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Abstract. We present an initial exploration into the possibilitieapplying cur-
rent state-of-the-art answer set programming (ASP) toelsp—conflict-driven
answer set enumeration—for mining itemsets in 0-1 data. Véduate a sim-
ple ASP-based approach experimentally and compare it toently proposed
framework exploiting constraint programming (CP) solversitemset mining.

1 Introduction

Answer set programming (ASP) has become a viable approadivtimg various hard
combinatorial problems. This success is based on the catidinof an expressive
modeling language allowing high-level declarations antinoged black-box solver
technology following the success story of Boolean satigfigl{SAT) solving.

A somewhat specific feature of typical answer set solvensppart for enumerating
all solutions (answer sets) of answer set programs. In thikwe study an exciting
novel application domain for answer set enumeration, ngrte data mining task of
finding all frequent itemsefrom 0-1 data [1]. We show that itemset mining problems
allow for simple and natural encodings as ASP with the heljnefrich modeling lan-
guage. Notably, typical itemset mining algorithm are somm&tproblem specific, vary-
ing on the constraints imposed on itemsets. Surprisinglystraint satisfaction tech-
niques have only very recently been applied to itemset rgitasks [2, 3]. In addition
to the availability of black-box constraint solvers suchaaswer set enumerators, the
additional benefit of constraint solvers is that the modglanguages enable solving
novel itemset mining tasks by combining different itemsmtstraints in a natural way
without having to devise new solving algorithms for spedifining tasks.

In this short paper, focusing on the standard [1] and maxj#idrequent itemset
mining problems, we evaluate the effectiveness of answemseneration as an itemset
mining tool using a recent conflict-driven answer set enati@n algorithm [5], and
compare this ASP approach to a recent approach based onogesmestraint program-
ming (CP) [2, 3]. The results show that, even with simple efiregs, ASP can be a
realistic approach to itemset mining, and, on the other hdrad itemset mining is a
well-motivated benchmark domain for answer set enumerg#idding to the currently
relative few realistic applications of answer set enuni@indt

2 Itemset Mining

Assume a sef = {1,...,m} of itemsand a se = {1, ...,n} of transactionsIntu-
itively, a transactiort € 7 consists of a subset of items frafn An itemset database

* Research financially supported by Academy of Finland uncamtgl32812.



D e {0,1}™*™ is a binary matrix of sizex x m that represents a set of transac-
tions. Each rowD; of D represents a transactigrthat consists of the set of items
{i € T | Dy; = 1}, whereDy; denotes the value on thith column andth row of D.

The subsets df are calledtemsetsin itemset mining we are interested in finding
itemsets that satisfy pre-defined constraints relativentdeanset databask. Let ¢ :
27 — 27 be a function that maps an itemdet_ 7 to the sefl’ C 7 of transaction in
which all its items occur, that ig(I) = {t € T | Vi € I : D;; = 1}. The dual ofp is
the functiony : 27 — 27 that maps a set of transactidisC 7 to the set of all items
from I included in all transactions ifi, thatis,»(T) = {i € I |Vt € T : Dy; = 1}.

Standard Frequent ItemsetAssume a transaction databaBeover the sety of
transactions and of items, and additionally &equency threshold € {0,...,|7|}.
Then the (traditional) frequent itemset problem [1] cotssis finding the solution pairs
(I1,T),wherel CZandT C 7, such that

T = () 1)
IT| > 6. 2)

The first constraint requires th@at must include all transactions i? that include all
items in/. The second constraint requires ttias a frequent itemset, that is, the num-
ber of transactions i in which all items in/ occur must be at leagt Notice that
the secondrfinimum frequengyconstraint is an anti-monotonic one: any subset of a
frequent itemset is also a frequent itemset relative to argitireshold.

Various refinements of the traditional frequent itemsebjem have been proposed.
In addition to the traditional version, in this paper we ddes the problem of find-
ing maximalfrequent itemsets [4], that is, frequent itemsets that apeiset-maximal
among the frequent itemsets of a given transaction database

Maximal Frequent Itemsetk addition to the constraints (1) and (2), theximality
constraint imposed in the maximal frequent itemset probgem

(I <6 VI' D1, 3)

that is, all supersets of a maximal frequent itemset aredufent. Maximal frequent
itemsets are a condensed representation for the set ofnedamsets, constituting a
border in the subset lattice @fbetween frequent and infrequent itemsets.

3 Itemsetsas Answer Sets

We now consider two simple encodings of the standard andmexXrequent itemset
problems as answer set programs. Due to the page limit we dreview details of
the answer set semantics or the language used for expressngr set programs. For
more details on the input language, we refer the reader tagbes guide [6] of the
Potassco bundle that includes the answer set enumeratqmpheia the experiments.

We will intuitively explain the considered encoding refsirto as ASP(1) (see
Fig. 1) and ASP(2) (see Fig. 2). For both of the encodingd) easwer set corresponds
to a unique solutio/, T') of the itemset mining problem. Notice that there is an answer
set for any datasg® and any threshold valug since by definition the empty sétis
always a frequent itemset. Although the encodings are gintéar, experiments show



that the behavior of a state-of-the-art answer set enupreraties notably depending
of which encoding is used.

For presenting the transaction datab@sewve use the predica@b/ 2 and intro-
duce the facdb(t, i) if and only if D;; = 1. The threshold is encoded using
the predicate hr eshol d/ 1 by introducing the fact hr eshol d(6). The predicate
i n_i tenset/ 1istrue for anitem if and only if 7 is included in a frequent itemsét
encoding the most important part of a solutidn7’). The predicaté n_support/1
is true for a transactionif and only if £ € T'. Here the intuition is that, according to
Eq. 1, each € T has tosupporteachi € I in the sense thdtmust includei (that is,
Dy; = 1). Additionally, we use the auxiliary predicatesent 1 (true for each item in
D), transacti on/ 1 (true for each transaction i®?), andi n_.confli ct/ 2. The
predicatd n_conf | i ct/ 2(¢,q) is true for(¢, ) if and only if transactiort does not
support iterm, that is, we have theonflictD;; = 0 andi € I, violating Eq. 1.

Standard Frequent Itemset Minirigirst consider the case of standard frequentitem-
set mining. Lines 1-2 in ASP(1) and ASP(2) are the same, sistpting that ifD;; = 1
for somet, theni is an item (line 1), and similarly for transactions (line he fact that
a transactiort supports an itemset is also encoded in the same fashion if1A&Rd
ASP(2) on lines 4-5. Transactians in the support only if there is no conflict between
t and the items in the itemset, that is, the number of troef | i ct _at ( ¢,7) 'sis zero
(line 4, using acardinality constraint. Theconf | i ct _at / 2 predicate is then defined
on line 5: there is a conflict iD,; = 0 wherei is in the frequent itemset.

The ASP(1) and ASP(2) encodings differ in how inclusion efris in the frequent
itemset is represented. In ASP(1), on line 3 we “guess” fehdgem whether it is in
the frequent itemset{(i n_i t enset (i) } is the so callecchoiceatom that is true
regardless of whethérn_i t enset (¢) is true). Given any choice of included items,
the integrity constraintof line 6 requires that the number of transactions suppprtin
the chosen itemset cannot be less than the frequency thdeshaccordance with the
minimum frequency constraint (Eq. 2).

In ASP(2), we apply a more “direct” way of encoding inclusifritems in frequent
itemsets (line 3): there is the choice of including an itenthi# particular item has
enough supporting transactions (that is, at least as mamgased by the thresholg).

Maximal Frequent Itemset MinindBased on the encodings for standard frequent
itemset mining, including the additional maximality criten for frequent itemsets re-
quires only a small modification to both ASP(1) and ASP(2)megy, for ASP(1) we
addtherule initemset (1) :- item(1), N { insupport(T) : db(T,1) }, threshold(N).
enforcing that any item that has sufficient support for isua in the frequent itemset
has to be included. In contrast, for ASP(2) melacethe rule on line 3 with this same
rule, in essence removing tichoicefrom the original rule.

1 iten(l) :- db(.1).

2. transaction(T) :- db(T,.).

3. {indtenset(l) } :- iten(l).

4. insupport(T) :- { conflictat(T,1) : itenm(l) } O, transaction(T).
5. conflictat(T,1) :- not db(T,1), inditenset(l), transaction(T).

6

.- { insupport(T) } N1, threshol d(N).

Fig. 1. The ASP(1) encoding of standard frequent itemset mining



1 iten(l) :- db(.1).

2. transaction(T) :- db(T,.).

3. {indtenset(l) } :- item(l), N { insupport(T) : db(T,1) }, threshold(N).
4. insupport(T) :- { conflictat(T,1) : itenm(l) } O, transaction(T).

5. conflictat(T,I) :- not db(T,I), inditenset(l), transaction(T).

Fig. 2. The ASP(2) encoding of standard frequent itemset mining

4 Experiments

Here we report on preliminary experiments addressing thaeicy of a state-of-the-
art answer set enumerator on the ASP(1) and ASP(2) encodlimgal-world datasets.
As the answer set enumerator, we use the conflict-driveres@\lingo [5] (version
3.0.3, based on the Clasp ASP solver version 113ath default settings. We also
compare the performance of Clingo on ASP(1) and ASP(2) tbdh&IM_CP ver-
sion 2.1 (using Gecods t p: / / ww. gecode. or g/ version 3.2.2), which is a recently
proposed tool for itemset mining based on constraint prograng [2, 3]. The experi-
ments were conducted under Ubuntu Linux on a 3.16-GHz IN®RE 2 Duo E8500
CPU using a single core and 4-GB RAM. As benchmarks we usegréygrocessed
UCI datasets available &t t p: // dt ai . cs. kul euven. be/ CP4l M dat aset s/, as
used in evaluating FIMCP [2, 3]. Key properties of representative datasets, as sup
plied at this website, are shown in Table 1. We ran each sébvehresholdd values
0.95,0.90,...,0.10,0.08,...,0.02,0.01 times|Z| for each datas&® until we observed
the first timeout for a particular solver.

Results for a representative set of benchmarks are showig.ir8 Fwith observed
upper bounds on the times used for grounding shown in Tab@&rdunding time is
included in the plots. For the standard frequent itemseblpro (left column), we ob-
serve that the ASP(2) encoding is almost always better tf&(A). For the most dense
datasetainneal(recall Table 1 — here density is defined as the percentade iof D) we
observe that ASP(2) is the most effective one, being meltiphes more effective than
the FIM_CP approach. Also for the other two relatively dense dasage&P(2) is either
slightly better than (olymph or approaches the performance (@mstralian-credij
of FIM_CP. This is an intriguing observation, since dense datasetde considered
harder to mine because of the large number of candidate etsmiSor the remaining
two datasets, we observe that the performance of ASP(2pappes that of FIMCP,
even being more effective at low threshold valuesplice-1

For the maximal itemset problem (right column) we obsena FHM_CP is the
most efficient one, with the exception that for $@ice-1dataset, the ASP(2) encoding
dominates at the more difficult threshold value$.20 - |Z|.

We also conducted a preliminary experiment on the effedieabmposinghe car-
dinality and choice constructs in ASP(1) and ASP(2) usirdathild-in decompositions
of Clingo. This is motivated by evidence of varied applioas of constraint satisfac-
tion tools in which decomposing complex constraints intedo level entities has re-
sulted in improved performance. In this case, decomposirdjralities seemed to gen-

L http: 1/ potassco. sourcef orge. net/ . The options n 0 - g were used for computing all so-
lutions and suppressing printing of solutions.

Zhttp://dtai.cs. kul euven. be/ CP4l M . The option- out put none was used for suppress-
ing printing of solutions.



Table 1. Properties of the representative datasets

DatasetD transactionstemgdensity (%) itemsets aé = 0.1 - |Z| |grounding time (s)
standard maximalASP(1] ASP(2)
anneal 812 93 45 > 147000000 15971 < 0.3 < 0.3
australian-credjt 653 125 41 > 165 000 00(2 580 684 < 0.3 < 0.3
lymph 148 68 40 9967 402 5193 < 0.1 <0.1
mushroom 8124 119 18 155 734 453 < 34 <25
splice-1 3190 267 21 1606 988 < 3.8 < 2.8

erally degrade performance. However, decomposing onlgliogce constructs (using
--trans-ext =choi ce in Clingo) in the standard frequent itemset encodings gave
interesting results; see “ASP(1) choice” in Fig. 3. Nam#ig performance of ASP(1)
on annealbecame even better than that of FI&P, but degraded further @plice-1
For ASP(2) we observed no notable differences.

Finally, we noticed that Smodels (with and without lookad)eia very ineffective
on these problems compared to Clasp, and hence we exclugl&irtbdels data from
the plots for clarity. However, in-depth experiments witiher solution enumerating
solvers (including, e.g., DLV) remains as future work, inlgidn to experimenting with
different search heuristics and other search space te\@sons offered by Clasp.

5 Conclusions

We propose itemset mining as a novel application and bendtaomain for answer set
enumeration. The behavior of two simple ASP encodings satépending on whether
maximality of itemsets is required; the behavior of the tbetencoding can exceed
that of a recent CP-based approach. We also observed thasmadl changes in the
encoding—including decompositions—can reflect in notg@dormance differences
when enumerating all solutions. This motivates furtherknam more effective encod-
ings and on the interplay between answer set enumeratiochsexhniques and mod-
elling, with the possibility of optimizing solver heurist towards data mining tasks.
Additional current work includes finding dataset propextibat imply good perfor-

mance of the ASP approach, and encodings of other data ntaskg as ASP.
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Fig. 3. Comparison of the CP and ASP approaches to standard and aldxéquent itemset
mining on representative datasets



