj,1),≺) (Lemma 1) under≺. The result is a
polynomial-sizeOBDDaj derivation ofB((xt,0 ∨ xt,1),≺) for the single sinkt of G
(analogously for multiple sinks). To complete the proof, join B((xt,0 ∨ xt,1),≺) with
the axiomsB((¬xt,0),≺) andB((¬xt,1),≺). �

Combined with the following lemma, we have thatDPLL (equivalently,T-RES)
does not polynomially simulateOBDDaj (using a suitable variable order forOBDDaj).

Lemma 3 ([12]). There is an infinite family{Gn} of DAGs with constant node in-
degree (from [15]) such that minimum-sizeT-RES proofs ofPeb(Gn) are of size2Ω(n/ logn).

4 OBDDaj does not Polynomially SimulateDPLL

In [6] it was shown thatOBDDaj does not polynomially simulate unrestricted resolution
RES. In this section we show the stronger result thatOBDDaj is not only weaker than
RES, but also exponentially weaker thanDPLL (equivalently,T-RES).

4.1 OBDDaj does not Benefit from the Extension Rule

As an auxiliary result, we prove the following lemma as an extension of [6, Lemma 8].
The original lemma was restricted to a particular CNF formulaPHPn+1

n and a particular
extension ofPHPn+1

n . This more general version states thatOBDDaj proofs cannot be
made smaller by first adding an extension to the input unsatisfiable CNF formula.

Lemma 4. Assume an arbitrary unsatisfiable CNF formulaF and extensionE to F ,
and any satisfiableF ′ ⊂ F and E′ ⊆ E. Then, for every variable order≺ over
vars(F ′) ∪ vars(E′), size(B(F ′ ∧ E′,≺)) ≥ size(B(F ′,≺)).

Following the proof strategy for [6, Lemma 8], we first state asimple extension of [6,
Lemma 7], simply stating that no extensionE of a CNF formulaF can affect the set of
satisfying assignments ofF (restricted toF).

Lemma 5. Assume an arbitrary CNF formulaF and extensionE toF , any satisfiable
F ′ ⊂ F andE′ ⊆ E, and an assignmentτ that satisfiesF ′. Then there is an assignment
τ ′ such that (i)τ ′(x) = τ(x) for eachx ∈ vars(F ′), and (ii) τ ′ satisfiesF ′ ∧ E′.

Proof. Assume that the clauses inE = C1 ∧ · · · ∧Ck were introduced using the exten-
sion rule in the order of the sequence(C1, . . . , Ck). Fix an arbitrary satisfiableF ′ ⊆ F
and assignmentτ that satisfiesF ′. Let τ ′(x) = τ(x) for eachx ∈ vars(F ′). By in-
duction, assume that, for an arbitraryi, τ ′ satisfies allCj for j < i. LetCi be part of a
definitionxi ≡ l∧ l′. To satisfyCi, we extendτ ′ as follows. If bothl andl′ are assigned
underτ ′, then assignxi so that the semantics ofxi ≡ l∧ l′ is respected. Ifl (or l′, resp.)
is not assigned underτ ′ (this is possible in casel or l′ do not appear inF ′), first assign
it an arbitrary value. �

For the following, a functionf depends essentiallyon a variablex if f |x=0 6=
f |x=1, wheref |x=c denotes the functionf with x assigned to a constantc ∈ {0, 1}.
Again following [6], we make use of a structural theorem from[16].

Theorem 3 ([16]).For any Boolean functionf(x1, . . . , xn) and i < n, let Si be the
set{f |x1=c1,...,xi−1=ci−1

: c1, . . . , ci−1 ∈ {0, 1}} of sub-functions which depend es-
sentially onxi. Then the OBDD forf under the variable orderx1 ≺ · · · ≺ xn contains
exactly|Si| nodes labelled withxi in correspondence with the sub-functions inSi.

In the following, for an assignmentτ over a setX of variables and a variable order
≺ overV , let τ≺x be the restriction ofτ to the variables precedingx ∈ X under≺.

Proof of Lemma 4.We show that, for anyF ′, E′,≺, i < |vars(F ′)|, andxi ∈ vars(F ′),
wherexi is theith variable invars(F ′) under≺, it holds that ifB(F ′,≺) hask nodes
labelled withxi, thenB(F ′ ∧ E′,≺) has at leastk nodes labelled withxi.

Take any satisfying assignmentτ over vars(F ′) such thatF ′|τ≺xi
depends essen-

tially on xi. By Theorem 3, corresponding to any suchF ′|τ≺xi
there is a nodenτ≺xi

in B(F ′,≺) labelled withxi. Based onτ , consider an assignmentτ ′ for F ′ ∧ E′ as
in Lemma 5. By the construction ofτ ′, (F ′ ∧ E′)|τ ′

≺xi

depends essentially onxi.
By Theorem 3, for any suchnτ≺xi

, there is a distinct nodenτ ′
≺xi

(corresponding to
(F ′ ∧ E′)|τ ′

≺xi

) in B(F ′ ∧ E′,≺). �

The following is an immediately corollary of Lemma 4.

Corollary 2. LetF be an unsatisfiable CNF formula andE an extension toF . For any
variable order≺ overvars(F) ∪ vars(E), if F ∧E has aOBDDaj proof of sizes, then
F has aOBDDaj proof of sizes.

4.2 DPLL and the Extension Rule

Let F be an arbitrary unsatisfiable CNF formula and letπF = (C1, . . . , Cm = ∅) be
a RES proof of F . We define the extensionE(πF) of F based onπF , defining new
variablesei ≡ Ci for i = 1, . . . ,m− 1 using the extension rule, as the CNF formula

E(πF) :=
m−1
∧

i=1

(

(¬ei ∨ Ci) ∧
∧

l∈lits(Ci)

(

ei ∨ ¬l
)

)

.

This formulation originates from a construction that was used to polynomially simulate
Frege systems by tree-like Frege systems [17], and was also applied in [18].

Lemma 6. Let F be an unsatisfiable CNF formula and letπF be aRES proof ofF .
There is aDPLL proof ofF ∧ E(πF) of sizeO(|πF |).

Proof. Choose variables in the ordere1 ≺ · · · ≺ em−1. For eachi = 1, . . . ,m− 1, the
call DPLL(F ∧E(πF)e1,...,ei−1,¬ei) returns immediately sinceF ∧E(πF)e1,...,ei−1,¬ei

contains the empty clause due to emptying either a clause inF , or one of the two clauses
in πF used to directly derive the resolventCi. The call DPLL(F ∧ E(πF)e1,...,em−1

)
returns immediately since there are the two unit clauses(x) and(¬x) in πF for some
variablex. �

In fact, as similarly observed in [18], full one-step lookahead with unit propagation
is enough for constructing theDPLL proof presented in the proof of Lemma 6.

4.3 SeparatingDPLL from OBDDaj

The well-knownpigeon-hole principlestates that there is no injective mapping from
an m-element set into ann-element set ifm > n (that is,m pigeons cannot sit in
fewer thanm holes so that every pigeon has its own hole). We will considerthe case
m = n+ 1 encoded as the CNF formula

PHPn+1
n :=

n+1
∧

i=1

(

n
∨

j=1

pi,j

)

∧
n
∧

j=1

n
∧

i=1

n+1
∧

i′=i+1

(

¬pi,j ∨ ¬pi′,j
)

,

where eachpi,j is a Boolean variable with the interpretation “pi,j is 1 if and only if the
ith pigeon sits in thejth hole”. Notice thatPHPn+1

n containsO(n2) clauses.

Theorem 4 ([19]).There is no polynomial-sizeRES proof ofPHPn+1
n .

In contrast, Cook [20] showed that there is a polynomial-sizeE-RES proof ofPHPn+1
n .

Cook basically applies theE-RES extension rule to add a conjunctionEXTn of O(n3)
clauses toPHPn+1

n , based on defining new variablespki,i ≡ pk−1
i,j ∨ (pk−1

i,n ∧ pk−1
n+1,j),

where1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n − 1, and eachp0i,j is the variable
pi,j ∈ vars(PHPn+1

n). These equivalences1 are presented as the CNF formula
EXTn :=

∧n−1

k=1

∧n

i=1

∧n−1

j=1
(

(

p
k
i,j∨¬p

k−1

i,j

)

∧

(

p
k
i,j∨¬p

k−1

i,n ∨¬p
k−1

n+1,j

)

∧

(

¬p
k
i,j∨p

k−1

i,j ∨p
k−1

i,n

)

∧

(

¬p
k
i,j∨p

k−1

i,j ∨p
k−1

n+1,j

)

)

.

Theorem 5 ([20]).There is aRES proof ofPHPn+1
n ∧ EXTn of sizeO(n4).

Explicit constructions of aRES proof of sizeO(n4) of PHPn+1
n ∧EXTn are presented

in [18,6]. On the other hand, these proofs are not tree-like,and it is not apparent whether
there is a polynomial-sizeDPLL proof ofPHPn+1

n ∧ EXTn. However, we can use the
extension trick from Sect. 4.2 for achieving a shortDPLL proof.

Corollary 3. There is an extensionE to PHPn+1
n such that there is a polynomial-size

DPLL proof ofPHPn+1
n ∧ E.

Proof. Take an arbitraryRES proof π of PHPn+1
n ∧ EXTn such that|π| ∈ O(n4)

(there is such aπ by Theorem 5). DefineE asEXTn ∧ E(π). By Lemma 6 there is a
polynomial-sizeDPLL proof ofPHPn+1

n ∧ EXTn ∧ E(π). �

To separateDPLL fromOBDDaj, we observe the following.

Theorem 6 ([6]).For any variable order≺, minimum-sizeOBDDaj proofs ofPHPn+1
n

are of size2Ω(n).

Corollary 4. LetE be an arbitrary extension ofPHPn+1
n . For any variable order≺,

minimum-sizeOBDDaj proofs ofPHPn+1
n ∧ E are of size2Ω(n).

Proof. Follows directly from Corollary 2 and Theorem 6. �

The fact thatOBDDaj does not polynomially simulateDPLL (equivalently,T-RES)
now follows directly from Corollaries 3 and 4.

5 Conclusions

We showed that the standard DPLL procedure and OBDDs constructed using theax-
iom and join rules (OBDDaj) are polynomially incomparable. This further highlights
the differences between search-based and compilation-based approaches to Boolean
satisfiability. Especially, althoughOBDDaj is intuitively rather weak, it can still be ex-
ponentially more efficient than DPLL. However, in contrast to DPLL,OBDDaj cannot

1 Although Cook introduces directly clauses representingp
k
i,i ≡ p

k−1

i,j ∨ (pk−1

i,n ∧p
k−1

n+1,j) which
does not follow the original definition of the extension rule, it is easy to see that this can be
simulated with the original rule by first introducing an auxiliary variable for(pk−1

i,n ∧ p
k−1

n+1,j).
This more general way of defining the extension does not affect the results of this paper.

exploit particular types of redundancy in CNF (introduced by the extension rule). As a
result, DPLL can be in cases exponentially more efficient than OBDDaj.

Whether there is a resolution refinement that polynomially simulateOBDDaj is
an interesting open question. Another interesting question is the relative efficiency of
tree-like and DAG-likeOBDDaj proofs. Especially, theOBDDaj proofs constructed in
Lemma 2 are not tree-like.

References

1. Groote, J.F., Zantema, H.: Resolution and binary decision diagramscannot simulate each
other polynomially. Discrete Applied Mathematics130(2) (2003) 157–171

2. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation asa proof system. In:
Proc. CP. Volume 3258 of Lecture Notes in Computer Science., Springer (2004) 77–91

3. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Proc. CSR. Volume
3967 of Lecture Notes in Computer Science., Springer (2006) 600–611

4. Segerlind, N.: On the relative efficiency of resolution-like proofs and ordered binary decision
diagram proofs. In: Proc. CCC, IEEE Computer Society (2008) 100–111

5. Peltier, N.: Extended resolution simulates binary decision diagrams. Discrete Applied Math-
ematics156(6) (2008) 825–837

6. Tveretina, O., Sinz, C., Zantema, H.: Ordered binary decision diagrams, pigeonhole formulas
and beyond. Journal on Satisfiability, Boolean Modeling and Computation7 (2010) 35–58

7. Chen, W., Zhang, W.: A direct construction of polynomial-size OBDDproof of pigeon hole
problem. Information Processing Letters109(10) (2009) 472—477

8. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution
engines. Artificial Intelligence175(2) (2011) 512–525

9. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7(3) (1960) 201–215

10. Davis, M., Logemann, G., Loveland, D.: A machine program fortheorem proving. Commu-
nications of the ACM5(7) (1962) 394–397

11. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In Slisenko, A., ed.:
Studies in Constructive Mathematics and Mathematical Logic, Part II. Volume 8 of Seminars
in Mathematics, V.A. Steklov Mathematical Institute, Leningrad. ConsultantsBureau (1969)
115–125 (originally in Russian).

12. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal
of the ACM48(2) (2001) 149–169

13. Liaw, H.T., Lin, C.S.: On the OBDD-representation of general boolean functions. IEEE
Transactions on Computers41(6) (1992) 661–664

14. Buresh-Oppenheim, J., Pitassi, T.: The complexity of resolution refinements. Journal of
Symbolic Logic72(4) (2007) 1336–1352

15. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Mathematical
Systems Theory10 (1977) 239–251

16. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams. Parallel
Processing Letters3 (1993) 3–12

17. Krajicek, J.: Speed-up for propositional frege systems via generalizations of proofs. Com-
mentationes Mathematicae Universitas Carolinae30(1) (1989) 137–140

18. J̈arvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. Constraints
14(3) (2009) 325–356

19. Haken, A.: The intractability of resolution. Theoretical Computer Science39(2–3) (1985)
297–308

20. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News8(4) (1976) 28–32

	On the Relative Efficiency ofDPLL and OBDDs with Axiom and Join

