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Abstract. This paper studies the relative efficiency of ordered binary decision di-
agrams (OBDDs) and the Davis-Putnam-Logemann-Loveland puoe¢dPLL),

two of the main approaches to solving Boolean satisfiability instances. iaipec
we show that OBDDs, even when constructed using only the rather weak a
iom and join rules, can be exponentially more efficient than DPLL or,vegui
lently, tree-like resolution. Additionally, by strengthening via simple argusien
a recent result—stating that such OBDDs do not polynomially simulate unre-
stricted resolution—we also show that the opposite holds: there are caggsin
DPLL is exponentially more efficient out of the two considered systeresicel
DPLL and OBDDs constructed using only the axiom and join rules are poiimno
ally incomparable. This further highlights differences between sdaaskd and
compilation-based approaches to Boolean satisfiability.

1 Introduction

Many algorithms for Boolean satisfiability (SAT) are basedeither resolution (in-
cluding most state-of-the-art search-based solvers joalafreduced) ordered binary
decision diagrams (OBDDs). Recently, there has been aiotaykst in the relative effi-
ciency of satisfiability checking methods based on resmiugind OBDDsS([IL,2]3]4)5,6].
While OBBDs in general are known to be in cases exponentiatiserefficient that un-
restricted resolution [7], it has been recently shawn [} the restricte@BDD,; proof
system, consisting only of the rather wefskiomandJoinrules which correspond to the
Apply OBDD operator (i.e., disallowing symbolic quantifier elimation and reorder-
ing), does not polynomially simulate unrestricted redolutin other words, there is an
infinite family { F, }, of unsatisfiable CNF formulas such that (i) there is a polyiabm
size resolution proof of’, w.r.t. n for everyn, whereas (i) minimum-siz©BDD,;
proofs of F,, for everyn are of exponential size w.r#. (and of super-polynomial size
w.r.t. the number of clauses #},). A practical implication of this result is th&BDD,;
(under any variable ordering) does not polynomially sirteitgpical restarting conflict-
driven clause learning SAT solvers—often the most efficiargsofor practical appli-
cations of SAT, and which have been recently shown to polyaltynsimulate unre-
stricted resolution [8]. However, the results|in [6] leayeen the question of pinpoint-
ing the (in)efficiency oOBDD,; more exactly: Does it even polynomially simulate the
Davis-Putnam-Logemann-Loveland procedud@( L) [QJ10] that is known to be ex-
ponentially weaker than clause learning? DB&4.L polynomially simulatéOBDD,;?
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In this paper we show that the answer to both of these quesiamegative: 1. We
show thatDPLL (with an optimal branching heuristic) does not polynonyigiimulate
OBDD,; (using a suitable variable ordering). 2. Strengtheningéiselt of [6] via sim-
ple arguments, we show that tRBDD,; proof system (under any variable ordering)
does not polynomially simulatePLL (known to be equivalent to the tree-like resolu-
tion refinement). Henc®BDD,; andDPLL arepolynomially incomparable

Theorem 1. OBDDs constructed using the Axiom and Join rules &RLL (equiva-
lently, tree-like resolution) are polynomially incompate.

This provides further understanding on the general questidhe relative efficiency
of DPLL and variants of OBDDs, highlighting further the difences between search-
based and compilation-based approaches to Boolean datisfia

2 Preliminaries

CNF Satisfiability. A literal is a Boolean variable or its negation-z. A clauseis a
disjunction (/) of literals and a CNF formula is a conjunction)(of clauses. When
convenient, we view a clause as a finite set of literals aral@NF formula as a finite
set of clauses. The set of variables occurring in a CNF foarfius denoted byars(F),
and the set of literals occurring in a clauSéy lits(C'). An assignment is a function
that maps literals to elements {0, 1}, wherel and0, resp., stand fotrue andfalse
resp. Ifr(z) = v, thent(—z) = 1 — v, and vice versa. A clause gatisfiedby  if
it contains at least one literélsuch thatr(I) = 1. An assignment satisfiesa CNF
formula if it satisfies every clause in the formula.

DPLL. The DPLL procedure]9,10] is a classical complete searcbrihgn for de-
ciding satisfiability of CNF formulas. It can be summarizexithe following non-
deterministic algorithm.

DPLL(F)
If F'is emptyreport satisfiableandhalt
If F' contains the empty clauseturn
Elsechoose a variable: € vars(F)
DPLL(F;)
DPLL(F-;)

HereF, denotes the formula resulting from applyiagit propagationuntil fixpoint on
F, i.e., removing all clauses containingand all occurrences ofz from F, and re-
peating until fixpoint for all single-literal clauses i Practical implementations make
DPLL deterministic by implementing a branching heuristic €hoosing a variable.
However, here we do not restrict this non-deterministiciodoA DPLL proof of an
unsatisfiable CNF formul#’ is a search tree of DPLIK). The size of &PLL proof is
the number of nodes in the tree.

Resolution. The well-known Resolution proof systerRES) is based on theesolution
rule that allows one tdirectly derivethe clausgC U D) \ {z, -z} from the clauses
{z} U C and{—-z} U D by resolving onthe variablex. Given an unsatisfiable CNF



formula F', a RES proof of F is a sequence of clauses= (Cy,Cs,...,C,, = 0),
where eaclC;, 1 < i < m, is either (i) a clause i#' (aninitial clausé or (ii) directly
derived with the resolution rule from two claus€$, C, wherel < j.k < 4. The
sizeof m, denoted byjx|, is m. Any RES proof 7 = (C1,Cy,...,Cy, = () can be
presented as a directed acyclic graph. The clauses oagumrinlabel the nodes. The
edge relation is defined so that there are edges fthrand C; to Cy, if and only if
C; has been directly derived frof; andC;. Tree-like ResolutiofT-RES) proofs are
representable as trees. It is well-known thalRES proofs are polynomially equivalent
to search trees traversed by the DPLL procedure.

In Extended ResolutiofE-RES) [11] one can first apply thextension ruldo add
a conjunction of clauses (aextensiohto a CNF formulaF' in a restricted manner,
before using the resolution rule to construd®ES proof of the resulting formula. In
more detail, for a given CNF formul&, the extension rule allows for iteratively adding
definitions of the formz = I; A s (i.e. the clause$x Vv -y V —is), (-2 Vv 1), and
(mx Vv l3)) to F, wherez is a new variable andi, [, are literals in the current formula.
The resulting formuld' A E then consists of the original formufd and the extension
E, the conjunction of the clauses iteratively addedtasing the extension rule.

OBDDs with Axiom and Join. A binary decision diagraniBBDD) over a set of Boolean
variablesV is a rooted directed acyclic graph that consists ad€gision nodekbelled
with distinct variables fronV and (ii) two terminal nodes (of out-degree zero) labelled
with 0 and 1. Each decision node has two children, lovw) and high{v). The edge
from v to low(v) (to high(v), resp.) represents assigningo 0 (to 1, resp.). ABDD is
orderedaccording to a total variable orderif its variables appear in the order given by
=< on all paths from the root to the terminal nodes. An ordere®B&reduced(simply,
an OBDD from here on) if its (i) isomorphic subgraphs haverb@erged, and (ii) the
nodes that have isomorphic children have been eliminaténGany propositional
formula¢ and a total variable ordex overvars(¢), there is a unique OBDIB(¢, <)
that represents. Thesizeof B(¢, <), denoted byize(B;(¢;, <)), is the number of its
nodes.

Given an unsatisfiable CNF formula and a total variable ordex overvars(F),
an OBDD,; proof of F' (i.e., anOBDD,; derivationof the OBDD for0) is a sequence
p=(Bi(¢1,=<),...,Bm(em, <)) of OBDDs, where (iB,, (¢, <) is the single-node
OBDD representing, and (ii) for each € {1,...,m}, either

— ¢; isaclause inF, or
— ¢; = ¢; A\ ¢y for someB;(¢;, <) andBy(¢r, <), 1 < j < k <4, inp.

In the former cas®;(¢;, <) is anaxiom and in the latteB;(¢;, <) is thejoin of
B;(¢;, <) andBy(¢x, <). The size of atDBDD,; proof p is X7 size(B;(¢;, <)).

3 DPLL does not Polynomially SimulateOBDD,;

In this section we show thd2PLL does not polynomially simulat®BDD,;. For the
separation, we consider so-calfgebbling contradiction®eb(G), firstintroduced in[1R],
based on the structure of a directed acyclic graph (DAGYaking two variables; o
andz;, ; for each node iri7, Peb(G) is the conjunction of the following clauses.



— (z;0 V ;1) for each source node (in-degreei®f G;

— (@) and(ﬁxz 1) for each sink node (out-degreef G;

— (4,00 VooV Ty, 6, V0V x,1) fOr each non-source nogewherei,, . . ., iy
are the predecessorspfand for eachay, ..., ax) € {0, 1}*.

The following theorem helps us in achieving polynomialestBDD,; proofs.

Theorem 2 ([13]). For any Boolean functiory over n variables, and any variable
order <, size(B(f, <)) = O(2"/n).

Corollary 1. For any unsatisfiable CNF formulB overn variables, and any variable
order <, there is anOBDD,; proof of F' of size2°(").

The following two lemmas play a key role in this work. For pirmy the lemmas we
rely on a similar proof strategy as the one applied.in [14Huse different context (for
showing that tree-like resolution does not polynomialtypsiateordered resolution

Lemma 1. LetG be a DAG om nodes, ang a node inGG with parentsiy, . .., i, where

k = O(logn). Consider the clause;, o V i, 1) - -, (®ip 0 V @iy 1) aNd (224, o, V
SV 0 V Tio V) forall (aq,...,a;) € {0,1}*. For any variable order<,

there is a polynomial-siz8 BDD,; derivation ofB((x; o VV z;,1), <) from these clauses.

Proof. Consider the unsatisfiable CNF formula consisting of thesga(z;, oVzi, 1), .-,
(zip.0 V@i 1) ANd(=2, oy Voo -V T, 0 ) forall (as, ..., ax) € {0,1}*. The number

of variables in this formula i€® (log n), and hence by Corollahy 1 there is a polynomial-
size OBDD,; proof of this formula for any variable ordet. Such anOBDD,; proof

can be transformed into @BDD,; derivation ofB((z;0 V z;,1), <) by defining<’

as< to whichz; o andz; ; have been added as the last two elements, and by replac-
ing B(¢, <) with B(¢ V ;0 V z; 1, <) for eachB(¢, <) in the proof such that either

¢ 1S (Tiya V oo+ V i, a,) OF B(@, <) has been derived starting from the axiom
B((—=@iy a0, V- - -V iy ax ), <). FOr each sucB(¢, <), B(oVa; oV, <)isB(é, <)

with the terminal nod@ replaced byB((x; 0 V 1), <). O

Lemma 2. There are polynomial-siz@BDD,; proofs ofPeb(G) for any DAGG with
node in-degree bounded i)(log n).

Proof. Fix any ordering< of the variables ifPeb(G) that respects a topological or-
dering of G. Label each sourcg of G with B((z;,0 V z;1), <). For each non-source
nodej of G with parentsiy,...,ix, £ = O(logn), replacej with the polynomial-
size OBDD,; derivation of B((z;0 V z;,1), <) (Lemma[l) under<. The result is a
polynomial-sizeOBDD,; derivation of B((x;0 V x,1), <) for the single sink of G
(analogously for multiple sinks). To complete the proofnjB((z.o V z:,1), <) with
the axiomsB((—x+,0), <) andB((—z¢,1), <). O

Combined with the following lemma, we have tHaPLL (equivalently, T-RES)
does not polynomially simulatéBDD,; (using a suitable variable order foBDD,;).

Lemma 3 ([12]). There is an infinite family{G,,} of DAGs with constant node in-
degree (from[[15]) such that minimum-siZeRES proofs ofPeb(G,, ) are of size2?(?/log ™),



4 0BDD,; does not Polynomially SimulateDPLL

In [6] it was shown tha©BDD,; does not polynomially simulate unrestricted resolution
RES. In this section we show the stronger result tB&DD,; is not only weaker than
RES, but also exponentially weaker th&PLL (equivalently,T-RES).

4.1 0BDD,; does not Benefit from the Extension Rule

As an auxiliary result, we prove the following lemma as areaston of[6, Lemma 8].
The original lemma was restricted to a particular CNF forasnRIHPZ+1 and a particular
extension oPHP" . This more general version states tOBDD,; proofs cannot be
made smaller by first adding an extension to the input urfisdile CNF formula.

Lemma 4. Assume an arbitrary unsatisfiable CNF formuiaand extensiorE to F,
and any satisfiablg®” Cc F and E’ C E. Then, for every variable ordex over
vars(F") Uvars(E’), size(B(F' A E', <)) > size(B(F’, <)).

Following the proof strategy fof [6, Lemma 8], we first statgimple extension of |6,
Lemma 7], simply stating that no extensiéhof a CNF formulaF' can affect the set of
satisfying assignments @ (restricted taF").

Lemma 5. Assume an arbitrary CNF formulBl and extensiork to F', any satisfiable
F’ C FandE’ C FE, and an assignmentthat satisfied”. Then there is an assignment
7/ such that (i)' (z) = 7(z) for eachz € vars(F”), and (ii) 7’ satisfiesF” A E’.

Proof. Assume that the clausesih= C; A - - - A C), were introduced using the exten-
sion rule in the order of the sequen@®, . .., C%). Fix an arbitrary satisfiable” C F'
and assignment that satisfies”. Let 7'(z) = 7(x) for eachz € vars(F”'). By in-
duction, assume that, for an arbitrary-’ satisfies allC'; for j < i. Let C; be part of a
definitionz; = I Al’. To satisfyC;, we extend-’ as follows. If bothl andi’ are assigned
underr’, then assign:; so that the semantics of = [ Al’ is respected. If (or ', resp.)
is not assigned undet (this is possible in caseor I’ do not appear itF"”), first assign

it an arbitrary value. O

For the following, a functionf depends essentiallgn a variabler if f|.—o #
flz=1, where f|.—. denotes the functioif with = assigned to a constante {0,1}.
Again following [6], we make use of a structural theorem fr{i@].

Theorem 3 ([16]). For any Boolean functiorf (z1,...,z,) andi < n, let .S; be the
set{flzi=c1, .55 1=c; 1 ® C1,--.,¢i—1 € {0,1}} of sub-functions which depend es-
sentially onz;. Then the OBDD foif under the variable ordet; < --- < x,, contains
exactly|S;| nodes labelled with:; in correspondence with the sub-functionsSin

In the following, for an assignmentover a setX of variables and a variable order
< overV, letr-, be the restriction of to the variables precedinge X under<.

Proof of Lemm@aldWe show that, for any”’, E’, <, ¢ < |vars(E")|, andz; € vars(F’),
wherez; is theith variable invars(F’) under=, it holds that ifB(F’, <) hask nodes
labelled withz;, thenB(F’ A E’, <) has at leask nodes labelled with;.



Take any satisfying assignmentovervars(F”) such thatr”’|,_ depends essen-
tially on x;. By TheoreniB, corresponding to any sueH,_, there is a node,
in B(F’, <) labelled withz;. Based onr, consider an assignment for F/ A E’ as
in Lemma[5%. By the construction af’, (F’ A E/)|T/<Ii depends essentially on;.
By Theoreni3, for any such,_, , there is a distinct node,,  (corresponding to
(F' AE')|,., )inB(F' A E', <), 1 O
The following is an immediately corollary of Lemrha 4.

Corollary 2. LetF' be an unsatisfiable CNF formula ardan extension td'. For any
variable order< overvars(F') Uvars(E), if F' A E has aOBDD,; proof of sizes, then
F has aOBDD,; proof of sizes.

4.2 DPLL and the Extension Rule

Let F' be an arbitrary unsatisfiable CNF formula anddet = (C1,...,C,, = 0) be
a RES proof of F. We define the extensioR(nr) of F' based onrp, defining new

variablese; = C; fori = 1,...,m — 1 using the extension rule, as the CNF formula
m—1
E(ﬂ'F) = /\ ((ﬁei V Cz) 74\ /\ (67; V ﬁl))
i=1 l€lits(C;)

This formulation originates from a construction that wasdi® polynomially simulate
Frege systems by tree-like Frege systems [17], and was piidied in [18].

Lemma 6. Let F' be an unsatisfiable CNF formula and ket be aRES proof of F.
There is aDPLL proof of F' A E(rr) of sizeO(|nr|).

Proof. Choose variablesinthe order < --- < e,,_1. Foreach = 1,...,m — 1, the
call DPLL(E' AE(TE)e,,....e;_1,-e;) Feturns immediately SINCE AE(Tr)e, . e 1,—es
contains the empty clause due to emptying either a clauBeadn one of the two clauses
in 7 used to directly derive the resolve@t. The call DPLLE A E(7r)e,.....ern 1)
returns immediately since there are the two unit clays¢s@nd (—z) in 77 for some
variablezx. O

In fact, as similarly observed in [118], full one-step lookal with unit propagation
is enough for constructing tHePLL proof presented in the proof of Lemina 6.

4.3 SeparatingDPLL from OBDD,;

The well-knownpigeon-hole principlestates that there is no injective mapping from
an m-element set into am-element set ifn > n (that is,m pigeons cannot sit in
fewer thanm holes so that every pigeon has its own hole). We will considercase
m = n + 1 encoded as the CNF formula

n+1 n n n n+1
PHP ! = A (\/Pm) AAN N iy Vvopey),
i=1 j=1 j=li=14=i+1

where eaclp; ; is a Boolean variable with the interpretatiom  is 1 if and only if the
i*? pigeon sits in thg*" hole”. Notice thatPHP” ™! containsO(n?) clauses.



Theorem 4 ([19]). There is no polynomial-siZRES proof of PHP” .

In contrast, Cook [20] showed that there is a polynomiad-BiRES proof of PHP” 1,
Cook basically applies the-RES extension rule to add a conjuncti@X T,, of O(n?)
clauses t®°HP};*", based on defining new variablgs, = pi ;' v (pi" Apki] ),
wherel < i <n,1<j<n-11<k <n-1,andeachy; is the variable
pi; € vars(PHP!' ™). These equivalend®sre presented as the CNF formula
EXTn := :;11 Nzt /\;'1:_11
(P85 v=pl ) Ak v-pl v pld ) A (wks Vil Vel A (wks vl velad ) ).

Theorem 5 ([20]). There is aRES proof of PHP" ™! A EXT,, of sizeO(n?).

Explicit constructions of &ES proof of sizeO®(n*) of PHP”*! AEXT,, are presented

in [18[€]. On the other hand, these proofs are not tree-dikd,it is not apparent whether
there is a polynomial-sizBPLL proof of PHP” ! A EXT,,. However, we can use the
extension trick from Sedi. 4.2 for achieving a sHORLL proof.

Corollary 3. There is an extensioR to PHP” ! such that there is a polynomial-size
DPLL proof of PHP? ™' A E.

Proof. Take an arbitranRES proof = of PHP”*! A EXT,, such thatir| € O(n?)
(there is such a by Theorenib). Defind’ asEXT,, A E(r). By Lemméa® there is a
polynomial-sizeDPLL proof of PHP” " A EXT,, A E(x). O

To separat®PLL from OBDD,;, we observe the following.

Theorem 6 ([€]).For any variable order<, minimum-siz©&BDD,; proofs ofPHP !
are of size2?("),

Corollary 4. Let E be an arbitrary extension d?HPZ“. For any variable order<,
minimum-siz®BDD,; proofs of PHP!' ™' A E are of size2?("),

Proof. Follows directly from CorollaryP and Theordm 6. O

The fact thaOBDD,; does not polynomially simulatePLL (equivalently,T-RES)
now follows directly from Corollariek]3 arid 4.

5 Conclusions

We showed that the standard DPLL procedure and OBDDs casttwsing theax-
iom andjoin rules OBDD,;) are polynomially incomparable. This further highlights
the differences between search-based and compilatiadbggproaches to Boolean
satisfiability. Especially, althougBBDD,; is intuitively rather weak, it can still be ex-
ponentially more efficient than DPLL. However, in contrasDPLL, OBDD,; cannot

! Although Cook introduces directly clauses representifig= p; ;" v (pf,, ' Apli7] ;) which
does not follow the original definition of the extension rule, it is easy to satllis can be
simulated with the original rule by first introducing an auxiliary variable(iszﬁj;1 A pﬁ;},j).

This more general way of defining the extension does not affect sudtseof this paper.



exploit particular types of redundancy in CNF (introducedfie extension rule). As a
result, DPLL can be in cases exponentially more efficiem thBDD,;.

Whether there is a resolution refinement that polynomialigusate OBDD,; is

an interesting open question. Another interesting quessidhe relative efficiency of
tree-like and DAG-likeOBDD,; proofs. Especially, th©®BDD,; proofs constructed in
Lemmd2 are not tree-like.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Groote, J.F., Zantema, H.: Resolution and binary decision diagtam®t simulate each
other polynomially. Discrete Applied Mathematit3Q(2) (2003) 157-171

Atserias, A., Kolaitis, P.G., Vardi, M.Y.. Constraint propagationaagroof system. In:
Proc. CP. Volume 3258 of Lecture Notes in Computer Science., Spr{age4) 77-91

Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDIRsProc. CSR. Volume
3967 of Lecture Notes in Computer Science., Springer (2006) 600—61

Segerlind, N.: On the relative efficiency of resolution-like proof$ ardered binary decision
diagram proofs. In: Proc. CCC, IEEE Computer Society (2008) 100—

Peltier, N.: Extended resolution simulates binary decision diagramereBesApplied Math-
ematicsl56(6) (2008) 825837

Tveretina, O., Sinz, C., Zantema, H.: Ordered binary decisiomatasg) pigeonhole formulas
and beyond. Journal on Satisfiability, Boolean Modeling and Computatf2f10) 35-58
Chen, W., Zhang, W.: A direct construction of polynomial-size OB@Bof of pigeon hole
problem. Information Processing Lettér8)10) (2009) 472—A477

Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning $Avers as resolution
engines. Artificial Intelligencd752) (2011) 512-525

Davis, M., Putnam, H.: A computing procedure for quantification mhedournal of the
ACM 7(3) (1960) 201-215

Davis, M., Logemann, G., Loveland, D.: A machine programtieorem proving. Commu-
nications of the ACM5(7) (1962) 394-397

Tseitin, G.S.: On the complexity of derivation in propositional calculuslisenko, A., ed.:
Studies in Constructive Mathematics and Mathematical Logic, Part I1nvel& of Seminars
in Mathematics, V.A. Steklov Mathematical Institute, Leningrad. Consul@uateau (1969)
115-125 (originally in Russian).

Ben-Sasson, E., Wigderson, A.: Short proofs are narr@solution made simple. Journal
of the ACM 48(2) (2001) 149-169

Liaw, H.T., Lin, C.S.: On the OBDD-representation of generall&an functions. |IEEE
Transactions on Computef4(6) (1992) 661-664

Buresh-Oppenheim, J., Pitassi, T.: The complexity of resolutifinereents. Journal of
Symbolic Logic72(4) (2007) 1336—1352

Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for & gangraphs. Mathematical
Systems Theor$0(1977) 239-251

Sieling, D., Wegener, |.: NC-algorithms for operations on binagigon diagrams. Parallel
Processing Letter3 (1993) 3-12

Krajicek, J.: Speed-up for propositional frege systems viargénations of proofs. Com-
mentationes Mathematicae Universitas Carolid@@) (1989) 137-140

JArvisalo, M., Junttila, T.: Limitations of restricted branching in clause iegrnConstraints
14(3) (2009) 325—-356

Haken, A.: The intractability of resolution. Theoretical Computer I8@89(2—-3) (1985)
297-308

Cook, S.A.: A short proof of the pigeon hole principle using extehesolution. SIGACT
News8(4) (1976) 28-32



	On the Relative Efficiency ofDPLL and OBDDs with Axiom and Join

