
Enumerating Potential Maximal Cliques via SAT and ASP

Tuukka Korhonen , Jeremias Berg and Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract
The Bouchitté-Todinca algorithm (BT), operating
dynamic programming over the so-called potential
maximal cliques (PMCs), yields a practically effi-
cient approach to treewidth and generalized hyper-
treewidth. The enumeration of PMCs is a scala-
bility bottleneck for BT in practice. We propose
the use of declarative solvers for PMC enumeration
as a substitute for the specialized PMC enumera-
tion algorithms employed in current BT implemen-
tations. The presented Boolean satisfiability (SAT)
and answer set programming (ASP) based PMC
enumeration approaches open up new possibilities
for improving the efficiency of BT in practice.

1 Introduction
Bounded treewidth of graphs and its generalizations to hy-
pergraphs are central structural restrictions that character-
ize tractable fragments in a variety of settings, from con-
straint satisfaction [Freuder, 1985; Dechter, 2006], discrete
optimization [Bodlaender and Koster, 2008] and knowledge
representation [Gottlob et al., 2010] to probabilistic reason-
ing [Lauritzen and Spiegelhalter, 1988; Darwiche, 2003]. De-
termining treewidth and generalized hypertreewidth is NP-
hard [Arnborg et al., 1987; Gottlob et al., 2009], which
makes the development of practical algorithms for comput-
ing the associated optimal decompositions a non-trivial chal-
lenge. In answer to this challenge, various types of exact al-
gorithms, ranging from specialized algorithms [Gogate and
Dechter, 2004; Moll et al., 2012; Tamaki, 2017; Korhonen et
al., 2019] to declarative approaches [Samer and Veith, 2009;
Berg and Järvisalo, 2014; Lodha et al., 2016; Lodha et al.,
2017; Fichte et al., 2018; Ganian et al., 2019], have been
recently proposed for treewidth [Samer and Veith, 2009;
Berg and Järvisalo, 2014; Tamaki, 2017; Korhonen et al.,
2019], its generalizations to hypergraphs [Moll et al., 2012;
Fichte et al., 2018; Korhonen et al., 2019], and related width
notions [Lodha et al., 2016; Lodha et al., 2017; Ganian et
al., 2019]. Among these approaches is the BT algorithm
of Bouchitté and Todinca (2001) which operates dynamic
programming over the so-called potential maximal cliques
(PMCs). Originally proposed for treewidth, BT has recently
been shown to be a practically efficient approach to treewidth

as well as to various other NP-hard optimization problems re-
lated to graph triangulations [Tamaki, 2017; Dell et al., 2018;
Korhonen et al., 2019], outperforming declarative approaches
to determining treewidth, and constituting currently the most
effective exact approach to determining generalized hyper-
treewidth [Korhonen et al., 2019].

The enumeration of PMCs, using a specialized enumera-
tion algorithm [Bouchitté and Todinca, 2002], has been ac-
knowledged as a bottleneck both in terms of worst-case anal-
ysis [Fomin et al., 2008] and scalability of BT in practice [Ko-
rhonen et al., 2019]. The question of whether PMCs can be
enumerated with polynomial delay is currently open [Bod-
laender et al., 2006]. Thus developing more effective ap-
proaches to enumerating PMCs is both a non-trivial challenge
and a key to improving the scalability of BT in practice.

We propose the use declarative solvers for PMC enumera-
tion as a substitute for the specialized PMC enumeration al-
gorithms employed in current BT implementations. We de-
velop both direct Boolean satisfiability (SAT) [Biere et al.,
2009] and answer set programming (ASP) [Gelfond and Lifs-
chitz, 1988; Niemelä, 1999] encodings as well as a SAT-based
lazy approach for the task of PMC enumeration. We integrate
these constraint-based enumeration approaches effectively to
an iterative variant of BT which at the same time allows for
avoiding the enumeration on all PMCs on graphs with low
(tree or generalized hypertree)width. As a result, we obtain a
novel iterative hybrid variant of BT, combining SAT solving
and dynamic programming. Empirically, we show that inte-
grating the proposed approaches into a recent BT implemen-
tation compares favorably with the use of specialized enumer-
ation on the tasks of determining treewidth and generalized
hypertreewidth. Furthermore, harnessing declarative solvers
for enumerating PMCs opens up further opportunities for
improving the efficiency of BT approaches to triangulation-
based graph optimization problems through further improve-
ments in SAT and ASP solvers.

2 Preliminaries
We consider undirected, simple graphs. We denote by V (G)
andE(G) the set of vertices and edges, resp., of a given graph
G. The neighbourhood N(v) of a vertex v ∈ V (G) consists
of vertices u with {u, v} ∈ E(G). For a set S ⊂ V (G),
N(S) = ∪v∈SN(v) \ S. A graph G is chordal if every cycle
of length at least 4 has a chord, i.e., an edge joining two non-

adjacent vertices in the cycle. A triangulation H of G is a
chordal graph that contains G, specifically, a graph for which
V (H) = V (G) and E(G) ⊂ E(H). A triangulation H of G
is minimal if no proper subgraph ofH is a triangulation ofG.
We denote the set of minimal triangulations of G by MT(G).

For a graph G, the graph G[S] induced by S ⊂ V (G) has
V (G[S]) = S and E(G[S]) = E(G) ∩ {{u, v} | u ∈ S, v ∈
S}. We use the notation G \ S = G[V (G) \ S]. A set ω ⊂
V (G) is a clique (of G) if G[ω] is complete, and a maximal
clique if no other clique ω′ satisfies ω (ω′. We denote the
set of maximal cliques of G by MC(G).

The width W(H) of a triangulation H ∈ MT(G) of G
is maxω∈MC(H){|ω| − 1}, i.e., the size of the largest clique
of H minus one. The treewidth TW(G) of a graph G is
minH∈MT(G){W(H)}, i.e., the minimum width over all tri-
angulations of G.

A set Ω ⊂ V (G) is a potential maximal clique (PMC)
of G if there is a H ∈ MT(G) such that Ω ∈ MC(H). We
denote the set of potential maximal cliques of G by Π(G),
and the set of PMCs of size at most k by Πk(G). For a
subset Πs ⊂ Π(G), we denote by MT(G,Πs) the mini-
mal triangulations H of G for which MC(H) ⊂ Πs; and
by TW(G,Πs) the minimum width of all triangulations in
MT(G,Πs); TW(G,Πs) =∞ if MT(G,Πs) = ∅. Note that
MT(G,Π(G)) = MT(G), TW(G,Π(G)) = TW(G), and
TW(G) = TW(G,Πk(G)) ≤ k−1 if TW(G,Πk(G)) <∞.

Example 1 Consider the graph G in Figure 1 left: G is
not chordal, witnessed by the cycle (s, u, b, t, v). One of
its minimal triangulations H ∈ MT(G) is shown in Fig-
ure 1 right. The sets {a, s, v} and {s, v, u} are examples
of maximal cliques of H and thus also examples of PMCs
of G. As the largest clique of H has 3 vertices, we have
H ∈ MT(G,Π3(G)) and W(H) = 2.

We denote the set of connected components of G by C(G).
For a S ⊂ V (G), a component C ∈ C(G \ S) is full wrt S
if N(C) = S, and S is a minimal separator of G if G \ S
has at least two full components wrt S. We denote the set of
minimal separators ofG by ∆(G). Alternatively, a set S is an
{u, v}-separator (or separates the vertices u and v) if u and v
are not connected in G \ S and is further minimal if no S′ (
S separates u and v. The set ∆(G) of minimal separators
contains all sets S that are minimal separators of some pair
of vertices u and v. Note that several different vertex-pairs
can share a minimal separator, and that minimal separators of
different vertex-pairs can be subsets of each other.

We will use the following characterization of PMCs.

Proposition 1 ([Bouchitté and Todinca, 2001]) A set K ⊂
V (G) is a PMC of a graph G if and only if (i) G \K has no
full components associated to K, and (ii) completing N(C)
into a clique for each C ∈ C(G \K) makes K a clique.

a b
s u

v t
a b

s u

v t

Figure 1: An example graph (left) and one of its triangulation (right)

In particular, the conditions (i) and (ii) of Proposition 1 can
be stated in terms of connectivity outside of specific sets of
vertices. Given a set K ⊂ V (G) and t, u ∈ V (G), the
vertices t and u are connected outside K if there is a path
(t, v1, . . . , vn, u) in G such that vi ∈ V (G) \ K for all
i = 1, . . . , n. Note that t and u can be connected outside of
K even if they are in K. Thus Proposition 1 can be restated
as follows for a basis of declarative encodings of PMCs.

Corollary 1 A set K ⊂ V (G) is a PMC of a graph G if and
only if (i) for every vertex v ∈ V (G) \ K, there is a vertex
u ∈ K such that v and u are not connected outside K and
(ii) any two vertices v, u ∈ K are connected outside of K.

Example 2 Consider the graph G in Figure 1 (left) and let
K = {s, v, u}. The graph G \ K has 2 connected compo-
nents: C(G \K) = {{a}, {t, b}}. Neither component is full
wrt K, since N({t, b}) = {v, u} 6= K 6= {s, v} = N({a}).
Thus K is not a minimal separator. One minimal {a, b}-
separator within K is {s, v}. Completing N({t, b}) to a
clique adds the edge {v, u}, making K a clique. Thus K sat-
isfies the conditions of Proposition 1 and hence K ∈ Π(G).
In terms of Corollary 1, a is not connected to u outside of
K, and neither of t and b is connected to s outside of K.
On the other hand, vertices in K are connected pairwise out-
side of K. Finally, no set containing only 2 vertices satis-
fies condition (i) of Corollary 1. Hence Π2(G) = ∅ and
MT(G,Π2(G)) = ∅, and thus TW(G,Π2(G)) = ∞ and
TW(G) = TW(G,Π3(G)) = 2.

Hypergraphs generalize graphs by allowing arbitrary sub-
sets of vertices as (hyper)edges. We denote the set of ver-
tices and edges of a hypergraph G by V (G) and E(G), resp.
The primal graph PRIM(G) of G has V (PRIM(G)) = V (G)
and E(PRIM(G)) = {{u, v} | ∃e ∈ E(G), {u, v} ⊂ e}.
For a subset K ⊂ V (G), a set E ⊂ E(G) is an edge
cover of K if K ⊂ ∪E. We denote the size of the small-
est edge cover of K by COVG(K). For a hypergraph G, the
width of a triangulation H ∈ MT(PRIM(G)) is W(H) =
maxω∈MC(H){COVG(ω)}, and can be determined by com-
puting the smallest edge covers of each clique ω ∈ MC(H).
The generalized hypertreewidth of G is GHTW(G) =
minH∈MT(PRIM(G)){W(H)} [Moll et al., 2012; Gottlob et al.,
2002; Grohe and Marx, 2014]. Note that, as all edges of
PRIM(G) are over two vertices, definitions related to (non-
hyper) graphs are applicable via the primal graph. In partic-
ular, MT(PRIM(G),Πs) contains all of the triangulations H
of PRIM(G) for which MC(H) ⊂ Πs and GHTW(G,Πs) =
minH∈MT(PRIM(G),Πs){W(H)}.

3 The Bouchitté-Todinca Algorithm
Enumeration of potential maximal cliques forms the basis
of the BT algorithm [Bouchitté and Todinca, 2001] which
gives the best known exact algorithm for treewidth in terms
of worst-case analysis [Fomin and Villanger, 2008] and yields
a competitive approach to various triangulation-related graph
optimization problems in practice [Tamaki, 2017; Dell et al.,
2018; Korhonen et al., 2019]. In the following we overview
BT focusing on treewidth; we refer to [Bouchitté and Tod-
inca, 2001; Fomin et al., 2008] for further details. We will

a b

Figure 2: MELON4

explain later in Section 5 how BT and the constraint-based
enumeration approaches proposed in this work are adapted
for generalized hypertreewidth.

The BT algorithm works in two phases: (i) Π(G) is com-
puted, i.e., the potential maximal cliques of G are enumer-
ated (ENUM-PMC); (ii) dynamic programming over Π(G)
is used to determine the treewidth of G (BT-DP). Phase
(ii) decomposes the computation of TW(G,Π(G)) into the
computation of TW(G[S ∪ C],Π(G)) for minimal separa-
tors S ∈ ∆(G) and full components C ∈ C(G \ S) [Bou-
chitté and Todinca, 2001; Fomin et al., 2008]. The enumer-
ation of PMCs (the first phase) in the original BT algorithm
works by inductively defining Π(G) based on Π(G \ {v})
for some v ∈ V (G) and the minimal separators ∆(G) of the
graph [Bouchitté and Todinca, 2002]. This requires enumer-
ation of ∆(G), using the algorithm of Berry et al. (1999).

The dynamic programming phase of BT runs in time
O(poly(n)·|Π(G)|), where n is the number of vertices. There
are no known algorithms for enumerating Π(G) with simi-
lar time complexity [Bodlaender et al., 2006]. The enumera-
tion phase of the original BT algorithm has time complexity
Ω(poly(n) · |∆(G)|2). This suggests that the bottleneck of
the overall efficiency of the BT algorithm is the enumeration
of PMCs, which is also the case in practice [Korhonen et al.,
2019]. This motivates developing alternative PMC enumera-
tion approaches compatible with BT.

In terms of lower bounds for PMCs enumeration, a con-
crete example of a graph class with an exponential number of
minimal separators is the “melon” graphs {MELONn}, which
consist of n paths of length three between two distinct ver-
tices a and b; see Fig. 2 for MELON4. In particular, it has been
shown that |∆(MELONn)| = Ω(3n) [Fomin et al., 2008]. In-
tuitively, the exponentiality is due to the fact that each way of
selecting a single vertex from each of the paths forms a min-
imal separator. Thus any algorithm that enumerates all mini-
mal separators, including the original BT algorithm, will have
an unpractical running time for even small melon graphs such
as MELON50. The declarative approaches to PMC enumera-
tion proposed in this work solve MELON50 in a few seconds.

Iterative BT. For integrating declarative approaches to PMC
enumeration into the BT framework, we employ an itera-
tive BT variant that alternates between two phases. The
critical observation here is that the dynamic programming
of the second phase determines TW(G,Π′) for each sub-
set Π′ ⊂ Π(G). Hence only PMCs of size bounded by the
treewidth are required. In particular, if TW(G) ≤ k− 1, then
TW(G,Πk(G)) = TW(G). Thus BT-DP requires only the
enumeration of Πk(G), i.e., the PMCs with at most k vertices,
to determine the treewidth of G. This suggests an iterative
variant of BT that alternates for different values of k between

(i) ENUM-PMC(G, k), consisting of computing Πk(G) and
(ii) BT-DP(G,Πk(G)), which either returns ∞, indicating
that TW(G) ≥ k, or returns the treewidth of G. The original
BT algorithm fits this formalism by setting k = |V (G)| dur-
ing the first iteration, enumerating all PMCs and terminating
after the first call to BT-DP. Using declarative approaches for
PMC enumeration, we will start with k = 1, and increment k
after each iteration in order to enumerate the least number of
PMCs needed for determining TW(G).

4 Constraint-Based Enumeration of PMCs
We propose three declarative approaches to enumerating
PMCs using SAT and ASP solvers: direct SAT and ASP en-
codings of the size-k PMCs of a given graph G, which allow
for using a SAT/ASP solver to enumerate PMCs, as well as
a lazy SAT-based enumeration approach. Each approach can
be integrated into the iterative BT algorithm as a substitute
for the ENUM-PMC component.

The declarative encodings consist of two parts: (i) encod-
ing of the two conditions of Corollary 1 in terms of connec-
tivity outside of a PMC, and (ii) enforcing that only PMCs of
size k are enumerated. Central to the approaches is how the
connectivity constraints are encoded in part (i). The encod-
ing of the connectivity constraints is further split to two direc-
tions: the ”if”-direction, and the ”only if”-direction. In par-
ticular, the declarative approaches we propose differ in terms
of how the ”only if”-direction is handled. The direct SAT ap-
proach encodes the existence of paths of lengthm inductively
based the existence of paths of length m− 1. The direct ASP
approach essentially differs from this by not having to ex-
plicate path-lengths. The lazy SAT approach uses minimal
separators of G to prove that two vertices are not connected
outside of a PMC. As the number of minimal separators of
a graph can be large, the minimal separator constraints are
added on demand instead of up front.

For discussing the encodings, let G be a graph with n ver-
tices, and k the size of the PMCs to be enumerated. We as-
sume w.l.o.g thatG is connected. We assume familiarity with
propositional logic, CNF representations, and answer set pro-
gramming.

4.1 Direct SAT Encoding of PMCs
We use Boolean variables Pi for i = 1, . . . , n to indicate the
inclusion of vertex vi in a PMC, andCij for i, j = 1, . . . , n as
auxiliary variables for encoding the connectivity constraints;
for a model τ of the SAT encoding, we will have Ωτ = {vi |
τ(Pi) = 1}, and τ(Cij) = 1 iff vertices vi and vj are con-
nected outside of Ωτ .

Encoding Corollary 1. The Pi and Cij variables are bound
together with the following constraints.

n∧
i=1

¬Pi →
n∨
j=1

(Pj ∧ ¬Cij) (1)

n∧
i=1

n∧
j=1

(Pi ∧ Pj)→ Cij (2)

Constraint 1 encodes Condition (i) of Corollary 1, enforcing
that for every vertex vi /∈ Ωτ there is a vertex vj ∈ Ωτ such
that vi and vj are not connected outside of Ωτ . Constraint 2
encodes Condition (ii), enforcing that if vi and vj are in Ωτ ,
then they are connected outside of Ωτ .

”If”-direction of the connectivity constraints. What re-
mains is the encoding of the “if” and “only-if” directions of
the connectivity constraints over the Cij variables. The “if”-
direction is naturally enforced as follows.∧

{vi,vj}∈E(G)

Cij (3)

n∧
i=1

∧
{vk,vj}∈E(G)

(Cik ∧ ¬Pk)→ Cij (4)

Here Constraint 3 enforces that if there is an edge between
vertices vi and vj , then they are connected outside any PMC
Ωτ . Constraint 4 ensures that connectivity information is
propagated fully: if vi and vk are connected outside of Ωτ ,
vk /∈ Ωτ , and there is an edge between vk and vj , then also
vi and vj are connected outside of Ωτ .

“Only if”-direction of the connectivity constraints. Note
that Constraint 4 is always satisfied by setting τ(Cij) = 1 for
all Cij , which is why also the “only if”-direction needs to be
enforced explicitly in the direct SAT encoding. This is done
using auxiliary variables C[t]ij for t = 1, . . . , n indicating
the existence of a path of length at most t between vi and vj
that does not containing vertices in Ωτ . These variables are
defined by the following constraints.

n∧
t=1

∧
{vi,vj}∈E(G)

C[t]ij (5)

∧
{vi,vj}/∈E(G)

¬C[1]ij (6)

n∧
t=2

∧
{vi,vj}/∈E(G)

C[t]ij →
∨

{vk,vj}∈E(G)

(C[t− 1]ik ∧ ¬Pk)

(7)

n∧
i=1

n∧
j=1

Cij → C[n]ij (8)

Constraints 5 and 6 define the base conditions for being
(not) connected. Constraint 7 enforces that if vertices without
a direct edge between are connected, there must be a shorter
path that supports this connectivity. Constraint 8 binds the
path-length variables and the connectivity variables Cij . The
redundant constraint Cij [t]→ Cij [t+ 1] for all t = 1..n− 1
and i, j = 1..n is included for additional propagation.

Restricting the size of enumerated PMCs. The restriction
to size-k PMCs is enforced through the cardinality constraint

n∑
i=1

τ(Pi) = k. (9)

For encoding Eq. 9 in CNF, here we use the Totalizer encod-
ing [Bailleux and Boufkhad, 2003] which is both compact
and can be used incrementally.

Enumeration of models of the direct SAT encoding, con-
sisting of constraints 1–9, corresponding to the set of size-
k PMCs of G, is done in a standard way by incrementally
calling a SAT solver, and adding the clause

∨
τ(Pi)=1 ¬Pi ∨∨

τ(Pi)=0 Pi that blocks out each found model τ from further
consideration until the SAT solver reports unsatisfiability.

4.2 Direct ASP Encoding of PMCs
As an alternative to the direct SAT encoding we propose a
direct ASP encoding. The potential benefits of employing
ASP come in terms of the answer set semantics [Gelfond and
Lifschitz, 1988], which circumvents—in contrast to the SAT
encoding—the need to explicate the lengths of paths in en-
forcing that the existence of a path must be supported by the
existence edges forming the path. The answer set semantics
requires natively that all true atoms must have an external
support, and the semantics is enforced internally within the
ASP solver during SAT-solver like complete search. Further-
more, ASP natively supports cardinality constraints, and ASP
solvers offer built-in support for model enumeration.

The ASP encoding analogous to the direct SAT encoding is
as follows. The predicate vertex/1 represents the N = n
vertices (r1), and pmc/1 the inclusion of vertices in a PMC;
each vertex may be included in a PMC through the choice
rule (r2), which also enforces the size of the PMC to be k
using built-in support for cardinality constraints.
vertex(X) :- X = 1..N, vertices(N). (r1)
{ pmc(X) : vertex(X) } = K :- size(K). (r2)

The input predicate edge/2 represents the input graph, and
c/2 represents connectivity in the graph (in analogy with the
direct SAT encoding) with the following rules r3-r6.
edge(X,Y) :- edge(Y,X). (r3)
c(X,X) :- vertex(X). (r4)
c(X,Y) :- edge(X,Y). (r5)
c(X,Y) :- c(X,Z), not pmc(Z), edge(Z,Y). (r6)

Finally, condition (i) of Corollary 1 is enforced through the
integrity constraint
:- not pmc(X), 0 = #count{vertex(Y) : d(X,Y)},

X = 1..N, vertices(N). (r7)

where
d(X,Y) :- vertex(X), not c(X,Y), pmc(Y). (r8)

and condition (ii) through
:- pmc(X), pmc(Y), not c(X,Y). (r9)

4.3 SAT-based Lazy Approach
As a third alternative declarative approach to handling the
connectivity constraints, we propose a lazy SAT approach.
The approach is based on enforcing the ”only-if”-direction of
connectivity constraints through the minimal separators ofG.
Specifically, vi and vj are only connected outside of Ωτ if Ωτ

does not contain a minimal vi, vj separator.
For a fixed minimal separator S ∈ ∆(G), we use an aux-

iliary variable MS to indicate that S is a subset of Ωτ . If we
were given the set all minimal separators, the above condition

can then be enforced by adding the following constraints for
each S ∈ ∆(G). (∧

vi∈S
Pi

)
→MS (10)

∧
i,j: S separates vi,vj

MS → ¬Cij (11)

Constraint 10 ”activates” the minimal separator if it is a sub-
set of Ωτ , and Constraint 11 enforces that vi and vj are not
connected outside of Ωτ if a minimal separator separating
them is activated. In the following we denote by SEP(S)
these constraints for a minimal separator S.

As the number of minimal separators of a graph can be ex-
ponential in the number of vertices of G (recall Sect. 3), we
do not introduce these constraints for all minimal separators
up front. Instead, we propose a lazy approach which itera-
tively adds these constraints whenever the condition to be en-
forced is violated by a solution reported by a SAT solver, in
which case we can easily obtain a minimal separator for rul-
ing out the unwanted candidate solution from further consid-
eration. The initial number of variables and clauses is O(n2)
and O(nm) in the lazy approach, compared to O(n3) and
O(n2m) in the direct approach.

Algorithm 1 details the lazy SAT-based approach to PMC
enumeration. A working formula F is maintained, initial-
ized as the conjunction of Constraints 1–4 and 9 (i.e., not
including the “only if’ encoding of the connectivity con-
straints). When a model τ of the working formula is obtained
via SAT-SOLVE, we check if Ωτ is an actual PMC of G.
This check is straightforward to implement based Corollary 1
and has negligible runtime also in practice. In the positive
case, Ωτ is added to Πk and blocked from being rediscov-
ered by adding a blocking clause to F . Otherwise, constraint
SEP(Sτ) is added to F for a minimal separator Sτ to rule out
τ as a model for F . Specifically, since F contains constraints
defining that Ωτ is a PMC except the ”only if”-direction of
connectivity constraints, the fact that Ωτ is not a PMC im-
plies that there is a pair vi and vj such that τ(Cij) = 1 even
though vi and vj are not connected outside of Ωτ . The func-
tion VIOLATING-PAIR(G, τ) returns such a pair of vertices.
Next a minimal {vi, vj}-separator Sτ ⊂ Ωτ is computed by
starting from Sτ = Ωτ \ {vi, vj} and iteratively removing
all vertices u ∈ Sτ for which Sτ \ {u} still separates vi, vj ,
i.e. SEPARATES(Sτ \ {u}, G, vi, vj) is true (the existence of
such Sτ follows from vi and vj not being connected outside
of Ωτ). Finally, τ is ruled out as a model of F by adding
the constraints SEP(Sτ). (In addition to τ , the constraints
SEP(Sτ) may also rule out other models of F that do not cor-
respond to actual PMCs of G.) The function SEPARATES is
easy to implement with standard graph traversal algorithms.
Algorithm 1 iterates until F becomes unsatisfiable, at which
point all PMCs of G of size k have been found.

5 Adaptations to Generalized Hypertreewidth
While we have so far described the BT framework and the
declarative approaches to PMC enumeration in the context

Algorithm 1 SAT-based lazy enumeration of size-k PMCs

F ← conjunction of constraints 1–4 and 9
Πk ← {}
while τ ← SAT-SOLVE(F) do

if IS-PMC(Ωτ) then
Πk ← Πk ∪ {Ωτ}
F ← F ∧ (

∨
τ(Pi)=1 ¬Pi ∨

∨
τ(Pi)=0 Pi)

else
vi, vj ← VIOLATING-PAIR(G, τ)
Sτ ← Ωτ \ {vi, vj}
for all u ∈ Sτ do

if SEPARATES(Sτ \ {u}, G, vi, vj) then
Sτ ← Sτ \ {u}

F ← F ∧ SEP(Sτ)
return Πk

of treewidth, adapting them to determining generalized hy-
pertreewidth of a given hypergraph G requires only minor
changes [Moll et al., 2012]; an implementation of BT for
GHTW is already available [Korhonen et al., 2019]. In
detail, the iterative BT algorithm is adapted for computing
GHTW(G) essentially by making the set of PMCs to be enu-
merated during iteration k to be the PMCs Ω of PRIM(G) for
which COVG(Ω) ≤ k. The edge covers are computed with a
branch-and-bound set cover algorithm. In the declarative ap-
proaches, this change corresponds to altering the size-k con-
straint to restrict COVG(Ωτ) instead of restricting |Ωτ |. Con-
cretely, in the SAT-based approaches this is done by replacing
Constraint 9 by the constraints∧

vi∈V (G)

Pi →
∨
vi∈e

Oe (12)

∑
e∈E(G)

τ(Oe) = k, (13)

where the auxiliary variables Oe for each hyperedge e ∈
E(G) indicates inclusion of the edge in the edge cover of a
PMC. Constraint 12 enforces that a chosen set of edges forms
an edge cover, i.e., that the edges cover all vi ∈ Ωτ . The
cardinality constraint 13 limits the size of the smallest edge
cover to COVG(Ω) ≤ k; in our implementation we again use
the Totalizer encoding.

As for the ASP encoding, rule r2 is replaced by
hyper(X) :- X = 1..N, hyperedges(N).
{ selected(X) : hyper(X) } = K :- size(K).
{ pmc(X) : vertex(X) }.
covered(X) :- inhyper(X,Y), selected(Y).

to select the hyper edges to the edge cover (selected/1)
and to determine the covered vertices (covered/1) via the
input predicate inhyper/2 representing the end-points of
hyperedges. Further, an actual edge cover is enforced with
the integrity constraint :- not covered(X), pmc(X).

6 Experiments
We integrated the three declarative approaches to PMC enu-
meration to the recent BT implementation Triangulator [Ko-
rhonen et al., 2019] that supports both treewidth and gen-
eralized hypertreewidth. The implementation is available at

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 200 220 240 260 280 300 320 340

Ti
m

e
 (

s)

Instances solved

Lazy SAT: 343
ASP: 336

Triangulator: 308
Direct SAT: 288

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
 (

s)

Instances solved

Lazy SAT: 40
ASP: 37

Triangulator: 38
Direct SAT: 29

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

E
n
u
m

e
ra

te
d
 m

in
im

a
l
se

p
a
ra

to
rs

Minimal separators

Figure 3: Runtimes for treewidth (left) and generalized hypertreewidth (middle). Right: # separators enumerated by the lazy approach.

https://github.com/Laakeri/pmcenum-ijcai. Triangulator im-
plements PMC enumeration with the original algorithm [Bou-
chitté and Todinca, 2002] (recall Sect. 3). This allows us to
evaluate the effectiveness of the hybrid approaches resulting
from replacing the PMC enumeration of Triangulator with the
declarative approaches. We made no modifications to the
dynamic programming and preprocessing [Bodlaender and
Koster, 2006] implemented in Triangulator.

In the experiments, we used Clingo 5.3.0 [Gebser et al.,
2016] as the de-facto ASP solver, and—based on preliminary
experiments of several state-of-the-art SAT solvers—Glucose
4.1 as the SAT solver [Audemard and Simon, 2018] through
its incremental API. For ASP, we used Clingo’s built-in sup-
port for enumerating all answer sets. All experiments were
run single-threaded on computing nodes with 2.4-GHz In-
tel Xeon E5-2680-v4 processors. A per-instance 2-hour time
limit and 32-GB memory limit was imposed.

For empirical corroboration for the claim that the declar-
ative approach circumvents worst cases of the original PMC
enumeration within BT, we generated melon graphs (recall
Sect. 3) for increasing n. (External preprocessing imple-
mented in Triangulator was disabled for this experiment, as
it would determine TW(MELONn) = 2 for all n ≥ 2
without BT. Constructions with non-trivial treewidth exhibit-
ing similar behavior may exist.) For treewidth, the original
PMC enumeration did not scale beyond n = 10 within 2 h,
while our lazy SAT-based enumeration allows for determin-
ing treewidth for n = 200 within 7.5 minutes; see Table 1

For further experiments, we used all of the benchmarks
instances from [Korhonen et al., 2019], consisting of 589
graphs for treewidth and 265 for generalized hypertreewidth

Table 1: Runtime on melon graphs with 3n+ 2 vertices.

n Triangulator (s) Lazy SAT (s)
6 0.46 0.04
7 3.27 0.06
8 26.80 0.06
9 261.20 0.09

10 2576.73 0.09
20 TO 0.38
50 TO 3.52

100 TO 39.00
200 TO 384.95

gathered from various different sources (including PACE
2016 and 2017 instances). The results are shown in Fig-
ure 3 (left) for treewidth and (middle) for generalized hyper-
treewidth, as the number of instances solved for each of the
approaches (x-axis) under different time limits (y-axis). The
direct SAT enumeration is not competitive with the other ap-
proaches. In contrast, the lazy SAT approach yields best per-
formance, solving 343 treewidth instances compared to 308
solved using Triangulator’s original PMC enumeration imple-
mentation, also yielding slight improvement for GHTW. ASP
enumeration also improves on Triangulator for treewidth,
although with some overhead compared to lazy SAT. The
largest graph for which treewidth could be determined by the
direct SAT, ASP, and lazy SAT methods has 125, 559, and
559 nodes, respectively. For treewidth instances solved with
lazy SAT approach, the maximum and median numbers of
SAT solver iterations were 157555 and 655. Figure 3 (right)
further motivates the lazy SAT approach with a per-instance
comparison of the number of minimal separators enumer-
ated by it and the total number of minimal separators. Fur-
thermore, the lazy (direct) approach could decide “treewidth
≤ k?” for k = 3, 5, 10, 20 on 570 (475), 557 (444), 482
(390), 426 (350) instances, respectively. Overall, the re-
sults show that declarative PMC enumeration is a promis-
ing alternative in the context of BT. In comparison to other
state-of-the-art approaches, the PIDDT [Tamaki, 2017] and
Jdrasil [Bannach et al., 2017] approaches to treewidth solved
467 and 457 instances, respectively, and the fraSMT [Fichte
et al., 2018] approach to GHTW solved 25 instances.

7 Conclusions
We proposed the use of declarative solvers for PMC enumera-
tion within the BT approach to treewidth and generalized hy-
pertreewidth, developing direct SAT and ASP encodings, and
as a lazy SAT-based approach for PMC enumeration that cir-
cumvents particular exponential behavior of the original PMC
enumeration approach for BT. Empirically, declarative PMC
enumeration is a promising alternative within BT, improving
its performance on treewidth and generalized hypertreewidth.

Acknowledgements
This work was financially supported by Academy of Finland
grants 276412 and 312662.

https://github.com/Laakeri/pmcenum-ijcai

References
[Arnborg et al., 1987] Stefan Arnborg, Derek G. Corneil, and An-

drzej Proskurowski. Complexity of finding embeddings in a k-
tree. SIAM J. Alg. Discr. Meth., 8(2):277–284, 1987.

[Audemard and Simon, 2018] Gilles Audemard and Laurent Si-
mon. On the Glucose SAT solver. International Journal on Arti-
ficial Intelligence Tools, 27(1):1–25, 2018.

[Bailleux and Boufkhad, 2003] Olivier Bailleux and Yacine
Boufkhad. Efficient CNF encoding of boolean cardinality
constraints. In CP, volume 2833 of LNCS, pages 108–122.
Springer, 2003.

[Bannach et al., 2017] Max Bannach, Sebastian Berndt, and
Thorsten Ehlers. Jdrasil: A Modular Library for Computing Tree
Decompositions. In SEA, volume 75 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 28:1–28:21. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[Berg and Järvisalo, 2014] Jeremias Berg and Matti Järvisalo. SAT-
based approaches to treewidth computation: An evaluation. In
ICTAI, pages 328–335. IEEE, 2014.

[Berry et al., 1999] Anne Berry, Jean-Paul Bordat, and Olivier Co-
gis. Generating all the minimal separators of a graph. In WG,
volume 1665 of LNCS, pages 167–172. Springer, 1999.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors. Handbook of Satisfiability, volume 185
of FAIA. IOS Press, 2009.

[Bodlaender and Koster, 2006] Hans L. Bodlaender and
Arie M.C.A. Koster. Safe separators for treewidth. Discrete
Mathematics, 306(3):337–350, 2006.

[Bodlaender and Koster, 2008] Hans L. Bodlaender and Arie M.
C. A. Koster. Combinatorial optimization on graphs of bounded
treewidth. Comput. J., 51(3):255–269, 2008.

[Bodlaender et al., 2006] Hans L. Bodlaender, Leizhen Cai, Jianer
Chen, Michael R. Fellows, Jan Arne Telle, and Dániel Marx.
Open problems in parameterized and exact computation. Techni-
cal Report UU-CS-2016-052, Utrecht University, 2006.

[Bouchitté and Todinca, 2001] Vincent Bouchitté and Ioan Tod-
inca. Treewidth and minimum fill-in: Grouping the minimal sep-
arators. SIAM J. Comput., 31(1):212–232, 2001.

[Bouchitté and Todinca, 2002] Vincent Bouchitté and Ioan Tod-
inca. Listing all potential maximal cliques of a graph. Theoretical
Computer Science, 276(1):17–32, 2002.

[Darwiche, 2003] Adnan Darwiche. A differential approach to in-
ference in bayesian networks. J. ACM, 50(3):280–305, 2003.

[Dechter, 2006] Rina Dechter. Tractable structures for constraint
satisfaction problems. In Handbook of Constraint Programming,
pages 209–244. Elsevier, 2006.

[Dell et al., 2018] Holger Dell, Christian Komusiewicz, Nimrod
Talmon, and Mathias Weller. The PACE 2017 Parameterized Al-
gorithms and Computational Experiments Challenge: The sec-
ond iteration. In IPEC 2017, LIPIcs, pages 30:1–30:12. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[Fichte et al., 2018] Johannes Klaus Fichte, Markus Hecher, Neha
Lodha, and Stefan Szeider. An SMT approach to fractional hy-
pertree width. In John N. Hooker, editor, CP, volume 11008 of
LNCS, pages 109–127. Springer, 2018.

[Fomin and Villanger, 2008] Fedor V. Fomin and Yngve Villanger.
Treewidth computation and extremal combinatorics. In ICALP,
volume 5125 of LNCS, pages 210–221. Springer, 2008.

[Fomin et al., 2008] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca,
and Yngve Villanger. Exact algorithms for treewidth and mini-
mum fill-in. SIAM J. Comput., 38(3):1058–1079, 2008.

[Freuder, 1985] Eugene C. Freuder. A sufficient condition for
backtrack-bounded search. J. ACM, 32(4):755–761, 1985.

[Ganian et al., 2019] Robert Ganian, Neha Lodha, Sebastian Ordy-
niak, and Stefan Szeider. SAT-encodings for treecut width and
treedepth. In ALENEX, pages 117–129. SIAM, 2019.

[Gebser et al., 2016] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, Max Ostrowski, Torsten Schaub, and Philipp Wanko.
Theory solving made easy with Clingo 5. In Tech. Com-
mun. ICLP. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lif-
schitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

[Gogate and Dechter, 2004] Vibhav Gogate and Rina Dechter. A
complete anytime algorithm for treewidth. In UAI, pages 201–
208. AUAI Press, 2004.

[Gottlob et al., 2002] Georg Gottlob, Nicola Leone, and Francesco
Scarcello. Hypertree decompositions and tractable queries. J.
Comput. Syst. Sci., 64(3):579–627, 2002.

[Gottlob et al., 2009] Georg Gottlob, Zoltán Miklós, and Thomas
Schwentick. Generalized hypertree decompositions: NP-
hardness and tractable variants. J. ACM, 56(6):30:1–30:32, 2009.

[Gottlob et al., 2010] Georg Gottlob, Reinhard Pichler, and Fang
Wei. Bounded treewidth as a key to tractability of knowledge rep-
resentation and reasoning. Artif. Intell., 174(1):105–132, 2010.

[Grohe and Marx, 2014] Martin Grohe and Dániel Marx. Con-
straint solving via fractional edge covers. ACM Transactions on
Algorithms, 11(1), 2014.

[Korhonen et al., 2019] Tuukka Korhonen, Jeremias Berg, and
Matti Järvisalo. Solving graph problems via potential maximal
cliques: An experimental evaluation of the Bouchitté-Todinca al-
gorithm. ACM J. Exp. Alg., 24(1:9), 2019.

[Lauritzen and Spiegelhalter, 1988] Steffen L. Lauritzen and
David J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. J.
Roy. Statist. Soc. Ser. B, 5(2):157–224, 1988.

[Lodha et al., 2016] Neha Lodha, Sebastian Ordyniak, and Stefan
Szeider. A SAT approach to branchwidth. In SAT, volume 9710
of LNCS, pages 179–195. Springer, 2016.

[Lodha et al., 2017] Neha Lodha, Sebastian Ordyniak, and Stefan
Szeider. SAT-encodings for special treewidth and pathwidth. In
SAT, volume 10491 of LNCS, pages 429–445. Springer, 2017.

[Moll et al., 2012] Lukas Moll, Siamak Tazari, and Marc Thurley.
Computing hypergraph width measures exactly. Information Pro-
cessing Letters, 112(6):238–242, 2012.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model
semantics as a constraint programming paradigm. Ann. Math.
Artif. Intell., 25(3-4):241–273, 1999.

[Samer and Veith, 2009] Marko Samer and Helmut Veith. Encod-
ing treewidth into SAT. In SAT, volume 5584 of LNCS, pages
45–50. Springer, 2009.

[Tamaki, 2017] Hisao Tamaki. Positive-instance driven dynamic
programming for treewidth. In ESA, volume 87 of LIPIcs, pages
68:1–68:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017.

	Introduction
	Preliminaries
	The Bouchitté-Todinca Algorithm
	Constraint-Based Enumeration of PMCs
	Direct SAT Encoding of PMCs
	Direct ASP Encoding of PMCs
	SAT-based Lazy Approach

	Adaptations to Generalized Hypertreewidth
	Experiments
	Conclusions

