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Abstract
The study of computational models for argumentation is a vibrant area of artificial intelligence

and, in particular, knowledge representation and reasoning research. Arguments most often have
an intrinsic structure made explicit through derivations from more basic structures. Computational
models for structured argumentation enable making the internal structure of arguments explicit.
Assumption-based argumentation (ABA) is a central structured formalism for argumentation in AI.
In this article, we make both algorithmic and complexity-theoretic advances in the study of ABA.
In terms of algorithms, we propose a new approach to reasoning in a commonly studied fragment of
ABA (namely the logic programming fragment) with and without preferences. While previous ap-
proaches to reasoning over ABA frameworks apply either specialized algorithms or translate ABA
reasoning to reasoning over abstract argumentation frameworks, we develop a direct declarative ap-
proach to ABA reasoning by encoding ABA reasoning tasks in answer set programming. We show
via an extensive empirical evaluation that our approach significantly improves on the empirical
performance of current ABA reasoning systems. In terms of computational complexity, while the
complexity of reasoning over ABA frameworks is well-understood, the complexity of reasoning in
the ABA+ formalism integrating preferences into ABA is currently not fully established. Towards
bridging this gap, our results suggest that the integration of preferential information into ABA via
so-called reverse attacks results in increased problem complexity for several central argumentation
semantics.

1. Introduction

The study of computational models of argumentation is a vibrant area of artificial intelligence re-
search, in particular in the field of knowledge representation and reasoning (Baroni et al., 2018). The
aim is to draw conclusions from internally inconsistent or incomplete knowledge bases using for-
malisms in which reasoning can be done algorithmically. In contrast to classical logic, for example,
formal argumentation represents defeasible reasoning, where new information may revoke previ-
ously reached conclusions. Indeed, as knowledge representation formalisms, computational models
of argumentation capture various related paradigms, including forms of non-monotonic reasoning
and logic programming (LP) (Dung, 1995). In terms of applications, formal argumentation has been
shown to be relevant in various different settings (Atkinson et al., 2017), including legal (Prakken &
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Sartor, 2015), e-government (Atkinson et al., 2006), and medical applications (Craven et al., 2012;
Čyras et al., 2020), as well as multi-agent systems (Fan et al., 2014).

Two main types of computational models of argumentation are the so-called structured and
abstract formalisms. In abstract argumentation the structure of individual arguments is completely
abstract. Reasoning over abstract argumentation frameworks (AFs) (Dung, 1995) is restricted to the
level of pair-wise knowledge of attacks between conflicting atomic arguments.

In contrast to AFs, in structured argumentation formalisms the structure of arguments is explicit.
Arguments are constructed from atomic elements of a given formalism, usually a form of premises
and a deductive system used for deriving facts (Besnard et al., 2014). Attacks between arguments
also depend on the structure of the arguments and are constructed from other elements of the formal-
ism, such as the notion of what contradicts a specific premise. In this way, structured argumentation
formalisms provide approaches to representing arguments inferred from a knowledge base. The ex-
plicitness of the structure of arguments and attacks makes the complexity of reasoning in structured
argumentation formalisms in many cases higher than in abstract argumentation (Dvořák & Dunne,
2018). While noticeable attention has recently been paid to computational approaches for AFs (as
recently surveyed by Charwat et al., 2015; Cerutti et al., 2018), advancing understanding of the
complexity of and algorithms for reasoning over structured argumentation frameworks has received
less attention. Indeed, theoretical and algorithmic advances for computational models for structured
argumentation can be perceived as more challenging, as the internal structure of arguments being
explicit results in more complex formalisms compared to Dung’s abstract frameworks.

Various different structured argumentation formalisms have been proposed, with different char-
acteristics and properties, and thereby also being suited to some extent for different application
scenarios. Prominent structured formalisms include assumption-based argumentation (ABA) (Bon-
darenko et al., 1997; Čyras et al., 2018; Dung et al., 2009; Toni, 2014), ASPIC+ (Modgil & Prakken,
2013, 2018; Prakken, 2010), defeasible logic programming (DeLP) (Garcı́a & Simari, 2004, 2014,
2018), deductive argumentation (Besnard & Hunter, 2008, 2018), and Carneades (Gordon et al.,
2007). Different formalisms offer ways of integrating different types of preferential information,
either directly as a built-in feature (as in the case of e.g. ASPIC+) or as different types of extensions
of the base formalism (as in the case of ABA+ (Čyras, 2017; Bao et al., 2017; Čyras & Toni, 2016c,
2016a, 2016b) and p ABA (Wakaki, 2017a, 2017b), two proposed approaches to accommodating
preferential information within ABA, with different foreseeable application scenarios). This is mo-
tivated by the fact that preferences can be considered an important part of argumentative reasoning
as they make it possible to include additional qualifying information about the situation that is being
modelled, such as the plausibility of a fact or the wishes of an agent. An example of the latter is
a study where a variant of ABA+ was used to determine a set of recommendations to follow from
clinical guidelines (Čyras et al., 2020). In this setting, preferences were used to represent the wishes
of patients about their treatment: a patient might wish, for example, to avoid intense exercise. Then
a treatment without intense exercise is chosen over ones involving it, if possible.

Our focus in this article is on ABA and its extension ABA+; we delay further discussion on
other formalisms until Section 6 focusing on related work. As one of the prominent structured
argumentation formalisms, real-world scenarios of applications of ABA include medical decision
making (Craven et al., 2012; Čyras et al., 2020), decision making in a multi-agent context (Fan
et al., 2014), and game theory (Fan & Toni, 2016).

An ABA framework consists of assumptions, rules, sentences and contraries. Deductions of
sentences are made from assumptions via the rules, and assumptions can be attacked by deducing
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the contrary of the assumptions, contraries being sentences. In particular, we consider a commonly-
studied logic programming fragment of ABA (Bondarenko et al., 1997). Attacks are defined be-
tween sets of assumptions: if a set of assumptions derives the contrary of some assumption, the set
of assumptions attacks this assumption and all assumption sets containing the attacked assumption.
Whereas in abstract argumentation sets of arguments are jointly accepted according to semantics, in
ABA the semantics sanction acceptable sets of assumptions1. ABA+ is a natural extension of ABA
enabling modelling preferential information over assumptions (Čyras, 2017; Bao et al., 2017; Čyras
& Toni, 2016c, 2016a, 2016b). Similarly to abstract argumentation, ABA has various semantics.
An acceptable set of assumptions is such that the assumptions together do not derive a contrary of
any of the assumptions in the set, and in addition fulfill some further criteria enforced by the chosen
semantics.

As the main contributions of this article, we make both algorithmic and complexity-theoretic
advances in the study of ABA and ABA+ focusing on the commonly-studied logic programming
fragment (Bondarenko et al., 1997).

On the algorithmic side, we propose a new computational approach to reasoning in the consid-
ered LP fragment of ABA with and without preferences. Previous approaches to reasoning in ABA
are based on either specialized algorithms or translating ABA reasoning to reasoning over AFs. The
dispute derivation approach (Gaertner & Toni, 2007a, 2007b, 2008; Dung et al., 2007; Craven et al.,
2012; Toni, 2013; Craven et al., 2013) can answer credulous queries under admissible, grounded
and ideal semantics. Dispute derivations for admissible and grounded semantics are implemented in
the ABAGRAPH system (Craven & Toni, 2016). The translation-based approach (Dung et al., 2007;
Caminada et al., 2013) implemented in the ABA2AF system (Lehtonen et al., 2017) transforms ABA
frameworks to AFs, allowing for the use of AF solvers to query credulous and skeptical acceptance
under admissible, preferred and stable semantics. Finally, the ABAPLUS system (Bao et al., 2017)
for ABA+ uses a similar translation, but takes preferences into account in the translation, and sup-
ports enumeration of acceptable assumption sets under complete, preferred, stable, grounded and
ideal semantics. In contrast, we propose a “direct” declarative approach to ABA reasoning based
on encoding ABA reasoning tasks directly in answer set programming (ASP) (Gelfond & Lifschitz,
1988; Niemelä, 1999; Brewka et al., 2011), without first translating ABA reasoning to reasoning
over AFs. Motivated by the success of ASP encodings in reasoning over AFs in practice (Toni &
Sergot, 2011; Egly & Woltran, 2006; Egly et al., 2008; Nieves et al., 2008; Wakaki & Nitta, 2008;
Egly et al., 2010; Gaggl et al., 2015), we present novel ASP encodings for ABA and for ABA+. Our
focus is in particular on combinations of semantics and reasoning modes which give rise to NP-hard
decision problems. Harnessing the power and capabilities of ASP solvers, we are able to cover var-
ious semantics (for ABA, admissible, complete, preferred, stable, grounded and ideal; for ABA+,
stable and grounded) and reasoning modes (credulous and skeptical reasoning as well as finding and
enumerating acceptable assumption sets) in a relatively uniform manner. We also provide results
from an extensive empirical evaluation of the approach, comparing its runtime performance with
the earlier proposed algorithmic approaches to reasoning in ABA and ABA+ for which implemen-
tations are available. Our approach significantly improves on the empirical performance of currently
available reasoning systems, in particular approaches based on dispute derivations or translations to
AFs. Our implementation is available at https://bitbucket.org/coreo-group/aspforaba.

1. A formulation that is equivalent for central ABA semantics uses acceptable sets of arguments instead of assumptions,
where an argument is a derivation for a sentence (Toni, 2014).
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While the complexity of reasoning over ABA frameworks is well-understood (Dimopoulos
et al., 2002; Dunne, 2009; Dvořák & Dunne, 2018), the complexity of reasoning in the ABA+

formalism under different semantics is at present in various cases open. Towards bridging this gap,
we also give new complexity results for reasoning in the considered fragment of ABA+, suggesting
that the integration of preferential information into ABA results in increased problem complexity
for several central argumentation semantics. In particular, we establish that the problem of verify-
ing whether a given set of assumptions is admissible in ABA+ is coNP-complete (and coNP-hard
under complete and grounded semantics). Complexity of the verification problem is oftentimes a
key indicator and stepping stone to complexity of further reasoning tasks in argumentation. Indeed,
we establish that credulous acceptance of a sentence under admissibility is ΣP

2-complete in ABA+.
Furthermore, for ABA+ frameworks satisfying the property expressed by the so-called fundamental
lemma (which states that an admissible assumption set stays admissible when an assumption that the
set defends is added to it), the grounded assumption set can be computed in polynomial time when
having access to an NP-oracle. Our results clearly set apart the complexity of core reasoning tasks in
ABA and ABA+: in the LP fragment of ABA, verification of admissibility is P-complete, credulous
reasoning under admissible semantics is NP-complete, and all problems regarding grounded seman-
tics are in P. As a particular case where no complexity jump is exhibited, we show that reasoning
via stable semantics in ABA+ has the same complexity as in ABA within the considered fragment.

The rest of this article is organized as follows. We start with an overview of the key definitions,
semantics, and reasoning problems in assumption-based argumentation with and without prefer-
ences (Section 2) to the extent necessary for the rest of the article. We then (in Section 3) establish
new complexity results for ABA+ and point out properties essential for developing our ASP-based
approach to reasoning in ABA and ABA+. The ASP approach is detailed in Section 4. In Section 5
we present results from an empirical evaluation of the ASP-based approach, focusing on its run-
time performance compared to the previously proposed and implemented approaches to reasoning
in ABA and ABA+ to the extent applicable. Finally, Section 6 gives an overview of related work
and Section 7 concludes. Full proofs not included in the main text can be found in Appendix A.

Some of the results presented in this article have been preliminarily published in the proceedings
of the 33rd AAAI Conference on Artificial Intelligence (AAAI-19) (Lehtonen et al., 2019). The cur-
rent article noticeably extends the AAAI-19 article in several ways: we provide further complexity
results (these include the first upper bound on the complexity of finding the grounded assumption
set in ABA+ and ΣP

2-completeness for credulous reasoning under admissible semantics in ABA+)
and previously unpublished full formal proofs of all complexity results, and extend the ASP-based
approach to further semantics (ideal for ABA and grounded for ABA+) as well as present a new
encoding of the grounded semantics (an erroneous encoding was proposed in the preliminary ver-
sion of this work). Furthermore, the empirical evaluation has been extended to cover the supported
semantics and reasoning tasks and further comparisons with previously proposed systems.

2. Assumption-Based Argumentation

We recall assumption-based argumentation (ABA) (Bondarenko et al., 1997; Toni, 2014; Čyras
et al., 2018) and its generalization ABA+ (Čyras & Toni, 2016b, 2016c; Bao et al., 2017) which
equips ABA with preferences over assumptions.

We assume a deductive system (L ,R), where L is a formal language, i.e., a set of sentences,
and R a set of inference rules over L . A rule r ∈ R has the form a0 ← a1, . . . ,an with ai ∈L .
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We denote the head of rule r by head(r) = {a0} and the (possibly empty) body of r with body(r) =
{a1, . . . ,an}. An ABA framework is composed of a deductive system and further information about
which sentences can be provisionally assumed and which sentences are contrary to assumptions
(inducing a conflict).

Definition 1. An ABA framework is a tuple F = (L ,R,A , ), where (L ,R) is a deductive system,
A ⊆L a non-empty set of assumptions, and a function mapping assumptions A to sentences L .

In this work, we focus on a commonly used fragment of ABA, specified as follows. Notably,
all implementations of ABA reasoning proposed thus far (see Section 5.1) assume this fragment of
ABA.

Assumption 1. In this paper we focus on the following commonly studied fragment of ABA. For a
given ABA framework F = (L ,R,A , ), we presume that

• L is a set of atoms,

• sets L , R, and A are finite,

• for each rule r ∈R:

– body(r) is finite,

– the rule r is stated explicitly (given as input), and

– the head of r is not an assumption, i.e., head(r)∩A = /0;

In words, the set L consists of atomic entities (no complex or compound structures), all com-
ponents are finite, and no rule has an assumption as its head. ABA frameworks satisfying the
last condition are referred to as flat ABA frameworks, which allow for simpler definitions and sat-
isfaction of further properties than general frameworks. In general, different fragments of ABA
have been proposed and studied, especially ones allowing for different deductive systems. Further,
towards our computational results, we remark that we assume that rules are given explicitly. In
particular, derivability (defined formally in the following) is assumed to be decidable in polynomial
time (which is immediate by having the rules explicitly given as input).2 Mainly for illustrative
purposes, we sometimes do not explicitly mention all contraries, i.e., we mention an assumption
without its contrary. In such cases it can be assumed that the contrary is not part of any rule head,
which, in turn, implies non-derivability. From now on, unless stated otherwise, we assume that all
ABA frameworks satisfy the properties stated in Assumption 1.

The fragment defined via Assumption 1 subsumes the so-called logic programming (LP) frag-
ment of ABA (Bondarenko et al., 1997), in case the underlying ABA framework is finite. Formally,
the LP fragment of ABA is defined as follows. Let HB be a set of atoms.3 Define HBnot = {not a |
a ∈HB}. A ground normal logic programming rule r is of the form a← b1, . . . ,bn with a ∈HB and
bi ∈ HB∪HBnot. A ground normal logic program is a set of such rules. Let π be a ground normal
logic program over HB. An ABA framework F = (L ,R,A , ) corresponds to π if

2. Note that, in general, the deductive system can be such that derivability is not decidable in polynomial time.
3. Bondarenko et al. (1997) use HB to denote the Herbrand Base, i.e., the set of all ground atoms formulated in a

Herbrand universe. Yet, for our purposes HB may stand for a set of atoms, without specific reference to a Herbrand
universe. Furthermore, we will later, in Section 4, make use of answer set programs, and recall their syntax and
semantics.
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sentences L = {a,b,c,d,w,x,y,z}
assumptions A = {a,b,c,d}

contraries b = x, c = y, d = z

rules R = {(w← a),(y← b,w),(x← c),(z← a,b)}

a

w b

y

(w← a)

(y← b,w)

(a)

(b) (c)

Figure 1: Example: (a) ABA framework, (b) tree-derivation for y, (c) and forward-derivation for y.

• L = HB∪HBnot,

• R = π ,

• A = HBnot, and

• is defined, for a not a ∈ HBnot, by not a = a.

An ABA framework is within the LP fragment if there is a corresponding ground normal logic
program.4 The fragment defined via Assumption 1 is a minor generalization of the LP fragment of
ABA for finite frameworks: (i) we allow L to contain more sentences, not only assumptions and a
contrary of the assumption (e.g., we allow for sentences that are not a contrary of an assumption),
and (ii) we allow for different names of sentences. Nevertheless, the fragment we consider exhibits
the same complexity as the LP fragment. Also note that both the fragment we consider and the LP
fragment are instances of flat ABA frameworks (i.e., assumptions cannot be derived).

Example 1. An example ABA framework is illustrated in Figure 1(a). There are eight sentences
in L , four of which are assumptions (A ), and there are four rules in R. In this framework, the
assumption a has no derivable contrary, and thus the contrary of a is left unmentioned.

A central concept in ABA and ABA+ is how a sentence can be derived from a given set of as-
sumptions and a set of rules. In ABA, several notions of derivability are studied (Dung et al., 2006,
2010), with tree-derivability (|=) being the commonly considered one. ABA (without preferences)
can be equivalently defined via forward-derivability (Dung et al., 2006, 2010), denoted by the sym-
bol `. We employ the forward-derivability definition in our ASP encodings for reasoning in ABA
under various semantics (see Section 4). In contrast, tree-derivability is central for defining ABA+,
and the equivalence with forward-derivability does not carry over in general to ABA+. However,

4. Bondarenko et al. (1997) give two equivalent formulations of the LP fragment; we recalled the one without usage of
an additional theory. Similarly as Dimopoulos et al. (2002), we assume a ground normal logic program.
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as we will show, tree-derivability and forward-derivability remain equivalent also for ABA+ under
specific semantics, which allows for ASP encodings similar to those we develop for ABA.

Tree-derivability refers to a derivation via a (proof) tree that “starts” from the assumptions
(leaves in the tree) and each internal node corresponds to a rule. The trees we consider here are
finite rooted labeled trees. As usual, we call non-leaf nodes internal nodes (including the root),
and the children of a node are those adjacent nodes on a path to a non-root leaf node (i.e., children
are “downwards” towards the non-root leaves). A sentence s ∈ L is tree-derivable from a set of
assumptions X ⊆A and rules R ⊆R, denoted by X |=R s, if there is a finite rooted labeled tree T
with

1. the root is labeled with s,

2. the set of labels for the leaves of T is equal to X or X ∪{>}, and

3. there is a surjective function f mapping internal nodes of T to rules R such that f (v) = r
implies

• that the set of labels of children nodes of v is equal to body(r), or {>} if body(r) = /0,
and

• that the label of v is equal to head(r).

In other words, a sentence s is tree-derivable via assumptions X and rules R if one can construct
a tree with leaves labeled by X ∪ {>} which start off the derivations. Each internal node has a
corresponding rule in R, and the label of that internal node and the label of the children of that
internal node correspond to head and body of a single rule, respectively. Further, each rule in
R is present in at least one internal node (since f is assumed to be surjective, each rule in R is
mapped onto by f ). Finally, the root node is the derived sentence s. The symbol “>” (which is
not contained in L ) represents an empty rule body, signifying that the head of this rule is tree-
derivable from the empty set. As a special case for assumptions, a derivation tree consisting of a
single node is permitted in case that node is an assumption a ∈ A (i.e., assumptions are derivable
from themselves).

While we focus on semantics of ABA defined on assumption sets (with the formal definition
being introduced shortly), we mention here that derivation trees can be seen as argument structures.
Under this view, there is an argument for a sentence s ∈L if and only if there is a tree-derivation
for s. In general, tree-derivations (derivation trees) may be arbitrarily large, e.g., by a rule s← s
with s ∈L , one can chain this rule arbitrarily many times.

Example 2. For the deductive system in Figure 1(a), the tree-derivation {a,b} |=R y for sentence y
is shown in Figure 1(b). Here R = {(w← a),(y← b,w)}, i.e., the tree-derivation uses two rules.

Unless not clear from the context, we will usually write |=R without explicitly defining R and
assume that R⊆R from the given deductive system.

A sentence a ∈L is forward-derivable from a set X ⊆ A via rules R, denoted by X `R a, if
a ∈ X or there is a sequence of rules (r1, . . . ,rn) such that head(rn) = a and for each rule ri we have
ri ∈R and each sentence in the body of ri is derived from rules earlier in the sequence or in X , i.e.,
body(ri)⊆ X ∪

⋃
j<i head(r j).

Example 3. For the deductive system in Figure 1(a), a forward-derivation for y from X = {a,b} is
shown in Figure 1(c).
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There is a natural correspondence between the two notions of derivability.

Proposition 1 (Dung et al., 2006, 2010). It holds that

• if X |=R s then X `R s, and

• if X `R s there is an X ′ ⊆ X and R⊆R such that X ′ |=R s.

That is, |= is “stricter” (requires a tree derivation where all assumptions and rules are required
for derivation), while ` is simpler (no witness tree is required and redundant assumptions and rules
are allowed). For intuition on why the correspondence holds, if there is a tree-derivation X |=R s
for some X ⊆L and R⊆R, one can directly use the leaves and rules for showing X `R s. On the
other hand, if X `R s holds, then there exists a subset R ⊆R and X ′ ⊆ X which are “required” to
forward-derive s. These form a tree-derivation. Note that forward-derivations may have redundant
elements.5

Example 4. Consider the deductive system in Figure 1. For this system it holds that {a,b,c} `R y.
However, {a,b,c} 6|=R y for any R⊆R. To see this, note that one cannot form a tree-derivation with
leaves a, b, and c, and root y (there are no rules that connect these sentences, i.e., the connectedness
of a potential tree is violated). In this example, c is redundant in deriving y.

If the type of derivation is not relevant, we generally simply refer to derivations. The deductive
closure for an assumption set X w.r.t. rules R is given by ThR(X) = {a ∈L | X `R a}. This can
be equivalently defined with |=.

We move on to the definitions of attacks between assumption sets and the various semantics of
ABA.

Definition 2. Let F = (L ,R,A , ) be an ABA framework, and A,B ⊆ A be two sets of assump-
tions. Assumption set A attacks assumption set B in F if A′ |=R b for some A′ ⊆ A, R ⊆ R, and
b ∈ B.

That is, set A attacks B if one can derive the contrary of an assumption in B via the given
deductive system. In this definition, we have used tree-derivations. There is an equivalent definition
via forward-derivations: A attacks B if A `R b for some b ∈ B. The two notions coincide (Dung
et al., 2006, 2010). For attacks in ABA, we will primarily utilize forward-derivations.

The semantics of ABA are based on the concepts of conflict-freeness and defense, defined next.

Definition 3. Let F = (L ,R,A , ) be an ABA framework. An assumption set A ⊆A is conflict-
free in F iff A does not attack itself. Set A defends assumption set B⊆A in F iff for all C ⊆A that
attack B it holds that A attacks C.

We are now ready to recall the various semantics considered in this work.

5. We remark that here redundancy of forward-derivations refers to the fact that X `R s implies X ′ `R s for any X ′ ⊇ X .
That is, forward-derivability is preserved under supersets (or is monotone in that sense), unlike tree-derivations where
this fact does not hold in general. However, this does not imply that tree-derivations are free of redundancies. For
instance, it might be the case that X |=R s and X ′ |=R′ s for X ⊂ X ′, e.g., when R and R′ present alternative ways
of deriving s, with the former making use of fewer assumptions. A way of addressing the redundancies of tree-
derivations is replacing trees with graphs (Craven & Toni, 2016).
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Table 1: Admissible assumption sets of Example 5 compared to other semantics σ and semantics
<-σ with a < d.

assumption set ThR(·) ABA semantics σ ABA+ semantics <-σ
/0 /0 adm adm
{a} {a,w} adm, com, grd, ideal adm
{c} {c,x} adm adm
{c,d} {c,d,x} adm adm
{a,c} {a,c,w,x} adm adm
{a,b} {a,b,w,y,z} adm, com, prf , stb -
{a,c,d} {a,c,d,w,x} adm, com, prf , stb adm, com, grd, prf , stb, ideal

Definition 4. Let F = (L ,R,A , ) be an ABA framework. Further, let A ⊆ A be a conflict-free
set of assumptions in F. In F, set A is

• admissible iff A defends itself;

• complete iff A is admissible and contains every assumption set defended by A;

• grounded iff A is the intersection of all complete assumption sets;6

• preferred iff A is admissible and there is no admissible set of assumptions B with A⊂ B;

• stable iff each {x} ⊆A \A is attacked by A; and

• ideal iff A is the ⊆-maximal admissible assumption set within the intersection of all preferred
assumption sets.

We use the term σ -assumption set for an assumption set under a semantics σ ∈ {adm, com,
grd, stb, prf , ideal}, i.e., admissible, complete, grounded, stable, preferred, and ideal semantics,
respectively.

Example 5. For the example ABA framework in Figure 1(a), Table 1 lists all admissible assump-
tion sets (first column), the deductive closure (second column), and all semantics whose criteria
the corresponding assumption set satisfies (third column). Consider the assumption set {a,b}: the
deductive closure also contains w, y, and z. The last two sentences are contrary to assumptions c
and d respectively. This means that {a,b} attacks assumption sets {c} and {d}, and every assump-
tion set containing either c or d. The set itself is attacked only by assumption sets containing the
assumption c, since ThR({c}) = {x} and b = x. Since every assumption set containing c is attacked
by {a,b}, it holds that {a,b} is admissible. This set is complete, since any assumption set A ⊆ A
not contained in {a,b} is not defended by {a,b}. To see that {a,b} is also preferred, consider any
proper superset A of {a,b}: then either c ∈ A or d ∈ A, which violates conflict-freeness. Thus, no
proper superset is admissible. Finally, {a,b} is stable since it attacks all other assumptions.

Further, the framework has three complete assumption sets: {a}, {a,b}, and {a,c,d}. The
assumption set {a} is the intersection of the complete assumption sets, and is moreover admissible.

6. In general (i.e., not necessarily flat) ABA frameworks grounded semantics is referred to as well-founded semantics.
We consider only flat frameworks.
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Thus {a} is the grounded assumption set. The other two complete assumption sets are also preferred
and stable assumption sets. As {a} is the intersection of the preferred assumptions sets and is also
admissible, it is the ideal assumption set.

We recall an alternative characterization of grounded semantics that we use for our ASP im-
plementation in Section 4. For an ABA framework F , the grounded semantics can be equivalently
defined via the function def F(A) = {a ∈A | A defends {a}}.

Proposition 2 (Bondarenko et al., 1997, Theorem 6.2). Let F = (L ,R,A , ) be an ABA frame-
work. It holds that the grounded assumption set E of F is equal to the least fixpoint of def F .

Two basic reasoning tasks on ABA are verifying whether a given set of assumptions is a σ -
assumption set and enumerating all σ -assumption sets. In addition, often a relevant question is
to find out whether a given sentence is acceptable under a semantics. To answer this question,
two prominent reasoning modes are credulous and skeptical acceptance of sentences in an ABA
framework.

Definition 5. Let F = (L ,R,A , ) be an ABA framework and σ be a semantics.

• In the verification problem the task is to check whether a given S ⊆A is a σ -assumption set
of F.

• In the enumeration problem the task is to report all σ -assumption sets of F.

A given sentence s ∈L is

• credulously accepted in F under semantics σ iff there is a σ -assumption set A such that
s ∈ ThR(A); and

• skeptically accepted in F under semantics σ iff s ∈ ThR(A) for all σ -assumption sets A.

In flat ABA there is a unique grounded and ideal assumption set, implying coincidence of cred-
ulous and skeptical reasoning for both of these semantics. Grounded reasoning also coincides with
skeptical reasoning under complete semantics. Since each preferred assumption set is complete,
each complete assumption set is admissible, and each admissible assumption set is a subset of some
preferred assumption set, it follows that credulous reasoning under admissible, complete, and pre-
ferred semantics coincide (Bondarenko et al., 1997; Čyras et al., 2018).

Example 6. Continuing Example 5 (see also Table 1), every sentence is credulously accepted under
admissible semantics (and therefore also under complete and preferred semantics). No sentence is
skeptically accepted under admissible semantics (only sentences derivable from the empty set are
skeptically accepted under admissible semantics). The sentences a and w are skeptically accepted
under complete, preferred, and stable semantics.

We move on to the ABA+ formalism. ABA+ extends ABA by including preferences over
assumptions.

Definition 6. An ABA+ framework is a tuple F = (L ,R,A , ,≤), where (L ,R,A , ) is an ABA
framework and ≤ a preorder on A .
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A preorder is a reflexive and transitive binary relation. The strict counterpart < of ≤ is defined
as usual by a < b iff a ≤ b and b 6≤ a, for a,b ∈ A . We focus on flat ABA+ frameworks, where
flatness is defined in the same manner as for ABA frameworks.

The definition of attacks from ABA frameworks is generalized as follows to <-attacks in ABA+

frameworks, with “<” highlighting the fact that preferences, induced by <, are used for attacks.

Definition 7. Let (L ,R,A , ,≤) be an ABA+ framework, and A,B ⊆ A be two sets of assump-
tions. Assumption set A <-attacks B in F iff

• A′ |=R b, for some A′ ⊆ A, b ∈ B, and @a′ ∈ A′ with a′ < b, or

• B′ |=R a for some a ∈ A and B′ ⊆ B such that ∃b′ ∈ B′ with b′ < a.

In words, set A attacks B iff (i) from A, via subset A′, one can tree-derive a contrary of an as-
sumption b∈ B and no member in A′ is strictly less preferred than b, or (ii) from B, via subset B′ one
can tree-derive a contrary of an assumption a ∈ A and some member of B′ is strictly less preferred
than a. Attacks of type (i) are normal <-attacks and those of type (ii) reverse <-attacks, with the
intuition that the (non-preference based) conflict in (i) succeeds and in case of (ii) is reversed by the
preference relation.

Comparing ABA+ <-attacks to ABA attacks, in an ABA+ framework (L ,R,A , ,≤) with
≤= /0 (i.e., no preferences are imposed), the normal <-attacks coincide with attacks and there are
no reverse <-attacks. That is, without preferences one can use the standard ABA definitions for
attacks, and they coincide with normal <-attacks.

The notions of conflict-freeness, defense, and the semantics are straightforwardly generalized
from ABA to ABA+ by replacing attacks with <-attacks. For conflict-freeness, there is no need
for a new definition, since if A attacks B in an ABA+ framework, then either A <-attacks B or B
<-attacks A. This means that each non-preference-based attack is either present as-is as a <-attack,
or reversed, but never “lost”. Thus in ABA+ an assumption set is conflict-free using the same
definition as for ABA.

Set A ⊆ A <-defends assumption set B ⊆ A iff for all C ⊆ A that <-attack B it holds that A
<-attacks C. The definitions for the semantics for ABA+ are generalized from ABA as follows.

Definition 8. Let F = (L ,R,A , ,≤) be an ABA+ framework. Further, let A ⊆A be a conflict-
free set of assumptions in F. In F, set A is

• <-admissible iff A <-defends itself;

• <-complete iff A is admissible and contains every assumption set <-defended by A;

• <-grounded iff A is the intersection of all <-complete assumption sets;

• <-preferred iff A is <-admissible and there is no <-admissible set of assumptions B with
A⊂ B;

• <-stable iff each {x} ⊆A \A is <-attacked by A; and

• <-ideal iff A is a ⊆-maximal admissible assumption set within the intersection of all <-
preferred assumption sets.
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When referring to assumption sets for ABA+, we additionally use the preference order <, e.g.,
we say <-admissible assumption set. The reasoning tasks for ABA+ are the same as for ABA, after
replacing σ with <-σ .

Example 7. Recall the ABA framework from Example 5, shown in Table 1. If we extend the example
framework by the preference a < d, several semantics change, as shown in the right most column in
Table 1. Notably, {a,b} is not <-admissible (and also not <-complete, <-preferred, or <-stable).
The reason for this is that from {a,b} one can tree-derive z = d, which means {a,b} is attacking
(when not taking preferences into account) assumption set {d}. However, since d is strictly more
preferred than a, it holds that this attack is reversed when using <-attacks. That is, {d} reversely
<-attacks {a,b}. In fact, {d} is not <-attacked at all, implying that no set <-defends {a,b}. Under
the preference, both {a} and {d} are <-unattacked. Further, {d}<-defends {c}: {c} is <-attacked
only by {a,b} (normally), which is countered by {d} (reversely), and, thus, also by {a,d}. This
means that {a,c,d} is <-admissible. In fact, this set is also <-complete, <-grounded, <-preferred,
and <-stable.

The computational complexity of reasoning in ABA is well-established (Dimopoulos et al.,
2002; Dunne, 2009), and is outlined in Table 2 for the considered fragment of ABA. We assume that
the reader has knowledge about basic complexity classes, and the concepts of decision problems,
reductions, hardness, and completeness. For details we refer the reader to the book on complexity
theory by Papadimitriou (1994). We briefly recall complexity classes beyond NP to the extent
necessary for our discussion. A decision problem is in ΣP

2 if the problem can be decided via a
non-deterministic polynomial time algorithm that can access an NP-oracle. The class ΠP

2 is the
complementary class of ΣP

2 , i.e., contains all problems where there is a corresponding problem in
ΣP

2 where all “yes” instances are “no” instances and vice versa for “no” instances. The classes ∆P
2

and ΘP
2 contain problems that can be decided in polynomial time by an algorithm that can access an

NP-oracle, with the latter class having the additional restriction that at most a logarithmic number
of such calls may be used.

Complexity of credulous and skeptical reasoning in the LP fragment of ABA under admissible,
preferred, and stable semantics was established by Dimopoulos et al. (2002), and under ideal se-
mantics by Dunne (2009). Regarding hardness under ideal reasoning, we remark that ΘP

2-hardness
was shown under randomized reductions (Valiant & Vazirani, 1986). Complexity under complete
and grounded reasoning was not made explicit; we provide a formal proof in the next section. Com-
plexity of ABA with preferences has not, to our knowledge, been studied in-depth. Wakaki (2017b)
showed complexity results for p ABA, which presents an alternative way of handling preferences in
ABA. However, the results are not directly transferable to ABA+. We establish complexity results
for the LP fragment of ABA+ in the next section.

3. Properties and Complexity Results

We discuss properties essential for developing our ASP encodings, as well as establish complexity
results for ABA+ (results for ABA+ summarized in Table 3). Recall that we focus on frameworks
satisfying Assumption 1, which in particular subsumes the LP fragment of ABA and implies flatness
for both ABA and ABA+. Concretely, for ABA+, we show complexity of credulous reasoning under
admissible semantics (ΣP

2-complete) and stable semantics (NP-complete) and skeptical reasoning
under stable semantics (coNP-complete). We further show complexity of verifying whether a set of
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Table 2: Complexity of deciding acceptance of a sentence in the LP fragment of ABA. In addition to
the previously established results, a proof of the complexity of credulous reasoning under complete
semantics and reasoning under grounded semantics is established as Corollary 6.

Reasoning mode
semantics credulous skeptical
admissible NP-complete in P
complete NP-complete in P
preferred NP-complete ΠP

2-complete
stable NP-complete coNP-complete
grounded in P in P
ideal in ΘP

2 in ΘP
2

Table 3: Complexity results for deciding acceptance of a sentence and verifying whether a set of
assumptions is a σ -assumption set in the LP fragment of ABA+. All the results are established in
this article. The complexity of credulous and skeptical reasoning under <-grounded semantics hold
only for frameworks satisfying the FL-property; see Property 1.

Reasoning mode
semantics verifying σ -assumption set credulous skeptical
<-stable in P NP-complete coNP-complete
<-grounded coNP-hard ∆P

2 (FL) ∆P
2 (FL)

<-admissible coNP-complete ΣP
2-complete ?

<-complete coNP-hard ? ?

assumption is a <-σ assumption set, with tight bounds for admissible semantics (coNP-complete)
and hardness for both complete and grounded semantics (coNP-hard). For finding the grounded
semantics in frameworks satisfying the property expressed by the fundamental lemma, we give a
complexity upper bound (polynomial time when given access to an NP-oracle).

3.1 Properties and Complexity of ABA

The ABA framework is well understood and many properties and complexity results have been
derived (Čyras et al., 2018; Dimopoulos et al., 2002). Towards our ASP encodings, we slightly
re-state (in an equivalent way) some of the ABA semantics. Furthermore, we make observations on
the complexity landscape of ABA reasoning that have not been explicated before.

We begin with a lemma for ABA which explicates that defending a set of assumptions is the
same as defending each assumption of that set individually. Although the lemma follows fairly
directly from the definitions, the analogous observation does in fact not hold for ABA+.

Lemma 3. Let F = (L ,R,A , ) be an ABA framework, and A,B⊆A . Set A defends set B iff set
A defends each {b} ⊆ B.

Proof. Assume that A defends B. Let b ∈ B be arbitrary, and let C be any assumption set attacking
{b}. By ⊆-monotonicity of attacks, it holds that set C attacks B. Therefore A attacks C, and thus A
defends {b}. Since b is arbitrary, A defends each {b} ⊆ B.
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Assume that A defends each {b} ⊆ B. Let a C ⊆A attack B. Then, by definition of attacks in
ABA, there is a b′ ∈ B such that C `R b′. This implies that C attacks {b′} ⊆ B, and thus A attacks
C. Therefore A defends B.

We now highlight that defense of assumption sets and in turn ABA semantics can be equivalently
defined via the set of attacked assumptions. Let (L ,R,A , ) be an ABA framework and E ⊆A be
a set of assumptions. Define att(E) = {a ∈A | E attacks {a}}. Recall that in ABA an assumption
set E attacks {a} iff E `R a. For Proposition 4, the main ingredient in checking if a set is admissible
or complete is the set att(E) (which can be computed in polynomial time since `R is decidable in
polynomial time).

Proposition 4. Let (L ,R,A , ) be an ABA framework and E ⊆ A be a conflict-free set of as-
sumptions. It holds that

• set E defends an assumption set {a} ⊆A iff A \att(E) does not attack {a};

• set E is admissible iff A \att(E) does not attack E; and

• set E is complete iff E is admissible and for each b ∈ A \E it holds that {b} is attacked by
A \att(E).

Proof. Set E defends an assumption {a}⊆A iff for all C⊆A that attack {a} it holds that E attacks
C. Set E attacks any assumption set X with X ∩ att(E) 6= /0. Thus, E defends {a} iff A \ att(E)
does not attack {a}. The remaining statements follow directly from the previous observation, the
corresponding definitions, and by Lemma 3.

We make the complexity of reasoning in ABA under grounded and complete semantics explicit,
which has been lacking in the literature.7 Recall that the grounded assumption set of an ABA
framework F is equal to the least fixpoint of def F (see Proposition 2).

Corollary 5. For a given ABA framework, one can in polynomial time

• compute the grounded assumption set, and

• verify whether a given set of assumptions is complete.

Proof. It is sufficient to show that def (A) can be computed in polynomial time for an ABA frame-
work (L ,R,A , ) and A ⊆A . Since `R can be computed in polynomial time, one can compute
att(X) in polynomial time for a given X ⊆ A . The assumptions defended by A are those that are
not attacked by the set of assumptions that are not attacked by A.

The complexity of acceptance under grounded and complete semantics follows from the pre-
ceding corollary together with the facts that the grounded assumption set is a ⊆-minimal complete
assumption set and the grounded assumption set is unique (Bondarenko et al., 1997, Theorem 6.2),
and that credulous reasoning under admissible and complete semantics coincides (Bondarenko et al.,
1997; Čyras et al., 2018).

Corollary 6. It holds that

7. Between the writing and publication of this article, these results were independently shown by Čyras et al. (2021).
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• credulous reasoning in ABA under complete semantics is NP-complete, and

• skeptical reasoning in ABA under complete semantics and credulous as well as skeptical
reasoning under grounded semantics is decidable in polynomial time.

We make the computation of the grounded assumption set via iterated defense explicit, since
we will use the same approach in our encodings later. For an ABA framework F = (L ,R,A , )
we define triples Si = (I,D,U) for 0≤ i≤ |A | and I,D,U ⊆A .8 For a triple Si = (I,D,U) we use
shorthands Ii = I, Di = D, and Ui =U . The interpretation is that Ii is defended by Ii−1, Di is attacked
by Ii, and Ui is unattacked by Ii. We define the sequence S(F) = (S0, . . . ,S|A |) with

• S0 = ( /0,att( /0),A \att( /0)) and

• Si = (Ii,Di,Ui) with Ii = A \att(Ui−1), Di = att(Ii), and Ui = A \Di.

We show that I|A | is the grounded assumption set of F . By def i
F( /0) we denote i applications of def

on /0, and for i = 0 we define def 0
F( /0) = /0.

Lemma 7. Let F = (L ,R,A , ) be an ABA framework and sequence S(F) = (S0, . . . ,S|A |) as
above. It holds that def i

F( /0) = Ii, for 0≤ i≤ |A |.

Proof. We prove the claim by induction. For i = 0 the claim holds by definition. Let i ≥ 0 and
assume that def i

F( /0) = Ii. We show that def i+1
F ( /0) = Ii+1 holds. It holds that

a ∈ def i+1
F ( /0)

iff {a} is defended by def i
F( /0)

iff A \att(def i
F( /0)) does not attack {a} (Proposition 4)

iff A \att(Ii) does not attack {a} (Induction hypothesis)

iff A \Di does not attack {a}
iff Ui does not attack {a}
iff a ∈ Ii+1

To see that I|A | is the grounded assumption set, notice that I|A | is a fixpoint of def : def i
F( /0) is

monotonically increasing (w.r.t. subsets) and at each iteration either a fixpoint is reached or at least
one further assumption is added to the set. Thus a fixpoint is reached after at most |A | applications
of def .

3.2 Derivability in ABA+

Tree-derivability is used for defining <-attacks in ABA+. In particular, tree-derivations (|=) and
forward-derivations (`) are not equivalent in terms of <-attacks. This can be seen by considering
situations in which A normally <-attacks B: adding redundant assumptions to A (not used for de-
riving a sentence) may weaken the set and make it open for reverse <-attacks that are not present
under |=. That is, reversing attacks can differ for the two derivability notions. The following is
a concrete example for the fact that tree-derivability and forward-derivability give rise to different
sets of <-attacks.

8. The components in the triple stand for in (I), defeated (D) and undefeated (U), respectively.
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Example 8. Consider the ABA+ framework (L ,R,A , ,≤) with A = {a,b,c} and R = {b← a},
and let c < b be a preference in ≤. It holds that A = {a} <-attacks B = {b} normally, since A |=R b
with R = {b← a}. B does not <-attack A, since no contrary of a is derivable from B, and a 6< b.
Let A′ = {a,c}. In this case, A′ `R b, but A′ 6|=R b for any R ⊆R, since there is no derivation tree
with root b and both a and c as assumptions (leaves). In other words, c is redundant in deriving b.
Note that there is an assumption in A′ that is less preferred than b, namely c. It holds that B does
not reversely <-attack A′. To see this, consider any subset X of A′. Only when X = A it holds that
X |=R b. But there is no assumption in A less preferred than b. If one would replace tree-derivability
with forward-derivability in the definition of <-attacks, then B would reversely <-attack A′ since
the redundant assumption c is weaker than b.

However, in the special case of a conflict-free set reversely <-attacking a singleton set, forward-
derivability can be used for normal and reverse <-attacks.

Lemma 8. Let (L ,R,A , ,≤) be an ABA+ framework, A,B⊆A sets of assumptions, and b∈A .
Then the following claims hold.

(i) Set A normally <-attacks B iff A′ `R b for some A′ ⊆ A, b ∈ B and @a′ ∈ A′ with a′ < b.

(ii) If A is conflict-free, then A reversely <-attacks {b} iff {b} `R a for some a ∈ A and b < a.

Proof. (i) First recall from Proposition 1 that if X |=R s, then X `R s, and if X `R s, then there is an
X ′ ⊆ X and R⊆R such that X ′ |=R s.

Assume that assumption set A normally <-attacks B. Then A′ |=R b, for some A′ ⊆ A, b∈ B, and
@a′ ∈ A′ with a′ < b. This implies A′ `R b. For the other direction, assume that A′ `R b for some
A′ ⊆ A, b ∈ B, and @a′ ∈ A′ with a′ < b. There is an A′′ ⊆ A′ such that A′′ |=R b for some R ⊆R.
Since @a′ ∈ A′ with a′ < b, we have @a′′ ∈ A′′ with a′′ < b, and the first claim follows.

(ii) If A reversely <-attacks {b}, then by definition {b} |=R a for some a ∈ A such that b < a.
Then {b} `R a. Assume, on the other hand, that b < a and {b} `R a for some a ∈ A. As A is
conflict-free, it must then hold that {b} |=R a. This implies that A <-reversely attacks {b}.

A corollary of Lemma 8 is that one can check whether a set of assumptions is <-stable via
relying only on forward-derivability. To make this explicit, we slightly restate <-stable semantics
in the following proposition, distinguishing between normal and reverse <-attacks.

Proposition 9. Let D = (L ,R,A , ,≤) be an ABA+ framework. A conflict-free set E ⊆A is <-
stable iff for all {b} ⊆ A that are not normally <-attacked by E, either b ∈ E or {b} is reversely
<-attacked by E.

Proof. Let E ⊆A be a conflict-free assumption set. Assume that E is <-stable. Then E <-attacks
any {b} ⊆ A \E. Let X ⊆ A be the set of assumptions not normally <-attacked by E. Suppose
that there is an x ∈ X such that neither x ∈ E nor {x} is reversely <-attacked by E. Since {x} is not
normally <-attacked by E, it holds that {x} is not <-attacked by E. Since x /∈ E, E is not <-stable,
which is a contradiction.

Assume that for all {b} that are not normally <-attacked by E, either b∈E or {b} is reversely <-
attacked by E. Suppose E is not <-stable. Since E is conflict-free, it holds that there is an x∈A \E
such that E does not <-attack {x}. Thus E does not normally <-attack {x}. By assumption, either
x ∈ E or {x} is reversely <-attacked by E. This is a contradiction to E not being <-stable.

Proposition 9 will prove to be useful for the ASP encodings presented later on in this article.

280



DECLARATIVE ALGORITHMS AND COMPLEXITY RESULTS FOR ABA

3.3 On the Complexity of Reasoning in ABA+

We move on to investigating the complexity of reasoning in ABA+. Central to this is understanding
the role of <-attacks. In both ABA and ABA+ attacks satisfy ⊆-monotonicity of the following
form.

Lemma 10 (Čyras, 2017, Lemma 3.3). Let (L ,R,A , ,≤) be an ABA+ framework, and A and B
two sets of assumptions. Then for any A ⊆ A′ and B ⊆ B′ we have that if A <-attacks B, then A′

<-attacks B′.

That is, if A (<-)attacks {b}, then A (<-)attacks any B with b ∈ B.
Independently of monotonicity, attacks in ABA+ may in cases not attack singleton sets of as-

sumptions. While normal <-attacks in ABA+ are similar to attacks in ABA, reverse <-attacks
originate from singleton sets of assumptions and attack a set of assumptions. Put differently, for
ABA it holds that if a set B is attacked by A, then there is at least one singleton set {b} ⊆ B such
that {b} is attacked by A. However, this does not hold for reverse <-attacks in ABA+.

Example 9. Consider again the ABA+ framework from Example 7 (this is the ABA+ framework
shown in Figure 1 together with preference a < d). Important for our purpose in this example is
that from {a,b} one can tree-derive z = d (via rule z← a,b). Here {d} reversely <-attacks {a,b}.
However, {d} <-attacks neither {a} nor {b}, since there is no derivation possible from d or b (i.e.,
ThR({d}) = {d} and ThR({b}) = {b}) and from a one can derive only w (via rule w← a) which
is not the contrary of d. Thus, {d} does not <-attack any singleton subset of {a,b}.

The difference between attacks in ABA and ABA+ is significant from a computational perspec-
tive. In particular, for analyzing the complexity of reasoning in ABA+ in terms of different types of
attacks, we identify four types of (counter) <-attacks. Specifically, for two sets of assumptions A
and B, we will distinguish between

(i) A normally <-attacking B,

(ii) A reversely <-attacking B,

(iii) A normally <-attacking each subset B′ ⊆ B that <-attacks A, and

(iv) A reversely <-attacking each subset B′ ⊆ B that <-attacks A.

The first three types of <-attacks can be checked in polynomial time.

Proposition 11. Let (L ,R,A , ,≤) be an ABA+ framework, and A and B two sets of assumptions.
One can decide in polynomial time whether set A

1. normally <-attacks B,

2. reversely <-attacks B, or

3. normally <-attacks each subset B′ ⊆ B that <-attacks A.

Proof. For Item 1, consider each b ∈ B separately and compute Ab = {a ∈ A | a 6< b}. We have Ab
normally <-attacks {b} iff Ab `R b, the latter of which can be checked in polynomial time. If Ab
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normally <-attacks {b}, then, by monotonicity, A normally <-attacks B. Likewise, if A normally
<-attacks B, then there is a b ∈ B such that Ab normally <-attacks {b}.

For Item 2, compute ThR(B). For each a∈A, if a∈ ThR(B), check whether it holds that B′ |=R a
such that B′ ⊆ B and there is a b′ ∈ B′ with b′ < a. This check can be reduced to reachability in a
directed graph due to Lemma 20 (shown in Appendix A), and can be done in polynomial time (the
graph of this lemma can be constructed in polynomial time, and the reachability problem can be
decided in polynomial time, also for each b′ < a).

For Item 3, compute X = {b∈ B | A normally <-attacks {b}}, which can be done in polynomial
time due to Item 1. By monotonicity A attacks each B′ of B for which it holds that B′∩X 6= /0, so it
suffices to check whether B \X <-attacks A (via Items 1 and 2). If so, then A does not counter all
<-attacks via normal <-attacks. If B\X does not <-attack A, then by monotonicity it holds that no
subset B′ ⊆ B\X <-attacks A.

We emphasize that Item 2 of Proposition 11 is polynomial-time decidable. This is because one
does not need to find subset-minimal B′ ⊆ B that are reversely <-attacked by A. Item 3 is also
polynomial-time decidable since normal <-attacks target only singleton sets of assumptions.

Before delving into attacks of type (iv), we note that the complexity of verifying that a set of
assumptions is <-stable is obtained via Proposition 11. Note that the property of being conflict-
free does not depend on the preference relation (Čyras, 2017, Theorem 3.5) and can be checked in
polynomial time.

Theorem 12. Verifying that a set of assumptions is <-stable in an ABA+ framework is in P.
Checking credulous (skeptical) acceptance of a sentence under <-stable semantics in ABA+ is NP-
complete (coNP-complete).

Proof. For membership, given an assumption set A, one can check in polynomial time whether A
is conflict-free. Further, by Proposition 11, one can check in polynomial time whether A <-attacks
each {b}⊆A \A. Credulous (skeptical) acceptance can be checked by a non-deterministic guess of
an assumption set, and verifying stability and whether the queried sentence can (cannot) be derived.
Hardness carries over from ABA.

In particular, credulous and skeptical reasoning under <-stable semantics in ABA+ is of the
same complexity as reasoning under stable semantics in ABA.

However, for the other semantics considered in this work, complexity results for reasoning in
ABA do not directly carry over to ABA+. In fact, we show next that it is coNP-hard to decide
whether a set of assumptions counterattacks by reverse <-attacks all sets of assumptions that attack
it, i.e., attacks of type (iv) from before Proposition 11.

Several of the subsequent complexity proofs will be based on the following reduction from the
problem of deciding whether a given Boolean formula in conjunctive normal with a maximum of
three literals per clause (3-CNF) is unsatisfiable, which is a classical coNP-complete problem. For
the following, for a clause c j = l1∨ l2∨ l3 let neg(c j) =¬l1,¬l2,¬l3 with ¬li = x if li =¬x and ¬li =
¬x if li = x. In our reduction, we translate a Boolean formula φ in 3-CNF to an ABA+ framework.
In particular, we translate literals l to sentences in the ABA+ framework. We emphasize that a literal
of the form l = ¬x (negative literal) is interpreted as a (normal) sentence in the constructed ABA+

framework. That is, “¬” is not to be interpreted as a unary (logical) operator in any sense, within
the constructed ABA+ instance. For instance, a rule x←¬y is to be interpreted that one can derive
from the sentence “¬y” the sentence “x” (and this rule does not apply for a contrary of y, if present).
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Reduction 1. Given a Boolean formula in 3-CNF φ = c1∧·· ·∧cm over vocabulary X = {x1, . . . ,xn}
and clauses C = {c1, . . . ,cm}, the ABA+ framework red(φ) = (L ,R,A , ,≤) has A = {a,b}∪
X ∪¬X for ¬X = {¬x | x ∈ X} and R consists of the following rules.

• di← xi and di←¬xi for 1≤ i≤ n.

• a← d1, . . . ,dn.

• xi← xi and ¬xi←¬xi for 1≤ i≤ n.

• b← xi,¬xi,a for 1≤ i≤ n.

• b← neg(c j),a for 1≤ j ≤ m.

Finally, let L =A ∪{z | z ∈A }∪{d1, ...,dn} and let≤ consist of b > xi and b >¬xi for 1≤ i≤ n.

Reduction 1 is illustrated in Figure 2 for an example formula. We note that the ABA+ framework
red(φ) can be constructed in polynomial time for a given formula. For each variable xi we have
five rules and two contraries, for each clause c j one rule, and one additional rule. The size of R is
|X | ·5+ |C|+1 and the size of L equals |X | ·5+4. The size of each rule is bounded, as well.

We now prove properties of Reduction 1 that we require for subsequent complexity proofs.

Lemma 13. Let φ be a Boolean formula in 3-CNF. For ABA+ F = red(φ) (recall Reduction 1), the
following statements are equivalent.

1. {a,b} reversely <-attacks all assumption sets X that <-attack {a,b}.

2. {a,b} is <-admissible in F.

3. {a,b} is <-grounded in F.

4. φ is unsatisfiable.

Proof. 1⇔ 2: Assume that statement 1 holds. Note that {a,b} is conflict-free. Since any <-attack
from an assumption set to {a,b} is countered by a reverse <-attack from {a,b}, we know that {a,b}
is <-admissible. For the other direction, assume that statement 2 holds. Now {a,b} is conflict-free.
Note that {a,b} does not normally <-attack any assumption set. Thus {a,b} is <-admissible iff
{a,b} <-attacks all assumption sets that <-attack it iff {a,b} reversely <-attacks all assumption
sets that <-attack it.

2⇒ 3: Assume that statement 2 holds. We argue that {a,b} is the unique <-complete as-
sumption set of F and thus it is the <-grounded assumption set. First note that {a,b} does not
derive further sentences by the given rules, that is, ThR({a,b}) = {a,b}. It holds that {b} is not
<-attacked, since all rules deriving b contain an assumption that is strictly less preferred than b,
and thus any such potential attack is reversed. This implies that any <-complete assumption set
contains b. However, {b} is not <-complete. This follows from the facts that, by assumption, {a,b}
defends itself, and if {a,b} defends itself, then {b} defends {a,b}. To see the latter, consider any
set X that is <-attacked by {a,b}. First note that X is not normally <-attacked by {a,b}, since no
further sentence is derivable from {a,b}. Thus X is reversely <-attacked by {a,b}. Since b is part
of a preference and a is not, it holds that {b} reversely <-attacks X if {a,b} <-attacks X . Thus {b}
<-defends {a,b} against any <-attack. It follows that any <-complete assumption set is a superset
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red(φ) = (L ,R,A , ,≤)
sentences L = {a,b,a,b,x1,¬x1,x2,¬x2,x3,¬x3,

x1,¬x1,x2,¬x2,x3,¬x3,d1,d2,d3}
assumptions A = {a,b,x1,x2,x3,¬x1,¬x2,¬x3}

rules R = {(d1← x1), (d1←¬x1), (d2← x2),
(d2←¬x2), (d3← x3), (d3←¬x3),
(a← d1,d2,d3), (x1← x1), (¬x1←¬x1),
(x2← x2), (¬x2←¬x2), (x3← x3),

(¬x3←¬x3), (b← x1,¬x1,a),
(b← x2,¬x2,a), (b← x3,¬x3,a),
(b←¬x1,¬x2,x3,a), (b← x1,¬x2,¬x3,a)}

preferences b > x1,b > x2,b > x3,
b > ¬x1,b > ¬x2,b > ¬x3

<-attacking {a,b} <-attacked by {a,b}
{x1,¬x1, . . .} yes
{x2,¬x2, . . .} yes
{x3,¬x3, . . .} yes
{x1,x2,x3} no
{x1,x2,¬x3} no
{x1,¬x2,x3} no
{x1,¬x2,¬x3} yes
{¬x1,x2,x3} no
{¬x1,x2,¬x3} no
{¬x1,¬x2,x3} yes
{¬x1,¬x2,¬x3} no

Figure 2: Example of Reduction 1 for formula φ = (x1∨ x2∨¬x3)∧ (¬x1∨ x2∨ x3)

of {a,b}. Moreover, any proper superset of {a,b} is conflicting, since from any xi or ¬xi one can
derive the corresponding contrary xi or ¬xi. In conclusion, if {a,b} is <-admissible, {a,b} is the
unique <-complete assumption set, implying that {a,b} is <-grounded.

3⇒ 4: Assume that statement 3 holds. Any proper superset of {a,b} is conflicting (and any
set of assumptions incomparable to {a,b} is conflicting, as well), and, since {a,b} is <-grounded,
by definition no proper subset of {a,b} can be <-complete. This implies that {a,b} is <-complete,
and thus <-admissible. For contradiction, suppose that φ is satisfiable. We show that then {a,b}
is not <-admissible. Let τ be a truth assignment that satisfies φ . Construct B = {xi | τ(xi) =
1}∪{¬xi | τ(xi) = 0}. Since τ assigns each variable in X to either true or false, by construction of
the reduction, it holds that B `R a. Since τ satisfies φ , τ satisfies each clause c j. Then B does not
contain all sentences of any neg(c j). Thus, B 6`R b and so {b} does not reversely <-attack B. Recall
also that {a,b} does not normally <-attack anything. This implies that {a,b} is not <-admissible:
B <-attacks {a,b} by normally <-attacking a, but B is not <-attacked by {a,b}. Thus φ can not be
satisfiable and instead statement 4 holds.
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4⇒ 2: Assume that statement 4 holds. We show that this implies statement 2, completing the
proof. For contradiction, assume that {a,b} is not <-admissible. As {a,b} is conflict-free, there
is a B ⊆ A such that B <-attacks {a,b} and {a,b} does not <-attack B. Since {a,b} can not be
reversely <-attacked, B normally <-attacks {a,b}. If B `R b, then {a,b} reversely <-attacks B
(since b is preferred to any assumption required to derive either a or b). Thus by assumption B 6`R b
and B `R a. It follows that B contains exactly one of xi or ¬xi for each 1 ≤ i ≤ n (one of each is
required to derive a, but if both are present, b is derived). This defines a truth assignment on X : true
if xi is present in B, false otherwise. Since B does not derive b, all bodies of rules b← neg(c j),a
for 1 ≤ j ≤ m are unsatisfied. Thus B satisfies each clause: B does not contain all elements from
neg(c j) iff B satisfies at least one literal in clause c j iff B satisfies c j. Since this holds for all clauses,
B satisfies φ . This implies that statement 2 holds.

Lemma 13 allows for establishing the complexity deciding whether a set of assumptions <-
defends itself against attacks.

Proposition 14. Deciding whether a given set of assumptions A in an ABA+ framework reversely
counterattacks all assumption sets that <-attack A is coNP-complete.

Proof. For membership, consider the complementary problem, i.e., given an ABA+ framework and
a set of assumptions A, check whether there is a set B of assumptions that <-attacks A and A does
not reversely <-attack B. This problem is in NP, since one can non-deterministically guess B and
check in polynomial time whether B <-attacks A and whether A does not reversely <-attack B (by
Proposition 11). Hardness follows from Lemma 13 via Reduction 1.

Proposition 14 suggests that in order to verify that A reversely <-counterattacks all <-attacks
from B, one needs to check for each subset B′ of B whether B′ is <-attacking and, furthermore,
whether A <-attacks B′; i.e., knowledge of <-attacks on B or any {b} ⊆ B is not sufficient. In
particular, this differentiates the complexity of verifying <-admissibility from <-stability (recall
verification under <-stable is in P by Proposition 12).

Theorem 15. Verifying that a set of assumptions is <-admissible in ABA+ is coNP-complete.

Proof. Hardness follows directly from Lemma 13 and Reduction 1. For membership in coNP,
consider an arbitrary ABA+ framework and a set of assumptions A. Conflict-freeness of A is
decidable in polynomial time. By Proposition 11 one can determine in polynomial time all as-
sumptions a ∈ A such that A normally <-attacks {a}. Denote this set of assumptions by X =
{a ∈ A | A normally <-attacks {a}}. Any <-attack from an assumption set intersecting with X
is <-defended against by A. Only reverse <-attacks from A can <-defend against <-attacks from
A \X , since there is no normal attack from A against A \X . Thus it suffices to check whether all
B ⊆ (A \X) that <-attack A are counterattacked by a reverse <-attack from A. This check is in
coNP by Proposition 14.

The coNP-hardness of verifying that a set is <-grounded or <-complete is coNP-hard from
Lemma 13 by observing that in the proof of Lemma 13, if φ is unsatisfiable, there is a unique
<-complete assumption set.

Corollary 16. Verifying that a set of assumptions is <-complete or <-grounded in ABA+ is coNP-
hard.
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In non-preferential ABA frameworks F one can determine the unique grounded assumption set
in polynomial time via iteratively applying the function def F( /0) that collects singleton assumptions
defended from the empty set of assumptions until a fixed point is reached (the formal base for this
can be seen in Proposition 2). That is, def i

F( /0) results in the grounded assumption set for some
i≥ 0.

In general preferential ABA+ frameworks F , the same procedure can yield the <-grounded as-
sumption set, in case a natural property is satisfied for F . In the seminal paper by Phan Minh Dung,
the fundamental lemma (Dung, 1995, Lemma 10) states that if a set S of arguments is admissible
and defends an argument a in an AF, then S∪{a} is admissible in the same AF. The analogous
property does not hold in ABA+ in general, but in case an ABA+ framework F does satisfy the
property, then iteratively applying def F starting with the empty set of assumptions results in the
<-grounded assumption set. This result was already stated by Čyras and Toni (2016a, proof of
Theorem 14 (iv)) and Čyras (2017, proof of Theorem 4.7 (iv)). We next formally define (recall) the
property on ABA+ frameworks, and give a direct proof for the sake of clarity (recall that we assume
ABA+ frameworks to be finite, which simplifies the proof).

Property 1. An ABA+ framework F =(L ,R,A , ,≤) satisfies the FL-property if A∪{x} is <-adm
in F for any <-admissible A⊆A in F and x ∈ def F(A).

If an ABA+ framework satisfies the FL-property, def i
F( /0) is the <-grounded assumption for a

sufficiently high i≥ 0, as stated next formally.

Lemma 17. Let F = (L ,R,A , ,≤) be an ABA+ framework satisfying the FL-property. It holds
that def i

F( /0) is the <-grounded assumption set of F, for some integer i≥ 0.

Proof. We first show that def F is ⊆-monotone. Let A ⊆ B ⊆A . If a ∈ def F(A), then A <-attacks
any C which <-attack {a}. Since <-attacks are ⊆-monotone, it holds that B <-attacks C as well,
thereby defending {a}. Thus, def F is ⊆-monotone.

Second, we show that iterating def F( /0) results in a fixed point def i
F( /0) = def i+1

F ( /0), for some
i≥ 0. It straightforwardly holds that /0⊆ def F( /0). By ⊆-monotonicity we have def F( /0)⊆ def 2

F( /0),
and, more generally, def i

F( /0)⊆ def i+1
F ( /0). Since def i+1

F ( /0)⊆A , and A is finite, we conclude that
there is an integer i≥ 0 such that def i

F( /0) = def i+1
F ( /0).

Let G = def i
F( /0) for def i

F( /0) = def i+1
F ( /0). Thirdly, we show that if C is <-complete in F , then

G⊆C. We show this by induction: we show def i
F( /0)⊆C, for any i≥ 0. Base case: /0⊆C. Inductive

step: assume that def i
F( /0)⊆C holds for i. Then since def F is ⊆-monotone, def i+1

F ( /0)⊆ def F(C) =
C.

Finally, if X ⊆A is <-admissible, we show that then def F(X) is <-admissible. If def F(X) = X
then the claim follows immediately. It holds that X ∪{x} is <-admissible for an x ∈ def F(X)\X by
assumption that the FL-property holds. Since def F(X) ⊆ def F(X ∪{x}), it follows that X ∪{x,y}
is <-admissible for an y ∈ def F(X) \ (X ∪ {x}) (i.e., we can add y to X ∪ {x} and preserve <-
admissibility). Since A is finite, we can infer that def F(X) is <-admissible. In turn, G, as defined
above, is <-grounded in F .

One can directly bound the number of applications i by |A | (in each iteration either at least
one assumption is added, or we arrived at a fixed point). In practice the fixed point may be reached
much earlier.
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The preceding formal results yield a complexity-theoretic upper bound for <-grounded seman-
tics: in particular, we show that the <-grounded assumption set can be computed via a deterministic
polynomial-time algorithm with access to an NP-oracle (i.e., the functional problem for <-grounded
semantics is in FPNP) for ABA+ frameworks satisfying the FL-property.

Proposition 18. The <-grounded assumption set can be computed via a deterministic polynomial-
time algorithm that can access an NP-oracle in an ABA+ framework satisfying the FL-property.

Proof. Let F =(L ,R,A , ,≤) be an ABA+ framework satisfying the FL-property. By Lemma 17,
it holds that the least fixpoint of def F is equal to the <-grounded assumption set. Consider the
(sub)problem of checking whether a given set of assumptions X <-defends a singleton assumption
set {a}. We claim that this problem is in coNP. To see this, consider the complementary problem,
i.e., checking whether X does not <-defend {a}. Non-deterministically construct an assumption
set Y ⊆A . Check whether Y <-attacks {a} (decidable in polynomial time due to Proposition 11).
If this is the case, check whether X does not <-attack Y (again decidable in polynomial time). By
definition, it holds that there is a Y that <-attacks {a} and is not <-attacked by X iff X does not
<-defend {a}. The preceding observation implies that def F(X) can be computed with polynomial
many calls to an NP-oracle. It holds that at most |A | iterative applications of def F , starting with /0,
yields the <-grounded assumption set. Overall, the <-grounded assumption set can be computed
via at most |A |2 many calls to an NP-oracle: at most |A | many calls for a single application of
def F and after at most |A | many such applications a fixpoint is reached.

A property of ABA+ that guarantees that the FL-property is satisfied is the Axiom of Weak
Contraposition (WCP) (Čyras, 2017; Čyras & Toni, 2016a, 2016c). However, assuming WCP for an
ABA+ framework does not appear to yield overall milder complexity. In fact the hardness results of
Proposition 14 and Theorem 15 hold when assuming WCP. We formally present the corresponding
results, and definition of WCP, in Appendix A in Definition 9, Proposition 21, and Theorem 22. All
complexity results presented in this section are independent of WCP, except Proposition 18, which
assumes the FL-property. WCP implies the FL-property, but there can be other restrictions that
imply the FL-property.

Finally, we turn to credulous reasoning under <-admissible semantics and establish that this
problem is ΣP

2-complete. In particular, this result shows that reasoning under preferences in ABA+

faces significantly higher complexity in the general case. An intuition for the upper bound can be
seen by a non-deterministic construction of an assumption set, and verifying whether this set is
<-admissible, with the latter problem being coNP-complete (see Theorem 15).

Theorem 19. Checking whether a sentence is credulously accepted w.r.t. <-admissible semantics
in ABA+ is ΣP

2 -complete.

Proof. This more involved proof can be found in Appendix A.

4. An ASP-Based Approach to Reasoning in ABA and ABA+

Complementing our theoretical results, we develop an efficient approach to reasoning in ABA and
ABA+ by harnessing answer set programming (ASP) (Gelfond & Lifschitz, 1988; Niemelä, 1999).
Before detailing the ASP encodings and ASP-based algorithms which allow for deciding skeptical
and credulous acceptance as well as assumption set enumeration using ASP solvers, we shortly
overview answer set programs as applied in this work.
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4.1 Answer Set Programming

We recall preliminaries on answer set programming (ASP); the reader is also referred to overview
articles on ASP for further background (Brewka et al., 2011; Gebser et al., 2012).

We employ the standard NP-complete language of normal answer set programs as the basis of
our ASP-based approach. A (normal) answer set program π consists of rules r of the form

h← b1, . . . , bk, not bk+1, . . . , not bm.

where h (the head of the rule) and each bi (constituting the body of the rule) are atoms. An atom bi

is of the form p(t1, . . . , tn) with p a predicate of arity n, and each t j either a constant or a variable.
An answer set program, a rule, and an atom, respectively, is ground if it is free of variables. We will
use the convention that the first letter of a variable is uppercase and that of constants is lowercase.

A rule is positive if k =m (i.e., the body contains no negated atoms), a fact if m= 0 (i.e., the body
is empty). A fact is shortened to “h.” by omitting←. A constraint← b1, . . . , bk, not bk+1, . . . , not bm

is a shorthand for x← b1, . . . , bk, not bk+1, . . . , not bm, not x, where x is a fresh ground atom not
occurring anywhere else in the program. We do not make use of functions within ASP programs.

For a non-ground program, let GP be the set of rules obtained by applying all possible sub-
stitutions from the variables to the set of constants appearing in the program. An interpretation I,
i.e., a subset of all the ground atoms, satisfies a positive rule r = h← b1, . . . ,bk iff presence of all
positive body elements b1, . . . ,bk in I implies that the head atom is in I, i.e., {b1, . . . ,bk} ⊆ I im-
plies h ∈ I. For a program π consisting only of positive rules, let Cl(π) be the uniquely determined
interpretation I that satisfies all rules in π and no subset of I satisfies all rules in π . Interpreta-
tion I is an answer set of a ground program π if I = Cl(π I) where π I = {(h← b1, . . . ,bk) | (h←
b1, . . . ,bk,not bk+1, . . . ,not bm) ∈ π,{bk+1, . . . ,bm}∩ I = /0} is the reduct. An interpretation I is an
answer set of a non-ground program π if I is an answer set of GP of π . A program is satisfiable if
the program has at least one answer set and unsatisfiable otherwise.

We employ the state-of-the-art ASP system CLINGO (Gebser et al., 2011, 2016). In addition to
determining the existence of answer sets and enumerating all answer sets, CLINGO supports cautious
reasoning via its cautious mode, in which case it computes the intersection of all answer sets (Gebser
et al., 2016). We make use of this feature in our algorithm for computing the ideal assumption set.
We also use the ASP optimization framework ASPRIN (Brewka et al., 2015) extending CLINGO.
In particular, as detailed later on, we will make use of the answer set programs with optimization
statements that enforce that only answer sets that are⊆-maximal w.r.t. a specified predicate p of arity
one are returned (i.e., I is an optimal answer set if there is no answer set J such that {p(t) | p(t) ∈
I} ⊂ {p(t) | p(t) ∈ J}). This extension is in particular useful for computing preferred assumption
sets.

4.2 ASP Encodings for ABA

In this section we present algorithms for reasoning in ABA based on applying ASP solvers on
encodings of ABA and ABA+ semantics and reasoning tasks. In particular, we provide algorithms
for deciding the credulous and skeptical acceptability of sentences as well as for enumerating σ -
assumption sets under admissible, complete, preferred, stable, grounded, and ideal semantics.

Except for the case of ideal semantics in ABA and <-grounded semantics in ABA+, our ap-
proach is based on encoding ABA and ABA+ semantics in ASP in such a way that A is a σ -
assumption set of a given ABA framework F if and only if there is an answer set M of πσ ∪ABA(F)
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where A = {a | in(a) ∈M}, πσ is the ASP encoding for semantics σ and ABA(F) is the ASP encod-
ing for F . For ideal and <-grounded semantics, we present more complex algorithms which use an
ASP solver as a subprocedure.

4.2.1 REPRESENTING FRAMEWORKS AND QUERIES IN ASP

As the basis of the ASP approach, we start with an encoding of a given ABA framework F =
(L ,R,A , ) with R = {r1, . . . ,rn}, in particular the assumptions, rules and contraries of the frame-
work. We represent the framework F in ASP as the facts

ABA(F) ={assumption(a). | a ∈A } ∪
{head(i,b). | ri ∈R,b ∈ head(ri)} ∪
{body(i,b). | ri ∈R,b ∈ body(ri)} ∪
{contrary(a,b). | b = a,a ∈A }.

The predicate assumption(a) indicates that a is an assumption, whereas contrary(a,b) indicates
that b is the contrary of a. The rules are expressed via separate predicates for heads and bodies of
rules, with a unique rule index linking them. The predicate head(i,b) is interpreted as b being the
head of the rule with index i. Similarly, body(i,b) indicates that b is contained in the body of the
rule with index i.

Example 10. Consider the ABA framework F with

sentences L = {a,b,x,y},
assumptions A = {a,b},

contraries a = y, b = x,

rules R = {(x← a,y),(y← b)}.

F is represented in ASP as the set of facts

ABA(F) = { assumption(a). assumption(b).
head(1,x). body(1,a). body(1,y).
head(2,y). body(2,b).
contrary(a,y). contrary(b,x). }

For reasoning about acceptance, we will furthermore us the predicate query to represent the
sentence whose acceptance status is queried, i.e., a queried sentence s ∈L will be specified in ASP
by adding the fact

query(s).

to the ASP encoding of semantics at hand.
For compactness of presentation, in the following we identify the set of constants for which a

predicate holds by the predicate; e.g. we say “in attacks...” to mean that “the set of assumptions for
which the predicate in holds, attack...”.
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Listing 1: Module πcommon

1 in(X)← assumption(X), not out(X).
2 out(X)← assumption(X), not in(X).
3 supported(X)← assumption(X), in(X).
4 supported(X)← head(R,X), triggered by in(R).
5 triggered by in(R)← head(R, ), supported(X) : body(R,X).
6 defeated(X)← supported(Y), contrary(X,Y).
7 ← in(X), defeated(X).

4.2.2 CONFLICT-FREE SETS AND DERIVATIONS

We begin with an ASP module (subprogram) πcommon (see Listing 1); this module encodes conflict-
free assumption sets and will be as such common to the encodings of several semantics. Lines 1–2
encode a non-deterministic guess of a subset of the given assumptions, with in and out denoting
what is inside and outside the set, respectively. Lines 3–5 encode forward-derivations via the ASP
predicate supported (recall that in ABA we can focus on forward-derivations only). Formally, for
an assumption set A represented via in, if A `R x, then supported(x) is included in an answer
set. Line 3 encodes the base case, i.e., assumptions in the set. Line 4 encodes that whenever a
rule is “triggered”, i.e., all its body elements are derivable from A, then the head of that rule shall
be derived. Line 5 encodes the triggering of rules via a conditional construct.9 Thus the rule is
triggered when each sentence in its body is supported. The sixth rule derives attacked (defeated)
assumptions by the guessed assumption set. The last rule is a constraint to enforce conflict-freeness:
an assumption can not be both in and attacked by in.

4.2.3 CONSTRAINTS FOR CREDULOUS AND SKEPTICAL ACCEPTANCE

Before detailing encodings for additional semantics, we describe constraints which, together with
the base module πcommon common to several semantics, capture credulous and skeptical reasoning.
We employ these constraints for capturing reasoning under semantics for which we do not need
optimization via ASPRIN, i.e., all but preferred semantics.

The rule
← not supported(X),query(X).

with predicate supported defined in πcommon and query specifying the sentence queried for credu-
lous acceptance, rules out answers where X is not derived from an assumption set. Thus this con-
straint captures credulous reasoning in terms of the query; the resulting answer set program does
not have any answer sets iff the queried sentence is not credulously accepted. To capture skeptical
reasoning, the rule

← supported(X),query(X).

enforces a counterexample check for skeptical acceptance. In particular, the resulting answer set
program does not have any answer sets iff the queried sentence is skeptically accepted.

9. The conditional supported(X) : body(R,X) holds when the ASP atoms supported(X) are present for each
body(R,X) of the given rule index R. In particular, conditional literals allow for a succinct presentation of a rule
with a variable sized body. Gebser et al. (2015) explain the construct in more detail.
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4.2.4 STABLE, ADMISSIBLE, COMPLETE AND PREFERRED SEMANTICS

We continue by building on πcommon to obtain encodings for stable, admissible, complete and pre-
ferred semantics.

The program for stable semantics πstb is πcommon conjoined with the constraint

← out(X),not defeated(X).

This constraint enforces that all assumptions are either in or attacked by in, corresponding to the
definition of stable semantics.

For admissibility, recall that a conflict-free assumption set A is admissible iff the set of assump-
tions that are not attacked by A does not attack A (Proposition 4). This is implemented as an ASP
program in Listing 2. The idea is to check whether a contrary of an in assumption is derivable from
undefeated assumptions. Checking if the undefeated assumptions attack in assumptions (on Lines
1–4) is done in a similar manner as checking what the in set attacks (on Lines 3–6 of πcommon). The
ASP encoding for admissibility is πadm = πcommon∪∆adm.

The program for complete semantics πcom is given by conjoining πadm with the rule

← out(X),not attacked by undefeated(X).

This constraint enforces that there are no assumptions that are out and defended by in. If an assump-
tion X is out and not attacked by assumptions that are undefeated, then that assumption is defended
but not in the defending assumption set. The constraint rules out this situation.

To compute preferred assumption sets, we use preferential optimization statements supported by
the ASPRIN system (Brewka et al., 2015), which uses CLINGO. Recall that an admissible (or com-
plete) assumption set A is preferred iff there is no superset of A that is also admissible (complete).
This property can be presented as the preferential optimization statements

#preference(p1,superset){in(X) : assumption(X)}.
#optimize(p1).

which enforce that only answer sets are returned that are subset-maximal w.r.t. the in predicate
(mirroring subset maximality).10 In particular, adding this statement to the ASP encoding of admis-
sibility allows for computing preferred assumptions sets using ASPRIN. ASPRIN has built-in support
for querying, which allows for directly capturing credulous and skeptical reasoning under preferred
semantics.

10. Concretely, the first line specifies the optimization (“preference”) of supersets w.r.t. sets represented by in, and the
second line that this optimization shall be applied.

Listing 2: Module ∆adm

1 derived from undefeated(X)← assumption(X), not defeated(X).
2 derived from undefeated(X)← head(R,X), triggered by undefeated(R).
3 triggered by undefeated(R)← head(R, ), derived from undefeated(X) : body(R,X).
4 attacked by undefeated(X)← contrary(X,Y), derived from undefeated(Y).
5 ← in(X), attacked by undefeated(X).
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Listing 3: Module πgrd

1 n assumptions(N)← #count{X : assumption(X)} = N.
2 iteration(0..N−1)← n assumptions(N).
3 in(X,I)← iteration(J), assumption(X), not attacked by undefeated(X,J), J+1=I.
4 supported(X,I)← assumption(X), in(X,I).
5 supported(X,I)← head(R,X), triggered by in(R,I).
6 triggered by in(R,I)← iteration(I), head(R, ), supported(X,I) : body(R,X).
7 defeated(X,I)← supported(Y,I), contrary(X,Y).
8 derived from undefeated(X,I)← iteration(I), assumption(X), not defeated(X,I).
9 derived from undefeated(X,I)← head(R,X), triggered by undefeated(R,I).

10 triggered by undefeated(R,I)← iteration(I), head(R, ), derived from undefeated(X,I) : body(R,X).
11 attacked by undefeated(X,I)← contrary(X,Y), derived from undefeated(Y,I).

4.2.5 GROUNDED SEMANTICS

Our encoding for grounded semantics is based on Lemma 7, which states that, given an ABA frame-
work F , the least fixpoint of def F and thus the grounded assumption set of F can be computed
via the sequence S(F) = (S0, . . . ,S|A |), where (i) S0 = ( /0,att( /0),A ) and (ii) Si = (Ii,Di,Ui) with
Ii = A \att(Ui−1), Di = att(Ii), and Ui = A \Di. In words, Ii is the set of assumptions defended by
Ii−1, Ui is the set of assumptions not attacked by Ii, and Di is the set of assumptions attacked by Ii.
The grounded assumption set of F equals I|A |.

We implement the computation of this sequence explicitly in ASP in Listing 3. Lines 1–2 set
the number of iterations to equal the number of assumptions in the given framework. In particular,
#count is an ASP construct that gives the number of elements in a given set. Here on Line 1 it is
used to assert that the number of assumptions is N and letting n assumptions hold for this N. The
predicate in corresponds to Ii and defeated corresponds to Di. The set Ui is given by not defeated.
On Line 3, in is determined based on the previous iteration: assumptions that are defended by
in of the previous iteration are included. Note that since in is defined for all I such that I−1 is
an iteration, the first I for which in is computed is 1, giving the set of assumptions defended by
/0, and the last such I is |A |. Lines 4–6 determine the sentences derivable from in at the current
iteration and Line 7 defines defeated based on this. Lines 8–10 determine what is derivable from
not defeated. Finally, Line 11 determines the assumptions that are attacked by not defeated, which
is used for determining in at the next iteration. The grounded assumption set is given by in after
the last iteration. In other words, every assumption X for which in(X , |A |) holds is included in the
grounded assumption set.

Remark 1. The encoding for grounded semantics given in the preliminary version of this arti-
cle (Lehtonen et al., 2019) is erroneous; for more details, see Appendix B.

4.3 Ideal Semantics

We adapt the algorithm for computing the ideal assumption set from Dunne (2009) in Algorithm 1.
Recall that the ideal assumption set is the maximal admissible set that is a subset of each preferred
assumption set. This algorithm first computes an overapproximation of the ideal assumption set,
namely all assumptions credulously accepted under admissible semantics (Lines 1–2) apart from
the assumptions attacked by this set, resulting in APSA (Lines 3–4). The algorithm then refines
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Listing 4: Module πprefs

1 preferred(X,Z)← preferred(X,Y), preferred(Y,Z).
2 strictly less preferred(X,Y)← preferred(Y,X), not preferred(X,Y).
3 no less preferred(X,Y)← assumption(X), assumption(Y), not strictly less preferred(X,Y).

the answer towards the ideal assumption set by iteratively removing assumptions not defended by
the set. Concretely in the loop of Lines 6–11, Γ (which equals APSA at first) is refined into the
ideal assumption set by repeatedly identifying (on Line 9) the assumptions in Γ that are attacked
by assumptions not attacked by Γ (computed on Line 8) and removing them from Γ (on Line 10).
This computation yields the ideal assumption set (Dunne, 2009, Theorem 8). Note that all parts of
the algorithm except Line 1 can be computed in polynomial time. In terms of ASP, we obtain the
set of assumptions that are not credulously accepted under admissible semantics using the cautious
reasoning mode of CLINGO on the ASP encoding of admissible semantics. The cautious mode gives
the intersection of all answer sets to the given program, so the assumptions that are out in the cau-
tious solution constitute the set of assumptions that are not credulously accepted under admissible
semantics, i.e., the set Aout .

Remark 2. The algorithm as presented by Dunne (2009, Algorithm 3) differs slightly from Algo-
rithm 1 by corrections to Lines 8–9; Lines 8–9 as originally presented by Dunne (2009) result in
the original algorithm being incorrect. For more details, see Appendix C.

4.4 ASP Encodings for ABA+

We now turn to ABA+, and present an ASP encoding for <-stable semantics and an algorithm for
<-grounded semantics making iterative calls to an ASP solver.

In the following, for a given ABA+ framework F = (L ,R,A , ,≤), let ABA+(F) = ABA(F)∪
{preferred(x,y). | y≤ x} be the facts representing the ABA+ framework. The module πprefs detailed

Algorithm 1 Computing the ideal assumption set (Dunne, 2009, Algorithm 3)

Require: ABA framework F = (L ,R,A , )
Ensure: return the ideal-assumption set of F

1: Aout := {a ∈A | a is not credulously accepted under admissible semantics}
2: Ain := A \Aout
3: ACA := {a ∈A |Ain `R a}
4: APSA := Ain \ACA
5: Γ := APSA
6: repeat
7: Γin := Γ

8: Ξ := {a ∈ A | Γ 6`R a}
9: ∆ := {a ∈ Γin | Ξ `R a}

10: Γ := Γ\∆

11: until Γin = Γ

12: return Γ
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Listing 5: Module ∆stb+

1 preferredly supported(X,Y)← no less preferred(X,Y), assumption(X), in(X).
2 preferredly supported(X,Y)← head(R,X), preferredly triggered by in(R,Y).
3 preferredly triggered by in(R,Y)← head(R, ), assumption(Y),

preferredly supported(X,Y) : body(R,X).
4 normally defeated(Y)← preferredly supported(X,Y), contrary(Y,X).
5 derived from undefeated assumption(Z,Z)← assumption(Z), not normally defeated(Z).
6 derived from undefeated assumption(Y,Z)← head(R,Y), triggered by undefeated assumption(R,Z).
7 triggered by undefeated assumption(R,Z)← head(R, ), assumption(Z),

derived from undefeated assumption(Y,Z) : body(R,Y).
8 in attacked by normally undefeated assumption(X,Z)← in(X), contrary(X,Y),

derived from undefeated assumption(Y,Z).
9 reversely defeated(Z)← strictly less preferred(Z,X),

in attacked by normally undefeated assumption(X,Z).
10 ← out(Y), not normally defeated(Y), not reversely defeated(Y).

in Listing 4 encodes transitivity of the preference relation and introduces the predicates for the strict
counterpart of preferred (strictly less preferred) and its negation (no less preferred).

4.4.1 <-STABLE SEMANTICS

Finding <-stable assumption sets can be encoded in a similar manner as finding stable assumption
sets. Recall the restatement of <-stable semantics from Proposition 9: a conflict-free assumption
set A is <-stable iff each assumption b ∈ A that is not normally <-attacked by A is either in A
or reversely <-attacked by A. Furthermore, by Lemma 8 one can check if a set of assumptions is
<-stable by only using forward-derivability. Thus we can encode <-stable semantics via forward-
derivability: perform an ASP guess of a set and check conflict-freeness with πcommon, compute
each {b} that is normally <-attacked, and from the assumptions not normally <-attacked check
whether they are reversely <-attacked. Crucially, these checks can be done in polynomial time
(Proposition 11). Similarly to the ABA encodings, the <-stable assumption set is represented by
the in predicate.

In more detail, our ASP encoding for <-stable semantics is πstb+ = ∆stb+ (Listing 5) ∪πcommon∪
πprefs. In ∆stb+, the first four lines derive the assumptions that are normally <-attacked by in. This
is achieved by modifying the supported predicate to take preferences into account. Concretely, the
preferredly supported predicate has a parameter, Y , for the assumptions which in might attack.
For each Y , only the assumptions of in that are not less preferred than Y are taken into account
when considering whether in derives the contrary of Y . Thus this predicate derives the normal <-
attacks from in on Line 4. Lines 5–9 check whether in reversely <-attacks the assumptions that in
does not normally <-attack. This is done by checking if the not normally <-attacked assumptions
by themselves attack some assumption in in that is more preferred than the attacking assumption.
Concretely, Lines 5–7 compute what the normally <-undefeated assumptions derive by themselves.
Line 8 computes which assumptions of in each of these assumptions attack (when not taking pref-
erences into account). Based on this and the preference relation, Line 9 computes which of these
assumptions in reversely <-attacks. Finally, Line 10 enforces the condition of <-stable semantics:
an assumption can not be out and neither normally nor reversely <-attacked by in.
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Listing 6: Module πgrd+ subroutine

1 suspect(X)← assumption(X), not other(X).
2 other(X)← assumption(X), not suspect(X).
3 preferredly supported by suspects(X)← target(Y), no less preferred(X,Y),assumption(X),

suspect(X).
4 preferredly supported by suspects(X)← head(R,X),preferredly triggered by suspects(R).
5 preferredly triggered by suspects(R)← head(R, ),

preferredly supported by suspects(X) : body(R,X).
6 target normally attacked← target(Y), preferredly supported by suspects(X), contrary(Y,X).
7 derived from target(X)← target(X).
8 derived from target(X)← head(R,X), triggered by target(R).
9 triggered by target(R)← head(R, ), derived from target(X) : body(R,X).

10 suspect attacked by target(X)← suspect(X), contrary(X,Y), derived from target(Y).
11 target reversely attacked← target(Y), strictly less preferred(Y,X), suspect attacked by target(X).
12 supported by def(X,Y)← suspect(Y), no less preferred(X,Y), assumption(X), def(X).
13 supported by def(X,Y)← suspect(Y), head(R,X), triggered by def(R,Y).
14 triggered by def(R,Y)← head(R, ), assumption(Y), supported by def(X,Y) : body(R,X).
15 suspect normally defeated by def← supported by def(X,Y), contrary(Y,X).
16 supported by suspects(X)← assumption(X), suspect(X).
17 supported by suspects(X)← head(R,X), triggered by suspects(R).
18 triggered by suspects(R)← head(R, ), supported by suspects(X) : body(R,X).
19 reaches via suspect(X,Y)← triggered by suspects(R), head(R,Y), body(R,X).
20 reaches via suspect(X,Y)← reaches via suspect(X,Z), reaches via suspect(Z,Y).
21 reaches via suspect(X,X)← suspect(X).
22 suspect reversely defeated by def← def(Y), contrary(Y,X), suspect(Z), reaches via suspect(Z,X),

strictly less preferred(Z,Y).
23 ← suspect normally defeated by def.
24 ← suspect reversely defeated by def.
25 ← not target normally attacked, not target reversely attacked.
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Algorithm 2 Computing the <-grounded assumption set

Require: ABA framework F = (L ,R,A , ) satisfying the FL-property
Ensure: return the <-grd-assumption set of F

1: grounded := /0
2: π := ABA+(F)∪πprefs∪πgrd+ subroutine
3: while change = true do
4: change := false
5: S := A \grounded
6: while S 6= /0 do
7: pick any a ∈ S
8: if π ∪{def(x) | x ∈ grounded}∪{target(a)} is unsatisfiable then
9: grounded := grounded∪{a}

10: change := true
11: S := S\{a}
12: end while
13: end while
14: return grounded

4.4.2 <-GROUNDED SEMANTICS

We present a more complex ASP-based algorithm for finding the <-grounded assumption set in an
ABA+ framework that satisfies the FL-property. Recall that in an ABA+ framework F that satisfies
the FL-property, the <-grounded assumption set is the least fixpoint of the function def F(A)

11, see
Lemma 17. We implement the algorithm detailed in the proof of Proposition 18 that makes use
of iterative computations of <-defense of singleton assumption sets. Our implementation uses an
ASP encoding as a subroutine to determine whether a target assumption is <-defended by a given
set of assumptions. To compute def F(A), one can use this encoding to check for each a ∈ A if
A defends it. The encoding for the subroutine is πprefs conjoined with πgrd+ subroutine (Listing 6).
We present the procedure for computing the <-grounded assumption set as Algorithm 2. The outer
loop starting on Line 3 computes the fixpoint of def F( /0) by repeating the loop of Lines 6 to 12,
which computes def F(grounded), where grounded is the thus far <-defended set. On Line 8 is the
ASP subroutine determining whether a single assumption is <-defended by grounded (note that the
single assumption is <-defended if the program is unsatisfiable).

Let us examine πgrd+ subroutine more closely. The currently <-defended assumptions are pre-
sented by the predicate def and the assumption whose status of being <-defended is being deter-
mined is presented by the predicate target. The encoding first non-deterministically guesses a set of
assumptions (called suspects). The idea is to determine if the suspects attack the target without def
attacking the suspects. On Lines 3-6 the set of assumptions normally <-attacked by the suspects is
determined. Lines 7-11 compute the set of assumptions reversely <-attacked by the suspects. For
this it suffices to check whether any suspect that the target attacks by itself is more preferred than the
target. Lines 12–15 determine the suspects that def <-attacks normally. To compute the suspects
that def reversely <-attacks, the reachability procedure of Proposition 11 (proven via Lemma 20)
is implemented on Lines 16–22. Namely the predicate reaches via suspect(X,Y) holds when the

11. def F (A) gives the assumptions that the assumption set A <-defends.
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suspects derive Y and there is a path from X to Y in a directed graph constructed by having an edge
from all bodies of a rule to the head of the rule. Thus according to Proposition 11, Line 22 deter-
mines if a suspect is reversely defeated by a member of def by checking if a contrary of a member
of def is reachable from a suspect that is less preferred than the member of def. Finally Lines 23–24
enforce that the suspects must not be <-attacked either normally or reversely by the <-defended
set, and Line 25 enforces that the suspect set must <-attack the target either normally or reversely.
Thus the program is satisfiable if and only if there is either a normal or reverse <-attack from any
potential subset of the assumptions (the suspects) to the target assumption so that the currently <-
defended set does not <-attack the suspects either normally or reversely. In other words, the target
is <-defended by the currently <-defended set if and only if the program is unsatisfiable.

5. Empirical Evaluation

We present an overview of results from an empirical evaluation on the efficiency of reasoning in
ABA and ABA+ via the ASP-based approach presented in Section 4. In particular, we compare
the performance of the ASP-based approach to that of state-of-the-art ABA and ABA+ reasoning
system implementations, and also present a further scalability study of the ASP-based approach.
Before details on the empirical setup and results of the evaluation, we briefly overview earlier pro-
posed algorithms and implemented systems for reasoning in ABA and ABA+.

5.1 Systems for Reasoning in ABA and ABA+

We briefly overview earlier proposed approaches to reasoning in ABA and ABA+. Supported rea-
soning problems for each of the approaches are summarized in Table 4 for ABA and in Table 5 for
ABA+. Cerutti et al. (2018) provide a more thorough survey of argumentation systems.

Approaches to reasoning in ABA and ABA+ can be categorized as one of three types of ap-
proaches: translation-based, specialized and direct declarative approaches.

The most notable specialized systems implement algorithms for so-called dispute derivations,
which are procedures for determining the credulous acceptability of a given sentence under cer-
tain semantics (Toni, 2013; Craven et al., 2013; Craven & Toni, 2016). The most recent dis-
pute derivation system is ABAGRAPH (Craven & Toni, 2016), improving on the earlier systems
GRAPHARG (Craven et al., 2013), PROXDD (Toni, 2013) and CASAPI (Gaertner & Toni, 2007a),
all implemented in Prolog. ABAGRAPH can reason credulously under admissible and grounded se-
mantics, and also enumerate solutions, and further supports credulous reasoning under complete
and preferred semantics via admissible semantics, as well as skeptical reasoning under complete
semantics via grounded semantics.

Another specialized approach is implemented in TweetyProject, a Java library of various ap-
proaches to logical aspects of artificial intelligence and knowledge representation (Thimm, 2014,
2017). Tweety implements σ -assumption set enumeration under admissible, complete, stable, pre-
ferred, ideal and grounded semantics. However, Tweety is not optimized in terms of runtime behav-
ior.

The translation-based approaches translate the input ABA frameworks to abstract argumenta-
tion frameworks and allow for the use of AF reasoning system implementations, such as ones based
on ASP solvers (Egly et al., 2008; Gaggl et al., 2015). A problem of translation-based systems
is that the translation between ABA and AF is itself not trivial in terms of runtime. In fact, there
is evidence that the total runtimes of translation-based approaches such as ABA2AF is dominated
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Table 4: ABA reasoning problem variants supported by different reasoning system implementations.
X: the system natively supports the problem variant. *: the system supports the problem variant via
another semantics. **: the system supports the problem variant via σ -assumption set enumeration.

system task adm com stb prf grd ideal
ABAGRAPH credulous X * - * X -

skeptical - * - - X -
σ -assumption set enumeration - - - - - -

ABA2AF credulous X * X X - -
skeptical X - X X - -
σ -assumption set enumeration - - - - - -

ASP credulous X X X X X X
skeptical X X X X X X
σ -assumption set enumeration X X X X X X

translation of credulous - - X - - -
Caminada and Schulz (2017) skeptical - - X - - -

σ -assumption set enumeration - - X - - -
ABAPLUS credulous ** ** ** ** ** **

skeptical ** ** ** ** ** **
σ -assumption set enumeration X X X X X X

by the translation phase (Lehtonen et al., 2017). The resulting AF instance may also be much
larger than the input ABA framework; even though the complexity of deciding acceptance in AFs
and ABA under the logic programming fragment considered in this work coincides for several rea-
soning tasks—suggesting that there should be efficient (polynomial-time) mappings for translating
reasoning tasks in the ABA fragment into AF reasoning tasks—the currently known translations
may produce exponentially larger AFs. The system ABA2AF translates ABA frameworks to AFs
and uses ASP encodings on the AF-level (Lehtonen et al., 2017), supporting credulous and skep-
tical reasoning under admissible, stable and preferred semantics, and also provides an approach to
credulous reasoning under complete semantics via admissible semantics.

A direct declarative approach encodes an ABA reasoning problem directly in a declarative lan-
guage (such as ASP) and uses a solver for that language to solve the reasoning problem. This article
provides such an approach, covering admissible, complete, stable, preferred, grounded and ideal
semantics, allowing for credulous and skeptical reasoning as well as σ -assumption set enumeration.
Recently a different approach, mapping ABA reasoning under different semantics via a single logic
programming translation to different logic programming semantics has been presented by Cami-
nada and Schulz (2017). While there is a lack of efficient implementations of declarative solvers
for the other logic programming semantics, the answer set semantics (referred to as 2-valued stable
semantics by Caminada and Schulz) corresponds to ABA stable semantics under their translation.
In other words, one obtains the stable assumption sets of a given ABA framework by represent-
ing the framework in the specified way and solving the answer sets of this representation with an
ASP solver. Thus restricting to stable semantics of ABA, the encoding presented by Caminada
and Schulz (2017) can be compared to the one introduced in this work using an ASP solver for
both. Their encoding has not been implemented before to the best of our knowledge; we provide
in the following an empirical comparison showing that the two encodings result in similar runtime
performance.
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Table 5: ABA+ reasoning problem variants supported by different reasoning system implementa-
tions. X: the system natively supports the problem variant. **: the system supports the problem
variant via σ -assumption set enumeration.

System Task <-com <-stb <-prf <-grd under FL-property <-ideal
ASP credulous - X - X -

skeptical - X - X -
σ -assumption set enum. - X - X -

ABAPLUS credulous ** ** ** ** (under WCP) **
skeptical ** ** ** ** (under WCP) **
σ -assumption set enum. X X X X(under WCP) X

To the best of our knowledge, the only system currently supporting reasoning in ABA+ is
ABAPLUS (Bao et al., 2017). ABAPLUS is a translation-based system, translating from ABA+

to AFs and using Aspartix ASP encodings (Egly et al., 2010) on the AFs. The system supports
σ -assumption set enumeration under <-stable, <-grounded, <-complete, <-preferred and <-ideal
semantics; credulous and skeptical queries can be answered by enumerating all σ -assumption sets.
Given an empty preference relation, ABAPLUS can also be applied on ABA. However, ABAPLUS

insists that the input framework satisfies the Axiom of Weak Contraposition (WCP). We give the
formal definition of WCP in the Appendix A in Definition 9. If an input framework does not sat-
isfy WCP, ABAPLUS will modify the framework to one that satisfies WCP and reasons over the
modified framework instead of the original input instance. Furthermore, the system places addi-
tional restrictions on the input framework: assumptions cannot be contraries and the same sentence
cannot be the contrary of more than one assumption.

As representatives of state of the art, in the following we will focus on comparing the efficiency
of our ASP-based approach to those of ABA2AF, ABAGRAPH and ABAPLUS.

5.2 Empirical Setup

Before presenting results from the evaluation, we describe the empirical setup.

5.2.1 BENCHMARKS

For comparing the direct ASP-based approach to ABAGRAPH and ABA2AF, we employed the 680
ABA frameworks, containing up to 90 sentences, and the associated queries used earlier by Craven
and Toni (2016) and Lehtonen et al. (2017) in experiments on ABAGRAPH and ABA2AF (http:
//robertcraven.org/proarg/experiments.html). For acceptance problems, ten sentences from
each framework were chosen as queries, following Craven and Toni (2016) and Lehtonen et al.
(2017). Lehtonen et al. (2017) pointed out that many of the instances in the benchmark set are
trivial.12 We filtered the trivial instances out for the acceptance problems, leaving 1728 instances
for credulous reasoning under admissible and grounded and 4613 for skeptical reasoning under

12. Instances in which the queried sentence is derivable from the empty set or not derivable at all in the given framework
are trivial for some problems. In particular, sentences derivable from the empty set are always credulously accepted
under admissible and grounded and skeptically accepted under stable semantics. Moreover, sentences which are not
derivable at all in the framework are not credulously accepted under admissible nor grounded semantics. Since both
of these cases can be detected by a polynomial time scan of the rules, these instances are not interesting in terms of
computational performance.
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stable semantics. For enumeration under preferred semantics, all of the 680 base frameworks were
used.

The 680 ABA frameworks do not generally conform to the additional restrictions ABAPLUS

places on frameworks (e.g., an assumption can not be a contrary of another assumption). To enable
a comparison between the ASP-based approach and ABAPLUS on problems variants not supported
by ABAGRAPH and ABA2AF, we generated further frameworks using a slightly modified version of
the parameter family 4 introduced by Craven and Toni (2016), where each parameter is dependent
on the number of sentences.13 In each of the frameworks, 37% of the sentences are assumptions,
again following Craven and Toni (2016). The number of rules deriving each sentence and the
size of the rule bodies, respectively, are randomly chosen from the intervals [1,min(ns/7,20)] and
[1,min(ns/8,20)], where ns is the number of sentences. To avoid trivial instances, we let the size
of the bodies start from one, so that no sentences are trivially derivable, and let all sentences be
derivable by at least some rule. We further bound the number of rules deriving each sentence and the
size of the rule bodies by 20 to avoid unnaturally complicated rules w.r.t. the number of sentences.
For ABA complete and ideal semantics, we generated 20 frameworks for each number of sentences
10, 14, 18, 22, 26, 30, for a total of 120 frameworks. Furthermore, we extended these frameworks
to ABA+ by generating for each framework a preference relation. In particular, the preference
relations were generated by choosing a random permutation (ai)0<i≤n of the assumptions, and for
each j < i, set ai to be preferred to a j with a probability of 15% or 40% (half of the instances having
each density). Finally, recall that ABAPLUS enforces WCP (cf. Def. 9) if it is not satisfied by
changing the input framework. Hence for a fair performance comparison between the ASP-based
approaches and ABAPLUS, we used ABAPLUS to modify the ABA+ frameworks so that each of
them satisfies WCP, and used the resulting frameworks as benchmarks for this comparison.

5.2.2 SYSTEMS AND COMPUTING SETUP

We compare our ASP-based approach to ABA2AF, ABAGRAPH and ABAPLUS to the extent the
systems support the difference problem variants under all the problems variants covered by our
ASP-based approach: ABA admissible, stable, grounded, preferred, complete, ideal, and ABA+

<-grounded and <-stable. The tasks used for each of these semantics is restricted by the tasks
supported by the systems.

For our ASP-based approach as well as ABA2AF, we used CLINGO version 5.2.2 (Gebser et al.,
2016) as the ASP solver. We used version 3 of ASPRIN for the ASP approach for preferred seman-
tics. For ABAGRAPH, we used SICStus Prolog version 4.5. All experiments were run on 2.83-GHz
Intel Xeon E5440 quad-core machines with 32-GB RAM using a 600-second time limit per instance.

The implementation of our ASP-based approach is available at https://bitbucket.org/
coreo-group/aspforaba.

5.3 Comparison against State of the Art

An overview of the results, comparing the ASP-based approach to the state-of-the-art systems as
applicable, is shown in Table 6. In terms of the problem variants considered, we replicated the
comparison between ABA2AF and ABAGRAPH on the enumeration of all solutions with respect to a

13. Unlike for the other parameter families considered by Craven and Toni (2016), the dependence between parame-
ters and the number of sentences allows the frameworks to scale reasonably instead of e.g. the absolute number of
assumptions being fixed while the number of sentences is increased.
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Table 6: Runtime comparison. Mean (mean), median (med.) and cumulative running times (cum.)
over solved instances, #timeouts is the number of timeouts. Number of instances: 1728 (adm, grd),
4613 (stb), 680 (prf ), 120 (com, ideal, and ABA+ <-stb and <-grd).

Problem Approach #timeouts Running times (s)
mean med. cum.

ABA adm, ASP 0 0.030 0.012 53
enum. w/query ABAGRAPH 401 15.170 1.064 20131

ABA2AF 393 18.650 0.588 24897
ABA adm, ASP 0 0.018 0.012 31
cred. accep. ABAGRAPH 200 8.464 1.056 12932

ABA2AF 364 13.990 0.572 19078
ABA stb, ASP 0 0.008 0.004 38
skept. accep. ABA2AF 648 10.942 1.040 43386
ABA grd ASP 0 0.127 0.056 220
accep. ABAGRAPH 210 9.979 0.984 15148
ABA prf ASP 0 0.333 0.328 226
enum. wo/query ABA2AF 255 6.082 0.464 2585
ABA com ASP 0 0.005 0.004 1
enum wo/query ABAPLUS 9 15.287 0.268 1697
ABA ideal ASP 0 0.025 0.024 3

ABAPLUS 18 22.490 0.322 2293
ABA+ <-stb ASP 0 0.018 0.008 2
enum. wo/query ABAPLUS 9 15.583 0.268 1729
ABA+ <-grd ASP 0 0.380 0.168 46

ABAPLUS 9 15.611 0.268 1732
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query sentence for ABA under admissible semantics from Lehtonen et al. (2017), and additionally
considered skeptical reasoning under stable semantics, acceptance under grounded semantics, and
enumeration of all σ -assumption sets (without a query) under preferred, complete and ideal seman-
tics.14 The choice of these tasks is largely forced by restrictions of the systems (recall Section 5.1):
for grounded, ABAGRAPH only supports acceptance, and for ideal and complete, ABAPLUS only
supports σ -assumption set enumeration without a query. For ABA+, we compare the direct ASP-
based approach to ABAPLUS under <-grounded and <-stable semantics.

The ASP-based approach, without any timeouts and very small cumulative running times, clearly
outperforms the other systems on each problem, including both the ABA and ABA+ problems, all
of the available semantics and the different reasoning tasks. In contrast, the other systems exhibit
high numbers of timeouts and large running times overall. The smallest average performance gap
between ASP and one of the other tested systems is in ABA preferred, where the median runtime of
ASP is ≈ 3/4 of that of ABA2AF on instances that both systems could solve. Even for this problem
variant, the cumulative runtime of the ASP-based approach is less than 1/10 of that of ABA2AF. In
addition, ABA2AF timed out on more than a third of the instances, while the ASP-based approach
could solve all.

Based on the number of timeouts, ABAPLUS seems to do reasonably well in the comparisons
under complete and ideal as well as <-stable and <-grounded semantics. However, one should
keep in mind that there are less of these instances (120 vs at least 680) and the instances are smaller
(up to 30 sentences in a framework vs up to 90 sentences) than for the other tasks. The mean and
cumulative runtimes show that ABAPLUS has problems solving these smaller instances as well, in
contrast to the ASP approach.

5.4 Scalability of the ASP Approach

Due to the very good empirical performance of the ASP-based approach, we studied the scalability
of the approach further with larger benchmarks. For this, we generated larger frameworks similarly
as described in Section 5.2.1. In particular, we generated 10 frameworks for each number of sen-
tences in {50,250,500,1000,1500,2000,2500,3000,3500,4000}. We tested credulous acceptance
of 10 arbitrary query sentences per ABA framework under admissible, complete and stable seman-
tics, giving a total of 100 instances per number of sentences. For stable semantics, we additionally
compared the encoding introduced in this work, denoted by stb in the table, and the one introduced
by Caminada and Schulz (2017) (recall Section 5.1), denoted by stb-alt. As the ideal assumption
set is unique, we did not use queries in the experiments for ideal semantics. For preferred we tested
extension enumeration. For ABA+, we generated six frameworks per each number of sentences,
three with a preference ordering of density 15% and three of density 40%, for a total of 60 ABA+

frameworks per number of sentences.15 We then credulously queried ten arbitrary sentences per
framework.

The results are shown in Table 7 and Figure 3. Depending on the semantics and reasoning task,
the ASP approach can routinely solve instances with up to 3000 sentences for ABA and up to 1000
for ABA+. This shows that the ASP approach scales significantly better than the previous state-of-
the-art systems, as the benchmarks used in the comparisons earlier have only up to 90 sentences per

14. As there is always a unique grounded assumption set, credulous and skeptical acceptance coincide for grounded
semantics. Enumerating ideal assumption sets amounts to finding the unique ideal assumption set.

15. These frameworks do not necessarily satisfy WCP.
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Figure 3: Median running times per number of sentences in the scalability experiments for each
semantics. Timeouts are included as a running time of 600 seconds.

Table 7: Scalability of ASP on larger frameworks. Number of instances per |L |: 100
(adm,com,stb), 10 (prf , ideal), 60 (<-stb).

#timeouts (mean running time over solved instances (s))
|L | ABA adm ABA com ABA stb ABA stb-alt ABA prf ABA ideal ABA+ <-stb

50 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.3) 0 (0.03) 0 (0.1)
250 0 (0.4) 0 (0.4) 0 (0.3) 0 (0.3) 0 (1.3) 0 (0.5) 0 (12.6)
500 0 (0.8) 0 (0.9) 0 (0.6) 0 (0.6) 0 (2.8) 0 (1.2) 0 (53.1)

1000 0 (2.9) 0 (2.9) 0 (1.4) 0 (1.4) 0 (8.7) 0 (4.1) 0 (241.0)
1500 0 (13.8) 0 (12.3) 0 (4.3) 0 (4.1) 0 (32.4) 0 (18.2) 60 (0.0)
2000 0 (99.2) 0 (75.3) 0 (19.1) 0 (18.3) 5 (144.5) 0 (155.8) 60 (0.0)
2500 22 (126.1) 10 (201.1) 0 (74.2) 0 (72.7) 7 (268.8) 4 (292.5) 60 (0.0)
3000 70 (173.6) 58 (222.9) 18 (173.6) 18 (163.8) 10 (0.0) 9 (463.6) 60 (0.0)
3500 85 (211.3) 79 (253.6) 48 (231.8) 47 (228.1) 10 (0.0) 10 (0.0) 60 (0.0)
4000 89 (108.1) 87 (135.2) 81 (158.1) 81 (154.4) 10 (0.0) 10 (0.0) 60 (0.0)

framework. To further validate the performance gap between the ASP approach and the previous
state-of-the-art, we ran ABAGRAPH under admissible semantics for these larger instances. It could
only solve the 50-sentence instances and none of the larger ones within the time limit. We also
observe that the two alternative encodings of stable semantics in ABA have very similar perfor-
mance, with the average running times being within ten seconds of each others for each number of
sentences. Interestingly, for ABA+ <-stable, the density of the preference relation had little effect
on the performance: both densities (15% and 40%) had the same behaviour in terms of timeouts,
and their mean running time was within five seconds of each other’s for each number of sentences.
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6. Related Work

We give an overview on earlier work related to different aspects of this article.

6.1 Assumption-based Argumentation and other Structured Formalisms

Besnard et al. (2014) give an overview for structured argumentation formalisms. ABA, originally
introduced by Bondarenko et al. (1997), has been extensively studied; see e.g. the survey articles
by Dung et al. (2009), Čyras et al. (2018), Toni (2014). The complexity of reasoning in various
forms of ABA has been studied by Dimopoulos et al. (2002), Dunne (2009), Karamlou et al. (2019),
Čyras et al. (2021) and summarized by Dvořák and Dunne (2018). Results of Corollary 5 and
Corollary 6 were independently shown by Čyras et al. (2021). Various application scenarios of
ABA have been identified, including medical decision making (Craven et al., 2012; Čyras et al.,
2020), decision making in a multi-agent context (Fan et al., 2014), and modelling game theoretical
problems (Fan & Toni, 2016).

Beyond various forms of ABA, prominent structured formalisms include ASPIC+ (Modgil &
Prakken, 2013, 2018; Prakken, 2010), DeLP (Garcı́a & Simari, 2004, 2014, 2018) and deductive ar-
gumentation (Besnard & Hunter, 2008). ASPIC+ is a general formalism that supports both strict and
defeasible rules and premises, and three kind of attacks (undercut, rebut and undermine), whereas
attacks in ABA are in the form of undermining. In fact, ASPIC+ captures the commonly-studied
ABA fragment (without preferences) (Prakken, 2010; Modgil & Prakken, 2018) considered in this
article. Indeed, extending the answer set programming approach to ABA developed in this article
to different variants of ASPIC+ is a promising avenue for further work; in fact, after the writing of
this article, first steps to this direction have already been made (Lehtonen et al., 2020).

6.2 Integration of Preferences into Structured Formalisms

Beirlaen et al. (2018) give a recent survey of formal approaches to notions of strength of arguments,
including approaches to preferences in structured argumentation formalisms. Structured argumen-
tation formalisms generally incorporate preferences over some defeasible elements, but the way
preferences are used varies between formalisms; in many cases, preferences can be handled in mul-
tiple ways within single formalisms as well. We will discuss here the differences and applicability
of argumentation formalisms incorporating preferences.

Extending ABA with preferences, ABA+ was introduced by Čyras and Toni (2016a, 2016c),
Čyras (2017). The complexity of reasoning in ABA+ was not investigated prior to our work. An
application of ABA+ in medical decision-making was proposed by Čyras et al. (2020), where a
variant of ABA+ was used to aid in selecting the proper clinical guideline recommendations to
follow in a particular patient case. Preferences were used to factor the wishes of patients into the
treatment plan: if a patient wishes, for example, to avoid intense exercise, a treatment involving it
is avoided if possible.

ABA+ has been shown to satisfy several rationality postulates for rule-based argumentation
formalisms (Čyras, 2017; Čyras & Toni, 2016a). In addition, further desirable properties hold
in a subset of ABA+ frameworks, namely ones that satisfy the FL-property (see Property 1). This
guarantees further properties, such as the existence of complete assumption sets and the existence of
a unique grounded assumption set. The complexity results and ASP encoding for ABA+ grounded
semantics we introduce apply to frameworks having the FL-property. In particular, frameworks

304



DECLARATIVE ALGORITHMS AND COMPLEXITY RESULTS FOR ABA

that satisfy the Axiom of Weak Contraposition (WCP) also have the FL-property. In ASPIC+, an
analogous property to WCP also guarantees the satisfaction of the fundamental lemma (Modgil &
Prakken, 2013). Our other results are independent of the FL-property, including, e.g., our approach
to stable semantics in ABA+.

In many argumentation formalisms, including ABA+, preferences are used to modify the given
framework (usually through the attack relation) so that it may be the case that in a framework with
preferences, different sets of arguments are extensions than in the same framework without prefer-
ences (Čyras & Toni, 2016b; Modgil & Prakken, 2013; Besnard & Hunter, 2014; Garcı́a & Simari,
2004). A contrasting approach is to use preferences to select among the extensions that the given
framework has, which is a common approach in non-monotonic reasoning formalisms (Delgrande
et al., 2004); in the realm of argumentation this approach was proposed in (Amgoud & Vesic, 2011).
The intuition for modifying the framework instead of simply selecting among extensions is that pref-
erences should play a role in information exchange in a dialectical setting instead of merely acting
as constraints (Čyras, 2017). One approach to extending abstract argumentation with preferences,
Preference-based Argumentation Frameworks (PAFs) (Amgoud & Vesic, 2014), incorporates attack
reversals. There is a simple translation from PAFs to ABA+ frameworks, while the reverse is not
necessarily true (Čyras, 2017).

Care must be taken when applying argumentation formalisms to real world applications, includ-
ing the interpretation of preferences. Wakaki (2017a) gives a simple example in legal reasoning
when carelessly applying ABA+ leads to counterintuitive results. Specifically, in the example an
accused being guilty is set to be preferred to them being innocent, and then the reasoning out-
come of ABA+ violates the legal principle of “innocent until proven guilty”. This illustrates how
ABA+ allows the preferences to result in new extensions compared to the framework without pref-
erences instead of merely selecting among extensions. Different formalisms and different ways of
preference-handling might be better suited to different applications.

Heyninck (2019) explores theoretical properties of two versions of ABA with preferences: one
similar to ABA+ and one without reverse attacks. Another approach to extending ABA with explicit
preferences, p ABA, uses preferences in a different way to ABA+. In p ABA, preferences are
used to select the most preferred extensions (assumption sets) without modifying the attack relation
beforehand. Wakaki (2017a) notes that p ABA gives the intuitive result in the beforementioned
legal reasoning example. Moreover, Wakaki (2017b) lists possible use cases for p ABA via simple
examples, including reasoning in extended decision frameworks and epistemic frameworks, as well
as practical reasoning with competing goals. It is also possible to encode preferences implicitly
using the existing tools in a formalism. For ABA, different approaches include those of Toni (2008),
Fan and Toni (2014), Thang and Luong (2013).

Due to differences in how preferences are handled in ABA+ and ASPIC+ (notably unsuccess-
ful attacks may be discarded in ASPIC+, depending on the semantics, but reversed in ABA+), a
straightforward translation from ABA+ to ASPIC+ does not seem to be available (Čyras, 2017).
ASPIC+ allows for two distinct approaches to preferences: preferences over arguments and prefer-
ences over premises and defeasible rules. Furthermore, there is a variety of ways to lift the prefer-
ences to the argument level.
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6.3 Algorithmic Approaches to Reasoning in Abstract and Structured Formalisms

Various algorithms for reasoning in different argumentation formalisms exist (Cerutti et al., 2018).
Compared to the number of algorithms and system implementations recently developed for reason-
ing in abstract argumentation frameworks (Charwat et al., 2015), motivated also by the ICCMA
competition series (Thimm & Villata, 2017; Gaggl et al., 2020), fewer system implementations are
available for reasoning in structured argumentation formalisms. The algorithmic approaches imple-
mented by different systems can be divided into specialized algorithmic approaches and reduction-
based approaches which are based on declarative encodings of the reasoning problems at hand. The
computational approach developed in this article is inspired by the success of ASP in argumentation
reasoning, especially AF reasoning (Toni & Sergot, 2011; Egly & Woltran, 2006; Egly et al., 2008;
Nieves et al., 2008; Wakaki & Nitta, 2008; Egly et al., 2010; Gaggl et al., 2015; Niskanen et al.,
2019). Compared to ASP encodings of AF reasoning tasks, however, the more complex nature of
ABA makes the declarative modelling more challenging compared to AFs, which is reflected in the
more intricate encodings we present in this work.

The ABA systems ABAGRAPH (Craven & Toni, 2016), GRAPHARG (Craven et al., 2013),
PROXDD (Toni, 2013), and CASAPI (Gaertner & Toni, 2007a) implement the specialized, so-called
dispute derivation approach to reasoning in ABA. On the other hand, ABA2AF (Lehtonen et al.,
2017) first translates ABA frameworks to AFs and uses ASP encodings on the AF-level. Notably,
all of these systems are for the LP fragment of ABA also considered in this article. Bao et al.
(2017) proposed a reasoning system for ABA+, called ABAPLUS, which can enumerate extensions
under multiple semantics by translating the ABA+ framework to an AF and using an AF reasoner.
ABAPLUS also assumes that the underlying ABA framework belongs to the LP fragment of ABA.
A notable weakness of translating ABA to AFs is that the translation process can form an intrinsic
bottleneck in terms of empirical performance (Lehtonen et al., 2017). In contrast, The ASP-based
approach developed in this article directly encodes ABA reasoning tasks in ASP, thus circumventing
issues with ABA-to-AF translations.

Karamlou et al. (2019) proposed labeling-based algorithms and an implementation for the bipo-
lar fragment of ABA. While operating on a different fragment of ABA than considered in this work,
an interesting avenue for future work would be to compare the approach of Karamlou et al. (2019)
with our approach, in particular since the corresponding fragments exhibit the same computational
complexity.

7. Conclusions

We provided algorithmic and complexity-theoretic contributions in the context of reasoning in
assumption-based argumentation. From the algorithmic perspective, we proposed a new approach
to reasoning in assumption-based argumentation with and without preferences via non-trivial ASP
encodings of ABA reasoning tasks under several central argumentation semantics. The ASP-based
approach allows for covering various semantics and reasoning modes in a relatively uniform man-
ner. In practice, the approach significantly improves on the empirical performance of the current
state-of-the-art approaches to ABA reasoning. This motivates further extensions of the approach
to obtain algorithms for further reasoning problems in the context of ABA, in particular ones that
are hard for the second-level of the polynomial hierarchy. Beyond the current article, it would also
be interesting to investigate the potential of alternative encodings based on e.g. the labelling-based
view (Sakama & Rienstra, 2017; Schulz & Toni, 2017). In addition to the various declarative al-
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gorithms, we provided complexity results for central ABA+ reasoning problems (credulous and
skeptical reasoning) under several semantics, towards bridging the gap between the current knowl-
edge on complexity of reasoning in ABA and ABA+. Notably the computational complexity of
credulous and skeptical acceptance is the same in ABA and ABA+ under stable semantics. In con-
trast, credulous acceptance under admissible semantics in ABA+ is on a higher complexity level
compared to the corresponding problem in ABA. Our results on the complexity of the verification
task for ABA+ strongly suggest that the integration of preferential information into ABA via reverse
attacks may increase the computational complexity of acceptance problems for other semantics as
well. Beyond the LP fragments of ABA(+) covered in this article, it would be interesting to extend
the ASP-based approach developed in this work to, e.g., general (non-flat) frameworks, which in
general have higher computational complexity.
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Appendix A. Proofs

The following lemma is applied in the proof of Proposition 11 (Item 2), as well as in the ASP
encoding for capturing <-grounded semantics (Listing 6).

Lemma 20. Let F = (L ,R,A , ,≤) be an ABA+ framework, x ∈ L , and A, A′ be two sets of
assumptions such that A′ ⊆ A and A `R x. Further, let G = (V,E) be a directed graph with

• V = ThR(A), and

• E = {(a,b) | ∃r ∈R : body(r)⊆ ThR(A),a ∈ head(r),b ∈ body(r)}.

It holds that X |=R x with X ⊆ A and X ∩A′ 6= /0 iff there is a directed path from x to a node in A′ in
G.

Proof. Assume that X |=R x with X∩A′ 6= /0 for some X ⊆A. Consider a derivation tree T witnessing
X |=R x. By presumption, at least one element a′ ∈ A′ is present in the tree. This means that there
is a path from x to a′ in the tree. For each edge e = (x,y) of this path, it holds that there is a rule
r ∈ R⊆R such that x ∈ head(r) and y ∈ body(r). This implies that there is a directed path from x
to a′ in G (the same as in T ).

For the other direction, assume that there is a directed path from x to a node in A′ in G. We
use an auxiliary definition of replacing subtrees in a rooted derivation tree T . Let T ′ be a rooted
derivation tree with root s. We denote by T [s/T ′] the uniform replacement of each node s and
subtrees in T (i.e., this node labeled s and each edge and node connected from this node labeled s to
a non-root leaf) by tree T ′. In case of subtrees with a root s that also contain in the subtree another
node labeled s, define the replacement on maximal subtrees that contain s as a root (we note that
for our purposes the exact handling of subtrees containing several nodes labeled s is not crucial;
replacing such subtrees in an arbitrary sequence, or replacing only one such subtree, results in the
same overall result). Note that T [s/T ′] is a derivation tree with the same root as T , and that the
modified tree contains a node labeled s iff T contains a node labeled s.
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Figure 4: Subtree replacement T [zn/T ′] for proof of Lemma 20

We show by induction on the length of a shortest directed path in G from x to elements in
s ∈ ThR(A) that there is a derivation tree deriving x using s. Let Ni = {y ∈ ThR(A) | there is a
shortest path from x to y of length i in G}.

Property P to show: For each y ∈ Ni it holds that there is a derivation tree T of F with root x,
all its leaves labeled by a subset of A or >, and a node labeled by y. (It is not required that this node
is a leaf.)

Induction base: Let N0 = {x}. By presumption, x ∈ ThR(A) and A `R x. This implies that
there is a B ⊆ A such that B |=R x. Thus, there is a derivation tree witnessing this that satisfies the
condition of property P.

Induction step: Assume that the induction hypothesis holds, i.e., that P holds for Ni. We show
that P holds for Ni+1. Let y ∈ Ni+1 \Ni. There is a shortest path from x to y: p = (x,z1, . . . ,zn,y)
of length i+ 1. Since zn ∈ Ni (there is a shortest path from x to zn of length exactly i), it holds
that there is a derivation tree T with root x, all its leaves labeled by some assumptions in A and
zn is a label of a node in the tree. By presumption, A `R y. Thus, there is a B ⊆ A with B |=R y,
and a corresponding witness derivation tree H ′. It holds that all leaves of H ′ are in A (actually in
B). Construct derivation tree T ′, as follows. Let the root of T ′ be zn. Choose one rule r ∈R such
that zn ∈ head(r), y ∈ body(r) and body(r) ⊆ ThR(A). Such a rule exists because there is an edge
from zn to y by construction of G. Let {s1, . . . ,sm} be the sentences in the body of r except for
y. Construct derivation trees H1, . . . ,Hm with leaves in A (which must exist, since each is forward-
derivable from A). Finish construction of T ′ by adding all nodes and edges from H ′ and H1, . . . ,Hm

(viewing each node and edge as a fresh node and edge), and add edges from zn to all roots of H ′ and
H1, . . . ,Hm. The resulting graph T ′ is a derivation tree with root zn, and all leaves from assumptions
in A. Replace each subtree with root zn in T with T ′, i.e., consider T ′′ = T [zn/T ′]. It holds that T ′′

has root x (the root of T is not changed, even if zn = x), all leaves of T ′′ are in A (leaves might have
changed, but both T and T ′ have all their leaves in A), and T ′′ has a node labeled y (since T ′ has a
node labeled y). See Figure 4 for an illustration.

The previous proof by induction shows that if y is reachable from x in G, then there is a derivation
tree with root x, leaves (assumptions) in A, and a node labeled by y. The claim of the lemma follows.

Definition 9. An ABA+ framework (L ,R,A , ,≤) satisfies the Axiom of Weak Contraposition
(WCP) iff for each A⊆A , R⊆R, and b ∈A , if A |=R b and ∃a′ ∈ A such that a′ < b, then there is
a ≤-minimal a ∈ A such that a < b and A′ |=R′ a for some A′ ⊆ (A\{a})∪{b} and R′ ⊆R.
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Proposition 21. Deciding whether a given set of assumptions A in an ABA+ framework satisfying
WCP reversely counterattacks all assumption sets that <-attack A is coNP-hard.

Proof. We establish that coNP-hardness holds assuming WCP. In particular, adding the following
rules to red(φ) = (L ,R,A , ,≤) (recall Reduction 1) results in an ABA+ framework that has
WCP.

• xi← b,¬xi,a and ¬xi← b,xi,a for each 1≤ i≤ n,

• ¬l1← b,¬l2,¬l3,a and ¬l2← b,¬l1,¬l3,a, and ¬l3← b,¬l1,¬l2,a for each clause l1∨ l2∨ l3.

Denote the resulting ABA+ framework by F ′ = (L ,R ′,A , ,≤). To see that F ′ has WCP, consider
any A⊆A such that A |=R b where R⊆R and ∃a′ ∈A with a′< b. By construction, a′ ∈X∪¬X and
a′ is minimal w.r.t. <. Due to the rules in R ′ \R, it holds that A′ |=R′ a′, where A′ = (A\{a′})∪{b}
and R′ ⊆ R ′. We show that a conflict-free set A defends another conflict-free set B in red(φ) iff
A defends B in F ′, which implies that conflict-free sets and <-admissible sets coincide for red(φ)
and F ′. Then, in particular, all attacks to and from {a,b} coincide for red(φ) and F ′, as {a,b} is
conflict-free. It follows that the reasoning in the proof of Lemma 13 can be applied for F ′. To see
this, consider two assumption sets A and B. Since the <-relation is the same in red(φ) and F ′ and
the new rules of R ′ do not introduce new ways to derive b (which is the only assumption that is
more preferred than any other assumption), A reversely <-attacks B in red(φ) iff it reversely <-
attacks B in F ′. Moreover, if A normally <-attacks B in red(φ), then A normally <-attacks B in F ′,
since ThR(X) ⊆ ThR ′(X) for X ⊆ A and the <-relation is the same in red(φ) and F ′. Assume A
normally <-attacks B in F ′ but not in red(φ). This implies that there is an A′ ⊆ A such that A′ |=R z
with z ∈ X ∪¬X , by construction, and that z ∈ B. This implies that both A and B are conflicting
assumption sets in both red(φ) and F ′, because any z∈ X ∪¬X derives z. Thus if A and B (or either
of them) are conflict-free, then the <-attacks between A and B are the same in red(φ) and F ′.

Theorem 22. Verifying that a set of assumptions is <-admissible in ABA+ framework satisfying
WCP is coNP-complete.

Proof. This statement can be shown with an analogous reasoning as in the proof of Proposition 21.

Proof of Theorem 19. For membership, non-deterministically construct an assumption set A for a
given ABA+ instance and query sentence q. Check whether A `R q (in polynomial time), and
whether A is <-admissible (in coNP, due to Proposition 15).

For establishing hardness, let ψ = ∃X∀Y φ be a closed quantified Boolean formula in prenex
normal form where φ = c1∨·· ·∨ cs is an unquantified Boolean formula in disjunctive normal form
(DNF) with conjunctions c j. Formula φ is over variables X = {x1, . . . ,xn} and Y = {y1, . . . ,ym}.
Deciding whether ψ is satisfiable (true) is a ΣP

2-complete problem. Construct (in polynomial time)
the following ABA+ instance. Similarly as in preceding proofs, if Z is a set, then ¬Z = {¬z | z ∈ Z}
and Z′ = {z′ | z ∈ Z}. Let A = X ∪¬X ∪X ′ ∪¬X ′ ∪Y ∪Y ′ ∪ {p,r} be the set of assumptions.
Construct the following rules:

• q← dx1 , . . . ,dxn , p,r,

• for each 1≤ i≤ n:
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– dxi ← xi and dxi ←¬xi,

– ¬xi← xi and xi←¬xi,

– ¬x′i← xi and x′i←¬xi,

– dx′i ← x′i and dx′i ←¬x′i, and

– r← x′i,¬x′i,

• for each 1≤ i≤ m:

– dyi ← yi and dyi ←¬yi, and

– r← yi,¬yi,

• r← asBody(c j), p for each 1≤ j ≤ s, and

• p← dx′1
, . . . ,dx′n ,dy1 , . . . ,dym .

Here the function asBody(c j) is defined as the list of body elements l1, . . . , lt from the literals of the
conjunction c j = l1∧ ·· ·∧ lt . Complete the instance with r > x′i, r > ¬x′i, r > yi, and r > ¬yi as the
preference relation.

We claim that ψ is true (satisfiable) iff q is credulously accepted under <-admissible semantics
in the ABA+ framework. Assume that q is credulously accepted under <-admissible semantics.
That is, there is an <-admissible assumption set A with A `R q. By construction, A contains at least
one of {xi,¬xi} for each 1 ≤ i ≤ n (necessary to derive sentences dxi that are required to derive q).
By presumption, A is <-admissible and conflict-free. If there is an i such that {xi,¬xi} ⊆ A then
A is not conflict-free: A `R xi and A `R ¬xi. Therefore A contains for each i exactly one of xi or
¬xi. Further, {p,r} ⊆ A by construction. Let τ be a partial truth assignment defined on X such that
τ(xi) = 1 if xi ∈A and τ(xi) = 0 if ¬xi ∈A. By the observations above, τ assigns a truth value to each
variable in X . We claim that φ [τ], the formula obtained by replacing each occurrence of a variable xi

in X by> if τ(xi) = 1 and⊥ if τ(xi) = 0, is tautological. This implies that ψ is satisfiable (since φ is
satisfied no matter how the assignment on X given by τ is extended to the variables in Y ). Suppose
the contrary, i.e., that there is an extension of τ to τ ′ on all variables in φ (i.e. on variables X ∪Y )
such that τ ′ 6|= φ . Let B = {x′i | τ ′(xi) = 1}∪{¬x′i | τ ′(xi) = 0}∪{yi | τ ′(yi) = 1}∪{¬yi | τ ′(yi) = 0}.
In words, B mirrors the assignment of τ ′ via variables x′i, ¬x′i, yi, and ¬yi. By construction, and since
τ ′ assigns a value to all variables in X ∪Y it holds that p is derivable from B (all auxiliary “decision”
sentences dz are derivable). Thus B <-attacks A. Since A is admissible, it follows that A <-attacks B.
However, the contraries of yi and ¬yi are not derivable and the contraries of x′i and ¬x′i are derivable
via xi or ¬xi, but since xi ∈ A iff x′i ∈ B and ¬xi ∈ A iff ¬x′i ∈ B, it follows that from A no contrary of
an assumption in B is derivable. This implies that A does not normally <-attack B, and must instead
reversely <-attack B. By construction of the preference relation, this is only possible if B |=R r
(since r is the only assumption ranked lower than another one). Since B does not contain for any
variable xi or y j both “assignments” (i.e., not both x′i and ¬x′i, and not both yi and ¬yi) it holds that,
in order for B to derive r, at least one c j, for 1≤ j ≤ s, is derivable from B. Let c j be this sentence
(conjunction). By construction of the corresponding rule that derives r it follows that τ ′ |= c j. Since
φ is in DNF, τ ′ |= φ . This contradicts the presumption that ψ is not satisfied (true), since the same
holds for any B (any extension to the variables in Y ).

We now show the other direction. Assume that ψ is satisfiable (true). Then there is a partial
assignment τ on variables X such that any extension τ ′ of τ to all variables in Y satisfies φ . We
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claim that A = {xi | τ(xi) = 1}∪ {¬xi | τ(xi) = 0}∪ {p,r} is an <-admissible assumption set in
the ABA+ framework, which implies that q is credulously accepted under <-admissible semantics,
since A `R q. Suppose that A is not <-admissible. By the same line of reasoning as above, it holds
that A is conflict-free. This implies that there is an assumption set B such that B <-attacks A, but
A does not <-attack B. We show some properties of B. First, if A contains xi (¬xi) then ¬xi /∈ B
(xi /∈ B), since then A would <-attack B. Similarly, B does not contain x′i if ¬xi ∈ A and B does not
contain ¬x′i if xi ∈ A. Suppose that B `R r. Since r is only derivable if at least one of x′i, ¬x′i, yi, or
¬yi, for some i, is present in B, by construction of the preference relation it follows that A reversely
<-attacks B if B `R r. Thus, B 6`R r. It follows that B `R p, since from A one cannot derive any
contrary of an assumption in B (B does not reversely <-attack A), and any normal <-attack from B
onto A requires that p is derivable. These observations imply that B contains exactly one of x′i or
¬x′i and exactly one of y j or ¬y j for each 1 ≤ i ≤ n and 1 ≤ j ≤ m (if both would be present then
r is derivable, if none are present then p is not derivable). This straightforwardly defines a truth
assignment τ ′′ on X ∪Y : τ ′′(xi) = 1 iff x′i ∈ B and τ ′′(yi) = 1 iff yi ∈ B. Observe that τ from above
and τ ′′ are compatible on the X variables where τ is defined, since A does not normally <-attack
B, and if τ(xi) 6= τ ′′(xi), then A would normally <-attack B. We show that τ ′′ does not satisfy φ .
Consider an arbitrary conjunction c j in φ . Suppose τ ′′ satisfies c j. Then, by similar reasoning as in
the other direction, it holds that τ ′′ satisfies c j iff B satisfies the body of a rule with r in the head
(all body elements are present in B, since τ ′′ satisfies all literals in conjunction c j). Thus, B `R r,
which is a contradiction. Therefore, τ ′′ does not satisfy φ . This contradicts the presumption that ψ

is satisfiable (true). Therefore, A is <-admissible and q is credulously accepted under <-admissible
semantics.

Appendix B. Counterexample to Grounded Encoding in Lehtonen et al. (2019)

The encoding for grounded semantics given in our preliminary work (Lehtonen et al., 2019) and
replicated here in Listing 7 is erroneous. To see this, consider the ABA framework consisting of

sentences L = {a,b,c,x,y,z}
assumptions A = {a,b,c}

contraries b = x, c = z, a = w

rules R = {(x← a),(y← y),(y← b),(z← y).}

Listing 7 correctly assigns a to in as nothing attacks it. Assumption a attacks b. The only way to
derive z, the contrary of c, is from b and thus c should also be added to in. However, Listing 7
does not achieve this. An assumption is assigned to in when its contrary is assigned to out, which
happens when all rules deriving the contrary are out. However, the rule (y← y) is not determined
to be out because y is not assigned to out. The rules of assigning sentences that are not derivable at
all in the framework to out do not help, since y is derivable.

Appendix C. Counterexample to the Ideal Algorithm in Dunne (2009)

The algorithm for finding the ideal assumption set presented in (Dunne, 2009) is erroneous in terms
of Lines 8–9. Instead of Lines 8–9 of Algorithm 1, as originally presented in (Dunne, 2009) the
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Listing 7: Module πgrd

1 rule(R)← head(R, ).
2 sentence(S)← head( ,S).
3 sentence(S)← contrary( ,S), not assumption(S).
4 derivable(X)← assumption(X).
5 derivable(X)← head(R,X), derivable rule(R).
6 derivable rule(R)← head(R, ),derivable(X):body(R,X).
7 in(X)← assumption(X), out(Y) : contrary(X,Y).
8 in(R)← rule(R), in(X) : body(R,X).
9 in(S)← in(R), head(R,S).

10 out(X)← in(Y), contrary(X,Y).
11 out(R)← out(X), body(R,X).
12 out(S)← sentence(S), out(R) : head(R,S).
13 out(S)← sentence(S), not derivable(S).

algorithm would have (apart from slight variation in notation) the lines

8. Ξ :={a ∈Aout | Γ 6`R a}
9. ∆ :={a ∈ Γin | Ξ∪ACA `R a}.

In words, Ξ would only contain assumptions in Aout instead of all assumptions, and ∆ would
contain assumptions attacked by Ξ∪ACA instead of ones attacked by Ξ. In effect, only attacks from
Aout∪ACA would be considered when deciding if Γ defends itself. In other words, attacks from a
set containing assumptions from Ain \ACA = APSA would not be considered. This is not sufficient
since there can be attacks from Aout∪APSA to Γ. By definition APSA can not by itself attack Γ, but
nothing prevents assumptions from APSA forming a strict subset of a set of assumptions attacking
an assumption in Γ. Thus the original algorithm can fail to identify assumptions in Γ that are not
defended by Γ, namely, ones that are attacked by a set containing assumptions from Aout as well as
APSA.

For a concrete example where the original algorithm fails, consider the ABA framework with

sentences L = {a,b,c,d,a,b,c,d}
assumptions A = {a,b,c,d}

rules R = {(b← a),(a← b),(c← a),(c← b),(d← c,d)}

There are two preferred extensions, {a,d} and {b,d}, since one can derive the contrary of all
other assumptions except d from both a and b . Thus either of these assumptions joined with d
attack all assumptions outside it and thus are subset-maximally admissible. The ideal assumption
set is the maximal admissible set that is a subset of every preferred assumption set. In our example,
the intersection of the preferred assumption sets is {d}. This set is not admissible, since {c,d}
attacks it without it defending itself. Thus the ideal assumption set is empty.

However, the algorithm as presented originally would return a non-empty assumption set. On
lines 1–5 we obtain Aout = {c}, Ain = {a,b,d}, ACA = {a,b}, APSA = {d}, and Γ = {d}. Then
in the loop, Γin = {d}. On Line 8 the original algorithm checks which assumptions in Aout are
not attacked by Γ. We get Ξ = {c}, since c is the only member of Aout, and it also is not attacked

312



DECLARATIVE ALGORITHMS AND COMPLEXITY RESULTS FOR ABA

by Γ. On Line 9 any member of Γ that is attacked by Ξ∪ACA is collected to ∆. In our case
Ξ∪ACA = {a,b,c}, which does not attack d. Thus ∆ = /0. Finally on Line 10, Γ\ /0 = Γ, so on Line
11 the algorithm terminates and on Line 12 incorrectly returns {d} as the ideal assumption set.
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