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Abstract. In this paper we describe Pakota, a system implementation that allows
for solving enforcement problems over argumentation frameworks. Via harness-
ing Boolean satisfiability (SAT) and Maximum satisfiability (MaxSAT) solvers,
Pakota implements algorithms for extension and status enforcement under various
central AF semantics, covering a range of NP-complete—via direct MaxSAT
encodings—and ΣP2 -complete—via MaxSAT-based counterexample-guided ab-
straction refinement—enforcement problems. We overview the algorithmic ap-
proaches implemented in Pakota, and describe in detail the system architecture,
features, interfaces, and usage of the system. Furthermore, we present an empiri-
cal evaluation on the impact of the choice of MaxSAT solvers on the scalability
of the system, and also provide benchmark generators for extension and status
enforcement.

1 Introduction

Argumentation is a core area of modern artificial intelligence research, with strong
connections to knowledge representation and classical and non-monotonic logics. Ar-
gumentation frameworks (AFs) [22], a central graph-based knowledge representation
formalism, provide a formal basis for abstract argumentation.

Motivated also by practical applications, AFs under various semantics give rise to
important—and often computationally very hard—reasoning problems over AFs. This
includes what we refer to as static (or non-dynamic) AF reasoning tasks, such as the
much studied skeptical and credulous acceptance of arguments. Static AF reasoning
tasks have been extensively studied, to the point that today several systems implementing
static AF reasoning [31,12,13,23,25,29] are available. Most often these systems are
based on declarative approaches, using propositional satisfiability (SAT) solver technol-
ogy or extensions thereof for solving the core reasoning task at hand [12,13,23,25].
However, argumentation is intrinsically a dynamic process, and hence understand-
ing and reasoning about the dynamics of AFs is a central and recent direction of
research [9,8,10,11,17,18,20,21,32,28]. In contrast to static AF reasoning problems,
few system implementations are currently available for reasoning about different aspects
of AF dynamics [16,32,28].
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In this paper, we describe in detail Pakota, a system for optimal extension enforce-
ment [8,11,16,32] and status enforcement [28], two recently proposed hard computational
problems dealing with dynamics (in connection to belief change) in abstract argumenta-
tion. In short, enforcement deals with the question of how a given AF should be revised
(changed) in order for it to support (in terms of, e.g., skeptical or credulous acceptance)
specific arguments.

Pakota implements algorithms for optimally solving—in terms of structural modi-
fications to a given AF—various variants of NP-complete and ΣP2 -complete extension
and status enforcement problems under various AF semantics, being the first system for
optimal enforcement in its generality. Pakota is based on NP-encoding enforcement prob-
lems using the Boolean optimization paradigm of maximum satisfiability (MaxSAT), and
further implements counterexample-guided abstraction refinement (CEGAR) [14,15]
algorithms based on SAT and MaxSAT solvers for ΣP2 -complete enforcement.

After overviewing key definitions and properties of extension enforcement and status
enforcement (Section 2), instances of which the Pakota system can provide optimal
solutions to, and necessary background on MaxSAT (Section 3), we provide a detailed
description of the Pakota system (Section 4). Before conclusions, we provide empirical
results providing insights into the scalability and the influence of the choice of underlying
constraint optimization solvers on the performance of Pakota (Section 5).

2 Enforcement in Abstract Argumentation

We start by reviewing argumentation frameworks and their semantics [22,7], and the
extension enforcement and status enforcement problems central to this work.

2.1 Argumentation Frameworks

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. An argument a ∈ A is defended (in F ) by a set S ⊆ A if, for each
b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Semantics for AFs are defined by functions σ which assign to each AF F = (A,R)
a set σ(F ) ⊆ 2A of extensions. We consider for σ the functions stb, adm, com and prf ,
which stand for stable, admissible, complete and preferred, respectively.

Definition 2. Given an AF F = (A,R), the characteristic function FF : 2A → 2A of
F is FF (S) = {a ∈ A | a is defended by S}. Moreover, for a set S ⊆ A, the range of
S as S+

R = S ∪ {a ∈ A | (b, a) ∈ R, b ∈ S}.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are
no a, b ∈ S such that (a, b) ∈ R. We denote the collection of conflict-free sets of F by
cf (F ). For a conflict-free set S ∈ cf (F ), it holds that

– S ∈ stb(F ) if S+
R = A;

– S ∈ adm(F ) if S ⊆ FF (S);
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Fig. 1. An argumentation framework (a); enforcing {a, b} to be a stable extension (b); credulous
(c) and skeptical (d) status enforcement of P = {a, b} under stable semantics

– S ∈ com(F ) if S = FF (S);
– S ∈ prf (F ) if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;

We use the term σ-extension to refer to an extension under a semantics σ ∈
{stb, adm, com, prf }.

Example 1. As an example AF, consider F = (A,R) with three arguments, A =
{a, b, c}, and attacks R = {(a, b), (b, a), (b, c), (c, b), (c, a)}, with a graphical illustra-
tion shown in Fig. 1(a). This AF has the following stable extensions which, in this
particular case, coincide with the preferred extensions: stb(F ) = {{b}, {c}}.

When comparing attack structures of two AFs F = (A,R) and F ′ = (A,R′) with
the same set of arguments, we make use of the cardinality of the symmetric difference of
the attack relations defined by |R∆R′| = |R \R′|+ |R′ \R|.

2.2 Extension Enforcement

We continue by recalling the problem of extension enforcement [8,16,32], where we
are given an AF F = (A,R) and a subset T ⊆ A of its arguments, and the goal is to
modify the attack structure R such that T becomes (a subset of) an extension under the
semantics σ in the modified AF F ′ = (A,R′).

Strict enforcement requires that the given set T of arguments has to be exactly
a σ-extension. In non-strict enforcement, T is required to be a subset of some σ-
extension. We denote the set of attack structures that strictly enforce T under σ for
F by enf (s, F, T, σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)}, and by
enf (ns, F, T, σ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇ T} for non-strict
enforcement. The number of changes of an enforcement is the size of the symmetric
difference of the attack structures R and R′. From the computational perspective, we
view extension enforcement as an optimization problem, seeking to minimize the number
of changes to the attack structure.

Extension enforcement (x ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf (x,F,T,σ)

|R∆R′|.
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Table 1. Complexity results for extension and status enforcement.

extension enf. status enf. (N = ∅) status enf. (unrestr. case)
σ strict non-strict credulous skeptical credulous skeptical

Conflict-free in P in P in P trivial in P trivial
Admissible in P NP-c NP-c trivial ΣP2 -c trivial

Stable in P NP-c NP-c ΣP2 -c ΣP2 -c ΣP2 -c
Complete NP-c NP-c NP-c NP-c ΣP2 -c NP-c
Preferred ΣP2 -c NP-c NP-c in ΣP3 ΣP2 -c in ΣP3

Example 2. Consider AF F from Example 1 (shown in Fig. 1(a)). For enforcing set
{a, b} to be a stable extension, an optimal solution AF is shown in Fig. 1(b) where the
mutual attacks between a and b are removed. In this modified AF both {a, b} and {c}
are stable extensions.

In the corresponding decision problem we are given in addition an integer k ≥ 0
and are asked whether it is possible to enforce T with |R∆R′| ≤ k. We recall the
computational complexity results from [32] for this decision problem in Table 1. Note that
non-strict extension enforcement under admissible, complete, and preferred semantics
coincide; thus it suffices to implement an algorithm for one of these problems to cover
all three.

2.3 Status Enforcement

In the status enforcement problem [28] we are given an AF F = (A,R) and two disjoint
subsets P,N ⊆ 2A, P ∩N = ∅. The goal is to enforce the arguments in P positively and
arguments in N negatively, i.e., to modify the attack structure R so that all arguments in
P are credulously or skeptically accepted and all arguments in N are not accepted in the
modified AF F ′ = (A,R′).

For credulous status enforcement, we denote the set of attack structures that enforce
(P,N) under σ for F by

cred(F, P,N, σ) = {R′ | F ′ = (A,R′), P ⊆
⋃
σ(F ′), N ∩

⋃
σ(F ′) = ∅},

and, for skeptical status enforcement,

skept(F, P,N, σ) = {R′ | F ′ = (A,R′), P ⊆
⋂
σ(F ′), N ∩

⋂
σ(F ′) = ∅}.

For σ = stb we additionally require for skeptical status enforcement that a solution
AF F ′ has at least one stable extension. Like extension enforcement, we view status
enforcement as an optimization problem, where the goal is to minimize the cardinality
of the symmetric difference of the original and the modified attack structures R and R′.

Optimal Credulous Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈cred(F,P,N,σ)

|R∆R′|.
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Optimal Skeptical Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈skept(F,P,N,σ)

|R∆R′|.

Example 3. For the AF from Example 1, we see in Fig. 1(c–d) credulous and skeptical,
respectively status enforcement for the set P = {a, b} under the stable semantics. In the
modified AF shown in Fig. 1(c) we have added an attack from a to c, which results in an
AF where {a}, {b}, and {c} are all stable extensions. In the AF shown in Fig. 1(d) we
have removed the mutual attacks between a and b, and removed the attack from c to b.
This results in {a, b} being the unique stable extension of this modified AF.

The computational complexity of the corresponding decision problem, i.e., given
an integer k ≥ 0, is credulous (skeptical) status enforcement for given positive and
negative sets possible with at most k modifications to the attack structure, was established
in [28]; Table 1 provides an overview. Note that credulous status enforcement under the
admissible, complete, and preferred semantics coincide.

3 Maximum Satisfiability

For solving variants of extension and status enforcement problems, Pakota employs
constraint optimization encodings using (partial) maximum satisfiability (MaxSAT for
short) as the underlying declarative language. In MaxSAT, for each variable x, we have
two literals, x and ¬x. A clause is a disjunction (∨) of literals. A truth assignment
is a function from variables to {0, 1}. A clause c is satisfied by a truth assignment τ ,
τ(c) = 1, if τ(x) = 1 for a literal x in c or τ(x) = 0 for a literal ¬x in c; otherwise
τ does not satisfy c, τ(c) = 0. An instance ϕ = (ϕh, ϕs) of the MaxSAT problem
consists of a set ϕh of hard clauses, and a set ϕs of soft clauses. Any truth assignment τ
which satisfies each hard clause is a solution to ϕ. The cost of a solution is defined by
COST(ϕ, τ) =

∑
c∈ϕs

(1− τ(c)), which is the number of soft clauses not satisfied by τ .
A solution τ is optimal for ϕ if COST(ϕ, τ) ≤ COST(ϕ, τ ′) for all solutions τ ′ to ϕ. The
output of a MaxSAT solver is an optimal solution to ϕ.

4 Pakota

The Pakota system is implemented in the C++ programming language, and the source
code is publicly available under the MIT license via

http://www.cs.helsinki.fi/group/coreo/pakota/ .

In what follows, we describe the main components and system architecture of the
system (Section 4.1) and main features of Pakota (Section 4.2), detail the implemented
algorithms (Section 4.3), input and output specifications (Section 4.4), and usage options
(Section 4.5).
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4.1 System Architecture

The system architecture of Pakota is shown in Figure 2. Pakota accepts input for the
extension enforcement problem and for the credulous and skeptical status enforcement
problem in the so-called APX format (see Section 4.4), which is parsed into an enforce-
ment instance. The algorithms implemented in Pakota that solve the given enforcement
instance form the main component of the system and are described in Section 4.3, em-
ploying a MaxSAT solver, or, for problem variants beyond NP, interacting MaxSAT and
SAT solvers. Pakota offers a generic MaxSAT interface for plugging in the MaxSAT
solver of choice and already includes MaxSAT solvers Open-WBO [26] (version 1.3.1)
and LMHS [30] (version 2015.11), and the SAT solvers MiniSAT [24] (version 2.2.0,
included with LMHS) and Glucose [4,6,5] (version 3.0, included with Open-WBO). We
detail usage of the MaxSAT interface in Section 4.2).

The implemented algorithms for the enforcement problems can be classified accord-
ing to whether they solve an NP problem or a second-level problem. For the former,
the enforcement instance is encoded in a MaxSAT instance and the solution given by
a MaxSAT solver is decoded to construct a solution AF to the enforcement problem,
again in the APX format. In the case that the given task is a second-level problem,
the algorithms implement a counterexample-guided abstraction refinement procedure,
thereby iteratively querying the MaxSAT solver to construct candidate solutions and
checking whether the candidate is indeed a solution to the enforcement problem via a
SAT solver. In case of successfully verifying that the candidate is a solution the decoded
AF is returned in the APX format. Otherwise, i.e., in case the candidate is a non-solution,
the current MaxSAT encoding is iteratively refined until an actual optimal solution is
found.

APX

Input

AF + query

Pakota

Enf.
instance

Enforcement

Ext. Status

Cred. Skept.

SAT interface

MiniSAT Glucose · · ·

MaxSAT interface
OpenWBO LMHS · · ·

check refine

encode decode

AF APX

Output

Optimal solution

AF

Fig. 2. System architecture of Pakota
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4.2 Features

Supported Semantics and Reasoning Modes Pakota currently supports optimally en-
forcing an extension strictly under the complete and preferred semantics, and non-strictly
under the admissible and stable semantics. Further, Pakota implements optimal credu-
lous status enforcement under both the admissible and the stable semantics, and optimal
skeptical status enforcement under the stable semantics. An overview of the supported
semantics and reasoning modes is given in Table 2 with further implementation details
for certain parameter choices discussed in more detail in Section 4.3.

MaxSAT and SAT Solver Interfaces Essentially any MaxSAT solver whose source
code is available can be plugged into the system. This is enabled in Pakota by offering
two interfaces MaxSATSolver.h and SATSolver.h. By creating new classes that
implement these interfaces and defining the pure virtual functions declared in them, one
can compile and link these to the Pakota system, which will then use the corresponding
MaxSAT and SAT solvers for solving the enforcement problems. As an implementation-
level detail, note that, if the MaxSAT solver uses a SAT solver internally, which is usually
the case, an easy solution to potential naming conflicts is to use the same SAT solver
as the SAT solver in CEGAR procedures within Pakota. The source code of Pakota
already includes implementations of these interfaces for two different MaxSAT solvers,
Open-WBO [26] and LMHS [30], allowing the use of these solvers simply by editing
the MAXSAT_SOLVER parameter in the included Makefile before compiling.

MaxSAT and IP Encodings In addition to directly solving extension and status en-
forcement instances, Pakota can for the NP variants of the problems output the internal
MaxSAT encodings both in the standard WCNF MaxSAT input format as well as integer
programs (IPs) in the standard LP format (applying the standard textbook encoding of
MaxSAT as IP [3]). The latter option allows for calling state-of-the-art IP solvers, such
as CPLEX or Gurobi, on the encodings.

4.3 Algorithms

Depending on the inherent complexity of the problems, Pakota solves the extension
or status enforcement problem at hand by either encoding the problem in MaxSAT
(NP-complete problems), or within a counterexample-guided abstraction refinement
(CEGAR) scheme utilizing a MaxSAT solver in an iterative or incremental fashion
(problems complete for the second level of polynomial hierarchy). Table 2 provides
details, depending on the chosen parameters and semantics, for each problem variant,
whether it is solved via direct encoding to MaxSAT (detailed in Fig. 3) or via a MaxSAT-
based CEGAR algorithm (detailed as Algorithms 1 and 2).

Encoding NP Enforcement in MaxSAT Let F = (A,R) be an AF. We utilize Boolean
variables xa and xpa for a, p ∈ A, and variables ra,b for a, b ∈ A. The intended meaning
of these variables is that if xa (xpa) is assigned true in an assignment then a is contained
in a σ-extension in a specific AF. The AF we are referring to is either directly encoded in
the formula or encoded via a truth assignment on variables ra,b, i.e., if ra,b is assigned
true, then there is an attack from a to b.
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Table 2. Extension and status enforcement problems currently supported by Pakota

Problem parameters semantics Encoding/Algorithm
extension enforcement ns adm EXT(ns, F, T, adm)
extension enforcement ns stb EXT(ns, F, T, stb)
extension enforcement s com EXT(s, F, T, com)
extension enforcement s prf Algorithm 1

status enforcement cred, N = ∅ adm STATUS(cred, A, P, ∅, adm)
status enforcement cred, N = ∅ stb STATUS(cred, A, P, ∅, stb)
status enforcement cred adm Algorithm 2
status enforcement cred stb Algorithm 2
status enforcement skept stb Algorithm 2

Soft clauses for all considered problems are defined by ϕs(F ) =
∧
a,b∈A r

′
a,b, where

r′a,b =
{
ra,b if (a, b) ∈ R,
¬ra,b if (a, b) 6∈ R.

Violating a soft clause corresponds to an attack being removed or added, and incurs an
associated unit cost.

Hard clauses are problem dependent. The complete list of encodings used in Pakota
as provided in Fig. 3. In particular, EXT refers to encodings for extension enforcement
for strict (s) and non-strict (ns) modes. The other parameters are an AF F = (A,R),
a semantics σ ∈ {adm, com, stb}, and T ⊆ A. Figure 2 shows for each NP-complete
extension enforcement problem the corresponding MaxSAT encoding for which it
holds that an optimal MaxSAT solution directly corresponds to an optimal solution
for the extension enforcement problem. For instance, to optimally solve non-strict
extension enforcement under the admissible semantics, we encode the input AF and
set of arguments to be enforced via formula EXT(ns, F, T, adm) and subsequently
call MAXSAT(EXT(ns, F, T, adm), ϕs(F )) to compute an optimal MaxSAT solution
(c, τ), with cost c and assignment τ , from which we can infer an optimal solution to
the corresponding problem by extracting a new AF F ′ = (A,R′) with R′ = {(a, b) |
τ(ra,b) = 1}.

For the NP-complete status enforcement problem of credulous status enforcement
under the admissible semantics with empty negative set N = ∅, we implemented an
analogous procedure. For the input to this problem, i.e., AF F = (A,R) and positive set
P ⊆ A, we give the MaxSAT solver the encoding STATUS(cred, A, P, ∅, adm). From
an optimal MaxSAT solution we can infer an optimal solution to the status enforcement
problem similarly as for extension enforcement by generating a new AF F ′ = (A,R′)
with R′ = {(a, b) | τ(ra,b) = 1}.

The remaining encodings in Fig. 3 are used in our CEGAR algorithms for the
second-level complete problems.

Counterexample-guided Abstraction Refinement Pakota implements the second-level
complete problems arising in status enforcement and extension enforcement by a
counterexample-guided abstraction refinement (CEGAR) approach. Concretely, we
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EXT(ns, F, T, adm) =
∧
a∈T

xa ∧
∧
a,b∈A

((
ra,b → (¬xa ∨ ¬xb)

)
∧
(
(xa ∧ rb,a)→

∨
c∈A

(xc ∧ rc,b)
))

EXT(ns, F, T, stb) =
∧
a∈T

xa ∧
∧
a,b∈A

(
ra,b → (¬xa ∨ ¬xb)

)
∧
∧
a∈A

(
¬xa →

∨
b∈A

(xb ∧ rb,a)
)

EXT(s, F, T, com) =
∧
a,b∈T

¬ra,b ∧
∧
a∈T

∧
b∈A\T

(
rb,a →

∨
c∈T

rc,b
)
∧
∧

a∈A\T

∨
b∈A

(
rb,a ∧

∧
c∈T

¬rc,b
)

CHECK(τ) =
∧

τ(ra,b)=1

(¬xa ∨ ¬xb) ∧
∧

τ(rb,a)=1

(
xa → (

∨
τ(rc,b)=1

xc)
)
∧

∧
τ(xa)=1

xa ∧
∨

τ(xa)=0

xa

ψ(A) =
∧
a,b∈A

(
ra,b → (¬xpa ∨ ¬xpb)

)
STATUS(cred, A, P,N, adm) =

∧
p∈P

(
ψ(A) ∧

∧
a,b∈A

(
(xpa ∧ rb,a)→

∨
c∈A

(xpc ∧ rc,b)
)
∧ xpp ∧

∧
n∈N

¬xpn
)

STATUS(cred, A, P,N, stb) =
∧
p∈P

(
ψ(A) ∧

∧
a∈A

(
¬xpa →

∨
b∈A

(xpb ∧ rb,a)
)
∧ xpp ∧

∧
n∈N

¬xpn
)

STATUS(skept, A, P,N, stb) =
∧
n∈N

(
ψ(A) ∧

∧
a∈A

(
¬xpa →

∨
b∈A

(xpb ∧ rb,a)
)
∧ ¬xnn ∧

∧
p∈P

xnp

)
CHECK(cred, A, τ, P,N, adm) =

∧
τ(ra,b)=1

(¬xa ∨ ¬xb) ∧
∧

τ(rb,a)=1

(xa →
∨

τ(rc,b)=1

xc) ∧
∨
n∈N

xn

CHECK(cred, A, τ, P,N, stb) =
∧

τ(ra,b)=1

(¬xa ∨ ¬xb) ∧
∧
a∈A

(¬xa →
∨

τ(rb,a)=1

xb) ∧
∨
n∈N

xn

CHECK(skept, A, τ, P,N, stb) =
∧

τ(ra,b)=1

(¬xa ∨ ¬xb) ∧
∧
a∈A

(¬xa →
∨

τ(rb,a)=1

xb) ∧
∨
p∈P

¬xp

REFINE(τ) = ¬
( ∧
τ(ra,b)=1

ra,b ∧
∧

τ(ra,b)=0

¬ra,b
)

Fig. 3. Encoding extension and status enforcement

let a MaxSAT solver compute a candidate solution from an NP-complete abstraction
of the second-level complete problem, and subsequently check whether the candidate
is a solution with a SAT solver. In case a solution is found, i.e., the SAT solver reports
unsatisfiability, we extract from the MaxSAT solution an optimal solution to the enforce-
ment problem. Otherwise, we call the MaxSAT solver again on a refined formula which
includes further hard clauses extracted from the counterexample delivered by the SAT
solver.

The CEGAR algorithms implemented in Pakota are shown in Algorithm 1 for
extension enforcement, and in Algorithm 2 for status enforcement. We describe the
algorithm for extension enforcement, as the CEGAR algorithm for status enforcement is
similar (the main difference lies in the used formulas).

For extension enforcement, we implemented the second-level complete problem of
strict extension enforcement under the preferred semantics as shown in Algorithm 1.
Given an AF F = (A,R), a set T ⊆ A to enforce, we define the initial hard clauses ϕh
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Fig. 4. Example of Pakota input and output formats

to be the same as for the NP-complete strict extension enforcement problem under the
complete semantics. In the while-loop, we call the MaxSAT solver on this set of hard
clauses augmented with the same soft clauses, ϕs(F ), as for the NP-complete variants.
From an optimal solution τ delivered by the MaxSAT solver we check whether this
candidate is a solution to strict extension enforcement under the preferred semantics
using the formula CHECK(τ) (see Fig. 3). If the SAT solver reports unsatisfiability of
this formula, we terminate and return the AF encoded in τ , otherwise we refine, i.e.,
increment, the hard clauses by REFINE(τ) (see again Fig. 3 for details).

For status enforcement we implemented Algorithm 2. For a given input to the second-
level complete problems for status enforcement we consider here, i.e., credulous status
enforcement under the admissible and stable semantics, and skeptical status enforcement
under the stable semantics, this algorithm computes an optimal solution AF. The input
for this problem consists of an AF F = (A,R) and sets P,N ⊆ A.

Algorithm 1 Extension enforcement
ϕh ← EXT(s, F, T, com)
while true do

(c, τ)← MAXSAT(ϕh, ϕs(F ))
r ← SAT(CHECK(τ))
if r = unsat then return (c, τ)
else ϕh ← ϕh ∧ REFINE(τ)

Algorithm 2 Status enforcement
1: ϕh ← STATUS(M,A,P,N, σ)
2: while true do
3: (c, τ)← MAXSAT(ϕh, ϕs(F ))
4: r←SAT(CHECK(M,A, τ, P,N, σ))
5: if r = unsat then return (c, τ)
6: else ϕh ← ϕh ∧ REFINE(τ)

4.4 Input Format

Extension Enforcement In the input an AF and an enforcement request are specified,
extending the APX format for specifying AFs, using the following predicates.

arg(X). X is an argument
att(X,Y). there is an attack from X to Y
enf(X). enforce argument X

Example 4. The enforcement of argument a for the AF in Fig. 4(a) is specified in the
Pakota input format as shown in Fig. 4(b). On this input, Pakota may return the output
shown in Fig. 4(c), i.e., the AF in Fig. 4(d).
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Status Enforcement As in extension enforcement, the AF is represented using the arg
and att predicates. The arguments to be positively and negatively enforced are represented
via the pos and neg predicates, respectively. For example, pos(a). enforces argument
a positively. The reasoning mode between credulous and skeptical is chosen from the
command line.

4.5 Usage and Options

After compilation, the Pakota system is used from the command line as follows.

./pakota <file> <mode> <sem> [options]

The command line arguments enabling the choice of AF semantics and reasoning
mode are the following.

<file> : Input filename for enforcement instance in apx format.
<mode> : Enforcement variant: mode={strict|non-strict|cred|skept}

strict : strict extension enforcement
non-strict : non-strict extension enforcement
cred : credulous status enforcement
skept : skeptical status enforcement

<sem> : Argumentation semantics. sem={adm|com|stb|prf}
adm : admissible
com : complete (only for mode={strict|non-strict})
stb : stable
prf : preferred (only for mode={strict|non-strict})

Furthermore, command line options -h (for help message), -v (for version number),
-o (for specifying output to file) and -t (for outputting NP-encodings in WCNF and LP
formats) are available.

4.6 Benchmarks and Generators

The Pakota webpage also offers sets of benchmarks for both extension enforcement and
status enforcement in the Pakota input format. Furthermore, we provide via the webpage
our benchmark generator software, AfGen and EnfGen, which we used to generate the
benchmark sets. The AF generator AfGen forms argumentation frameworks in APX
format implementing the Erdős-Rényi random digraph model. The generator is called as
./afgen <args> <prob>
where parameters <args> and <prob> specify the number of arguments and the prob-
ability of an attack in the output AF. The generator forms an argumentation framework
with arguments 1, . . . ,<args>, including an attack between each pair of arguments
independently with probability <prob>.

The enforcement instance generator EnfGen takes as input an AF in APX format,
and produces an enforcement instance. It is called as
./enfgen <file> <mode> <enfs>
where <file> is the input AF and <mode> is either ext or status, corresponding
to extension and status enforcement, respectively. In case of extension enforcement,
<enfs> is an integer stating the number of arguments to be enforced, and for status
enforcement, <enfs> is a pair of integers, corresponding to the number of positively
and negatively enforced arguments. The generator reads the arguments from the AF and
samples the enforced arguments uniformly at random, without replacement.
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5 Performance Overview

We empirically evaluate the impact of the choice of the underlying MaxSAT solver on the
performance of Pakota on various NP-complete and ΣP2 -complete variants of extension
and status enforcement. This complements the scalability experiments using only a single
solver presented in [32,28]. For the NP problems, we used five state-of-the-art MaxSAT
solvers: MaxHS [19], Maxino [1], MSCG [27], Open-WBO [26], and WPM [2], using
the newest MaxSAT Evaluation 2015 versions, as well as the commercial IBM CPLEX
integer programming solver (version 12.6). For CEGAR, we compare the performance of
Open-WBO and LMHS [30] as the underlying MaxSAT solvers, as supported by Pakota.
The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core machines with
32-GB RAM and Debian GNU/Linux 8 using a timeout of 900 seconds per instance.

We generated the benchmarks using our AfGen and EnfGen generators. For exten-
sion enforcement, for each number of arguments |A| ∈ {25, 50, . . . } and each edge
probability p ∈ {0.05, 0.1, 0.2, 0.3}, we generated five AFs. For each AF, we gen-
erated five enforcement instances with |T | enforced arguments, for each |T |/|A| ∈
{0.05, 0.1, 0.2, 0.3}. We thus obtained 400 instances for each |A|. For status enforce-
ment, for each |A| ∈ {20, 40, . . . , 200} and p ∈ {0.05, 0.1, . . . , 0.35}, we generated
10 AFs. For each AF, we generated an enforcement instance containing (|P |, |N |) ∈
{(1, 0), (2, 0) . . . , (5, 0), (5, 1), (2, 2), (1, 5)} positively and negatively enforced argu-
ments. This gave a total of 560 status enforcement instances for each |A|.

An overview of the results, comparing the different underlying MaxSAT solvers, is
provided in Fig. 5 (NP-complete extension enforcement), Fig. 6 (NP-complete status
enforcement), and Fig. 7 (CEGAR for extension and status enforcement). Fig. 5 left
and middle show the number of instances solved (x-axis) by different MaxSAT solvers
under different per-instance timeouts (y-axis) for non-strict extension enforcement under
the admissible (left) and stable semantics (middle). Interestingly, in both cases CPLEX
performs well (although on admissible, on a majority of the instances is solved faster by
most of the other solvers).

On strict extension enforcement under the complete semantics (Fig. 5 right), the
median runtimes for CPLEX scale noticeably worse than for the rest of the solvers
wrt the number of arguments. However, here we note that only CPLEX and Maxino
were able to solve all instances; thus Maxino turned out to be clearly the best solver
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Fig. 5. MaxSAT solver comparison on NP-complete extension enforcement. Left: non-strict
admissible; middle: non-strict stable; right: strict complete
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on strict complete. Fig. 6 provides an overview for credulous status enforcement under
the admissible semantics. Here we observe that the so-called core-guided MaxSAT
solvers perform the best, while the SAT-IP hybrid solver MaxHS—typically competitive
mainly on weighted MaxSAT instances—performs the worst. We also observed similar
performance under the stable semantics. Overall, for the NP-complete enforcement
problems, CPLEX and Maxino tend to provide the best choice of solvers, but the
choice of the single best solver tends to depend on the problem variant (strict/non-strict,
semantics).
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Fig. 6. NP-complete credulous sta-
tus enforcement under admissible

Turning to the ΣP2 -complete enforcement problems
Fig. 7 gives an overview of the performance of Open-
WBO and LMHS within our CEGAR procedures for
strict extension enforcement under the preferred se-
mantics (left), and credulous (middle) and skeptical
(right) status enforcement under the stable semantics.
Evidently, on these instances generated with our Enf-
Gen, out of the two solvers Open-WBO provides the
best MaxSAT solver for the CEGAR procedures.

6 Conclusions

The Pakota system is a first system implementation in its generality for solving NP-
complete and ΣP2 -complete problem instances of extension enforcement and status
enforcement—two related problems motivated by the study of dynamics aspects of
argumentation frameworks. We provided a detailed overview of the Pakota system—
available in open source—including the input-output format, system design, functionality,
details on the underlying MaxSAT encodings and MaxSAT-based CEGAR algorithms
implemented in Pakota, and its API allowing for plugging in different SAT and MaxSAT
solvers used as core search engines. We also provided a detailed evaluation of the
impact of the choice of MaxSAT solvers (including the use of the state-of-the-art integer
programming system CPLEX) on the performance of Pakota on various variants of
extension and status enforcement problems. In addition to Pakota, we also provide
open-source benchmark generators for extension and status enforcement for the use of
the research community at large through the Pakota system webpage.
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Fig. 7. MaxSAT solver comparison within CEGAR. Left: strict extension enforcement under
preferred; credulous (middle) and skeptical (right) status enforcement under stable
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