
Itemset Mining as a Challenge Application for
Answer Set Enumeration⋆

Matti Järvisalo

Department of Computer Science, University of Helsinki, Finland

Abstract. We present an initial exploration into the possibilities ofapplying cur-
rent state-of-the-art answer set programming (ASP) tools—esp. conflict-driven
answer set enumeration—for mining itemsets in 0-1 data. We evaluate a sim-
ple ASP-based approach experimentally and compare it to a recently proposed
framework exploiting constraint programming (CP) solversfor itemset mining.

1 Introduction
Answer set programming (ASP) has become a viable approach tosolving various hard
combinatorial problems. This success is based on the combination of an expressive
modeling language allowing high-level declarations and optimized black-box solver
technology following the success story of Boolean satisfiability (SAT) solving.

A somewhat specific feature of typical answer set solvers is support for enumerating
all solutions (answer sets) of answer set programs. In this work we study an exciting
novel application domain for answer set enumeration, namely, the data mining task of
finding all frequent itemsetfrom 0-1 data [1]. We show that itemset mining problems
allow for simple and natural encodings as ASP with the help ofthe rich modeling lan-
guage. Notably, typical itemset mining algorithm are somewhat problem specific, vary-
ing on the constraints imposed on itemsets. Surprisingly, constraint satisfaction tech-
niques have only very recently been applied to itemset mining tasks [2, 3]. In addition
to the availability of black-box constraint solvers such asanswer set enumerators, the
additional benefit of constraint solvers is that the modeling languages enable solving
novel itemset mining tasks by combining different itemset constraints in a natural way
without having to devise new solving algorithms for specificmining tasks.

In this short paper, focusing on the standard [1] and maximal[4] frequent itemset
mining problems, we evaluate the effectiveness of answer set enumeration as an itemset
mining tool using a recent conflict-driven answer set enumeration algorithm [5], and
compare this ASP approach to a recent approach based on generic constraint program-
ming (CP) [2, 3]. The results show that, even with simple encodings, ASP can be a
realistic approach to itemset mining, and, on the other hand, that itemset mining is a
well-motivated benchmark domain for answer set enumeration (adding to the currently
relative few realistic applications of answer set enumeration).

2 Itemset Mining
Assume a setI = {1, ...,m} of itemsand a setT = {1, ..., n} of transactions. Intu-
itively, a transactiont ∈ T consists of a subset of items fromI. An itemset database

⋆ Research financially supported by Academy of Finland under grant 132812.

D ∈ {0, 1}n×m is a binary matrix of sizen × m that represents a set of transac-
tions. Each rowDt of D represents a transactiont that consists of the set of items
{i ∈ I | Dti = 1}, whereDti denotes the value on theith column andtth row ofD.

The subsets ofI are calleditemsets. In itemset mining we are interested in finding
itemsets that satisfy pre-defined constraints relative to an itemset databaseD. Let ϕ :
2I → 2T be a function that maps an itemsetI ⊆ I to the setT ⊆ T of transaction in
which all its items occur, that is,ϕ(I) = {t ∈ T | ∀i ∈ I : Dti = 1}. The dual ofϕ is
the functionψ : 2T → 2I that maps a set of transactionsT ⊆ T to the set of all items
from I included in all transactions inT , that is,ψ(T) = {i ∈ I | ∀t ∈ T : Dti = 1}.

Standard Frequent Itemsets.Assume a transaction databaseD over the setsT of
transactions andI of items, and additionally afrequency thresholdθ ∈ {0, . . . , |T |}.
Then the (traditional) frequent itemset problem [1] consists of finding the solution pairs
(I, T), whereI ⊆ I andT ⊆ T , such that

T = ϕ(I) (1)

|T | ≥ θ. (2)

The first constraint requires thatT must include all transactions inD that include all
items inI. The second constraint requires thatI is a frequent itemset, that is, the num-
ber of transactions inD in which all items inI occur must be at leastθ. Notice that
the second (minimum frequency) constraint is an anti-monotonic one: any subset of a
frequent itemset is also a frequent itemset relative to a given thresholdθ.

Various refinements of the traditional frequent itemset problem have been proposed.
In addition to the traditional version, in this paper we consider the problem of find-
ing maximalfrequent itemsets [4], that is, frequent itemsets that are superset-maximal
among the frequent itemsets of a given transaction database.

Maximal Frequent Itemsets.In addition to the constraints (1) and (2), themaximality
constraint imposed in the maximal frequent itemset problemis

|ϕ(I ′)| < θ ∀I ′ ⊃ I, (3)

that is, all supersets of a maximal frequent itemset are infrequent. Maximal frequent
itemsets are a condensed representation for the set of frequent itemsets, constituting a
border in the subset lattice ofI between frequent and infrequent itemsets.

3 Itemsets as Answer Sets

We now consider two simple encodings of the standard and maximal frequent itemset
problems as answer set programs. Due to the page limit we do not review details of
the answer set semantics or the language used for expressinganswer set programs. For
more details on the input language, we refer the reader to theuser’s guide [6] of the
Potassco bundle that includes the answer set enumerator we apply in the experiments.

We will intuitively explain the considered encoding referred to as ASP(1) (see
Fig. 1) and ASP(2) (see Fig. 2). For both of the encodings, each answer set corresponds
to a unique solution(I, T) of the itemset mining problem. Notice that there is an answer
set for any datasetD and any threshold valueθ, since by definition the empty set∅ is
always a frequent itemset. Although the encodings are quitesimilar, experiments show

that the behavior of a state-of-the-art answer set enumerator varies notably depending
of which encoding is used.

For presenting the transaction databaseD, we use the predicatedb/2 and intro-
duce the factdb(t,i) if and only if Dti = 1. The thresholdθ is encoded using
the predicatethreshold/1 by introducing the factthreshold(θ). The predicate
in itemset/1 is true for an itemi if and only if i is included in a frequent itemsetI,
encoding the most important part of a solution(I, T). The predicatein support/1
is true for a transactiont if and only if t ∈ T . Here the intuition is that, according to
Eq. 1, eacht ∈ T has tosupporteachi ∈ I in the sense thatt must includei (that is,
Dti = 1). Additionally, we use the auxiliary predicatesitem/1 (true for each item in
D), transaction/1 (true for each transaction inD), andin conflict/2. The
predicatein conflict/2(t, i) is true for(t, i) if and only if transactiont does not
support itemi, that is, we have theconflictDti = 0 andi ∈ I, violating Eq. 1.

Standard Frequent Itemset Mining.First consider the case of standard frequent item-
set mining. Lines 1-2 in ASP(1) and ASP(2) are the same, simply stating that ifDti = 1
for somet, theni is an item (line 1), and similarly for transactions (line 2).The fact that
a transactiont supports an itemset is also encoded in the same fashion in ASP(1) and
ASP(2) on lines 4-5. Transactiont is in the support only if there is no conflict between
t and the items in the itemset, that is, the number of trueconflict at(t, i)’s is zero
(line 4, using acardinality constraint). Theconflict at/2 predicate is then defined
on line 5: there is a conflict ifDti = 0 wherei is in the frequent itemset.

The ASP(1) and ASP(2) encodings differ in how inclusion of items in the frequent
itemset is represented. In ASP(1), on line 3 we “guess” for each item whether it is in
the frequent itemset ({ in itemset(i) } is the so calledchoiceatom that is true
regardless of whetherin itemset(i) is true). Given any choice of included items,
the integrity constraintof line 6 requires that the number of transactions supporting
the chosen itemset cannot be less than the frequency threshold, in accordance with the
minimum frequency constraint (Eq. 2).

In ASP(2), we apply a more “direct” way of encoding inclusionof items in frequent
itemsets (line 3): there is the choice of including an item ifthe particular item has
enough supporting transactions (that is, at least as many asrequired by the thresholdθ).

Maximal Frequent Itemset Mining.Based on the encodings for standard frequent
itemset mining, including the additional maximality criterion for frequent itemsets re-
quires only a small modification to both ASP(1) and ASP(2). Namely, for ASP(1) we
add the rule in itemset(I) :- item(I), N { in support(T) : db(T,I) }, threshold(N).

enforcing that any item that has sufficient support for inclusion in the frequent itemset
has to be included. In contrast, for ASP(2) wereplacethe rule on line 3 with this same
rule, in essence removing thechoicefrom the original rule.

1. item(I) :- db(,I).

2. transaction(T) :- db(T,).

3. { in itemset(I) } :- item(I).

4. in support(T) :- { conflict at(T,I) : item(I) } 0, transaction(T).

5. conflict at(T,I) :- not db(T,I), in itemset(I), transaction(T).

6. :- { in support(T) } N-1, threshold(N).

Fig. 1. The ASP(1) encoding of standard frequent itemset mining

1. item(I) :- db(,I).

2. transaction(T) :- db(T,).

3. { in itemset(I) } :- item(I), N { in support(T) : db(T,I) }, threshold(N).

4. in support(T) :- { conflict at(T,I) : item(I) } 0, transaction(T).

5. conflict at(T,I) :- not db(T,I), in itemset(I), transaction(T).

Fig. 2. The ASP(2) encoding of standard frequent itemset mining

4 Experiments

Here we report on preliminary experiments addressing the efficiency of a state-of-the-
art answer set enumerator on the ASP(1) and ASP(2) encodingsof real-world datasets.
As the answer set enumerator, we use the conflict-driven solver Clingo [5] (version
3.0.3, based on the Clasp ASP solver version 1.3.5)1 with default settings. We also
compare the performance of Clingo on ASP(1) and ASP(2) to that of FIM CP2 ver-
sion 2.1 (using Gecodehttp://www.gecode.org/ version 3.2.2), which is a recently
proposed tool for itemset mining based on constraint programming [2, 3]. The experi-
ments were conducted under Ubuntu Linux on a 3.16-GHz Intel CORE 2 Duo E8500
CPU using a single core and 4-GB RAM. As benchmarks we used thepreprocessed
UCI datasets available athttp://dtai.cs.kuleuven.be/CP4IM/datasets/, as
used in evaluating FIMCP [2, 3]. Key properties of representative datasets, as sup-
plied at this website, are shown in Table 1. We ran each solverfor thresholdθ values
0.95, 0.90, . . . , 0.10, 0.08, . . . , 0.02, 0.01 times|I| for each datasetD until we observed
the first timeout for a particular solver.

Results for a representative set of benchmarks are shown in Fig. 3, with observed
upper bounds on the times used for grounding shown in Table 1.Grounding time is
included in the plots. For the standard frequent itemset problem (left column), we ob-
serve that the ASP(2) encoding is almost always better than ASP(1). For the most dense
datasetanneal(recall Table 1 – here density is defined as the percentage of 1’s in D) we
observe that ASP(2) is the most effective one, being multiple times more effective than
the FIM CP approach. Also for the other two relatively dense datasets, ASP(2) is either
slightly better than (onlymph) or approaches the performance (onaustralian-credit)
of FIM CP. This is an intriguing observation, since dense datasetscan be considered
harder to mine because of the large number of candidate itemsets. For the remaining
two datasets, we observe that the performance of ASP(2) approaches that of FIMCP,
even being more effective at low threshold values onsplice-1.

For the maximal itemset problem (right column) we observe that FIM CP is the
most efficient one, with the exception that for thesplice-1dataset, the ASP(2) encoding
dominates at the more difficult threshold values≤ 0.20 · |I|.

We also conducted a preliminary experiment on the effect ofdecomposingthe car-
dinality and choice constructs in ASP(1) and ASP(2) using the build-in decompositions
of Clingo. This is motivated by evidence of varied applications of constraint satisfac-
tion tools in which decomposing complex constraints into lower level entities has re-
sulted in improved performance. In this case, decomposing cardinalities seemed to gen-

1
http://potassco.sourceforge.net/. The options-n 0 -q were used for computing all so-
lutions and suppressing printing of solutions.

2
http://dtai.cs.kuleuven.be/CP4IM/. The option-output none was used for suppress-
ing printing of solutions.

Table 1. Properties of the representative datasets

DatasetD transactionsitemsdensity (%) itemsets atθ = 0.1 · |I| grounding time (s)
standard maximalASP(1) ASP(2)

anneal 812 93 45 > 147 000 000 15 977 < 0.3 < 0.3

australian-credit 653 125 41 > 165 000 0002 580 684 < 0.3 < 0.3

lymph 148 68 40 9 967 402 5191 < 0.1 < 0.1

mushroom 8124 119 18 155 734 453 < 3.4 < 2.5

splice-1 3190 267 21 1606 988 < 3.8 < 2.8

erally degrade performance. However, decomposing only thechoice constructs (using
--trans-ext=choice in Clingo) in the standard frequent itemset encodings gave
interesting results; see “ASP(1) choice” in Fig. 3. Namely,the performance of ASP(1)
on annealbecame even better than that of FIMCP, but degraded further onsplice-1.
For ASP(2) we observed no notable differences.

Finally, we noticed that Smodels (with and without lookahead) is very ineffective
on these problems compared to Clasp, and hence we excluded the Smodels data from
the plots for clarity. However, in-depth experiments with other solution enumerating
solvers (including, e.g., DLV) remains as future work, in addition to experimenting with
different search heuristics and other search space traversal options offered by Clasp.

5 Conclusions
We propose itemset mining as a novel application and benchmark domain for answer set
enumeration. The behavior of two simple ASP encodings varies depending on whether
maximality of itemsets is required; the behavior of the “better” encoding can exceed
that of a recent CP-based approach. We also observed that even small changes in the
encoding—including decompositions—can reflect in notableperformance differences
when enumerating all solutions. This motivates further work on more effective encod-
ings and on the interplay between answer set enumeration search techniques and mod-
elling, with the possibility of optimizing solver heuristics towards data mining tasks.
Additional current work includes finding dataset properties that imply good perfor-
mance of the ASP approach, and encodings of other data miningtasks as ASP.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of asso-
ciation rules. In: Advances in Knowledge Discovery and DataMining. AAAI Press (1996)
307–328

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In:
Proc. KDD, ACM (2008) 204–212

3. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and machine
learning. In: Proc. AAAI, AAAI Press (2010)

4. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu,T.: MAFIA: A maximal frequent
itemset algorithm. IEEE Trans. Knowl. Data Eng.17(11) (2005) 1490–1504

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration.
In: Proc. LPNMR. Volume 4483 of LNCS., Springer (2007) 136–148

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide
to gringo, clasp, clingo, and iclingo (2008)http://potassco.sourceforge.net/.

 0.1

 1

 10

 100

 1000

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold (%)

anneal standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

anneal maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

australian-credit standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

im
e

(s
)

Threshold (%)

australian-credit maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

lymph standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

lymph maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

mushroom standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

mushroom maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

splice-1 standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

splice-1 maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

Fig. 3. Comparison of the CP and ASP approaches to standard and maximal frequent itemset
mining on representative datasets

