
Extension Enforcement under Grounded Semantics in Abstract Argumentation

Andreas Niskanen
University of Helsinki, Finland

Johannes P. Wallner
TU Wien, Austria

Matti Järvisalo
University of Helsinki, Finland

Abstract

The study of dynamics in abstract argumentation gives rise
to optimization problems that are NP-hard also under the
grounded semantics, in contrast to argument acceptance prob-
lems over argumentation frameworks (AF). Developing ef-
ficient systems for AF reasoning under grounded semantics
has received less attention compared to other central AF se-
mantics under which acceptance is NP-hard. In particular,
grounded semantics is not currently supported by recent sys-
tems for extension enforcement, despite (or due to) its non-
triviality. In this work, we propose and empirically evaluate
three first approaches to enforcement under grounded seman-
tics. While each of the approaches is based on employing con-
straint optimization solvers, we show empirically that there
are significant differences in the scalability of the approaches.

1 Introduction

Argumentation is a vibrant area of modern KR and AI re-
search. Abstract argumentation provides via argumentation
frameworks (AFs) (Dung 1995) one of the central knowl-
edge representation and reasoning formalisms for the study
of computational aspects of argumentation. In contrast to
the case of various other central semantics in abstract ar-
gumentation (Baroni, Caminada, and Giacomin 2011), the
well-studied acceptance problems over AFs are polynomial-
time decidable under the grounded semantics (Dung 1995),
one of the central AF semantics. Thereby developing effi-
cient systems for AF reasoning under the grounded seman-
tics has received less attention in comparison to the other
important AF semantics under which deciding acceptance is
NP-hard (Dunne and Wooldridge 2009; Dunne and Bench-
Capon 2002; Dimopoulos and Torres 1996). However, the
recent line of research on dynamics in abstract argumen-
tation (Baumann and Brewka 2010; Cayrol, de Saint-Cyr,
and Lagasquie-Schiex 2010; Baumann 2012; Baumann and
Brewka 2015; Coste-Marquis et al. 2015; Diller et al. 2015;
de Saint-Cyr et al. 2016)—motivated by the fact that ar-
gumentation is intrinsically a dynamic process—gives rise
to interesting optimization problems which have proven to
be NP-hard also under the grounded semantics. Specifically,
extension enforcement (Baumann and Brewka 2010) under
the grounded semantics, where the task is to make a given

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

set of arguments the grounded extension of a given AF by
changing the attack relation of the AF, has been recently
shown to be NP-hard (Wallner, Niskanen, and Järvisalo
2017) under the distance measure of minimizing the num-
ber of changes to the attack structure. In terms of appli-
cation scenarios, enforcement as a formal problem situates
e.g. within the field of persuasion, where a certain goal is
to be achieved by bringing new information to a debate (de
Saint-Cyr et al. 2016).

First algorithms with implemented systems for extension
enforcement (Coste-Marquis et al. 2015; Niskanen, Wall-
ner, and Järvisalo 2016), covering various other semantics
have been proposed. However, no systems for extension
enforcement under grounded semantics are currently avail-
able, despite—or due to—the fact that supporting this se-
mantics has turned out to be computationally non-trivial.
In this work, we bridge this gap by proposing and em-
pirically evaluating several algorithmic approaches to en-
forcement under grounded semantics. The approaches are
based on declarative techniques, each making use of distinct
declarative aspects. In particular, we propose (i) to extend
an earlier-proposed answer set programming (ASP) encod-
ing (Egly, Gaggl, and Woltran 2010) for the grounded ex-
tension to the realm of extension enforcement; (ii) a new
direct maximum satisfiability (MaxSAT) encoding for the
problem; as well as (iii) a MaxSAT-based counterexample-
guided abstraction refinement (CEGAR) (Clarke et al. 2003;
Clarke, Gupta, and Strichman 2004) procedure that makes
use of earlier theoretical observations (Boella, Kaci, and
van der Torre 2009a; 2009b; Rienstra, Sakama, and van der
Torre 2015) for achieving a non-trivial, tighter refinement
step. We show empirically that there are significant differ-
ences in the scalability of the approaches when applied on
extension enforcement instances arising from benchmarks
from the latest ICCMA AF solver competition (Gaggl et al.
2016), with the two new MaxSAT-based approaches domi-
nating the ASP encoding.

2 Argumentation Frameworks

We recall argumentation frameworks (Dung 1995) and their
semantics (Baroni, Caminada, and Giacomin 2011).

Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A is a finite set of arguments and R⊆A×A

is the attack relation. The pair (a,b) ∈ R means that a at-
tacks b. An argument a ∈ A is defended (in F) by a set S⊆ A
if, for each b∈ A s.t. (b,a)∈ R, there is a c∈ S s.t. (c,b)∈ R.

Semantics for AFs are defined through a function σ which
assigns to each AF F = (A,R) a set σ(F) ⊆ 2A of exten-
sions. Here we consider the functions adm, com, and grd,
which stand for admissible, complete, and grounded exten-
sions, respectively.

Definition 2. Given an AF F = (A,R), the characteris-

tic function FF : 2A → 2A of F is FF(S) = {x ∈ A |
x is defended by S}. A set S⊆ A is conflict-free (S ∈ cf (F)),
if there are no a,b ∈ S, such that (a,b) ∈ R. For a conflict-
free set S ∈ cf (F), it holds that S ∈ adm(F) iff S ⊆FF(S);
S ∈ com(F) iff S = FF(S); and S ∈ grd(F) iff S is the ⊆-
least fixed-point of FF .

For any AF F we have cf (F) ⊇ adm(F) ⊇ com(F) ⊇
grd(F). A σ -extension is an extension under a semantics
σ ∈ {adm,com,grd}.

Example 1. Let F = (A,R) be an AF with A =
{a,b,c,d,e} and R = {(a,b),(b,c),(c,d),(d,c),(d,e),(e,e)}.
We have adm(F) = { /0,{a},{a,c},{a,d},{d}}, com(F) =
{{a},{a,c},{a,d}}, and grd(F) = {{a}}.

3 Extension Enforcement

We focus on argument-fixed extension enforcement (Coste-
Marquis et al. 2015; Wallner, Niskanen, and Järvisalo 2017)
under grounded semantics. In strict extension enforcement,
given an AF F = (A,R), a subset of its arguments T ⊆A, and
an AF semantics σ , the goal is to modify R such that T be-
comes a σ -extension. In non-strict extension enforcement,
it suffices that T is a subset of a σ -extension. We denote by

enf (s,F,T,σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)},

the set of attack structures that strictly (s) enforce T under σ

for an AF F , and for non-strict (ns) enforcement by

enf (ns,F,T,σ) = {R′ |F ′= (A,R′), ∃T ′ ∈σ(F ′) : T ′⊇ T}.

The Hamming distance between two attack structures is
|R∆R′| = |R \R′|+ |R′ \R|, i.e., the number of changes be-
tween R and R′. We consider extension enforcement as the
optimization problem of minimizing the Hamming distance
between the original and modified attack structures.

Grounded Extension Enforcement (M ∈ {s,ns})
Input: AF F = (A,R), T ⊆ A
Task: Find an AF F∗ = (A,R∗) with

R∗ ∈ argmin
R′∈enf (M,F,T,grd)

|R∆R′|.

The corresponding decision problem, asking whether
there is a solution attack structure R′ with |R∆R′| ≤ k for
a given integer k, is NP-complete (Wallner, Niskanen, and
Järvisalo 2017). Note that T = /0 is trivial for both the strict
and non-strict case. Further, for any R′ ∈ enf (M,F,T,grd), if
T 6= /0, there is an unattacked argument in R′ (the grounded
extension is empty iff all arguments are attacked).

Listing 1: Module πenf

mAtt (X,Y) ← not n mAtt (X,Y) , arg (X) , arg (Y) .
n mAtt (X,Y) ← not mAtt (X,Y) , arg (X) , arg (Y) .
← enf (X) , not in (X) .
← in (X) , not enf (X) , s t r i c t .
n r o o t (X) ← arg (X) , arg (Y) , mAtt (Y,X) .
r oo t (X) ← arg (X) , not n r o o t (X) .
r o o t e x i s t s ← enf (X) , r oo t (X) , s t r i c t .
r o o t e x i s t s ← arg (X) , r oo t (X) , not s t r i c t .
← not r o o t e x i s t s .

mAtt (X,Y) , not a t t (X,Y) . [1 ,X,Y]

not mAtt (X,Y) , a t t (X,Y) . [1 ,X,Y]

4 Grounded Enforcement via ASP

We give an ASP encoding for grounded enforcement by
extending an encoding for the simpler problem of com-
puting the grounded extension (Egly, Gaggl, and Woltran
2010). Here we only briefly recall the ASP language fea-
tures we make use of; for more details, see (Gebser et al.
2012). We use programs with weak constraints of the form
“

b1, . . . ,bn.[w, t1, . . . , tm]”, with each bi an atom, each t j a
term, and w an integer; intuitively, if an answer set violates
this constraint, then each tuple (t1, . . . , tm) contributes cost
w. An optimal answer set is one with minimum cost.

To encode enforcement under grounded semantics, we
conjoin Egly, Gaggl, and Woltran’s (2010) encoding for the
grounded extension, πground , with the encoding πenf given
in Listing 1. The encoding computes the grounded exten-
sion for an attack structure in predicate in which depends
now on mAtt, the modified attack structure. Encoding πenf

guesses a modified attack structure and constrains the an-
swer sets so that the enforced arguments (enf) are a subset
of in (and under strict enforcement to coincide with in). The
next four rules compute roots (unattacked arguments) of the
modified attack structure, and check whether there is such a
root. While these rules are redundant (every grounded exten-
sion has an unattacked argument), we observed that solvers
benefit from them. Finally, the weak constraints ensure that
unit weight is given to each changed attack.

5 Grounded Enforcement via MaxSAT

As an alternative to the ASP approach, we propose a direct
MaxSAT encoding for grounded extension enforcement. Re-
call that a propositional clause is a disjunction of literals,
i.e., positive and negative Boolean variables. Satisfaction of
a clause by a truth assignment τ is defined in the standard
way. An instance ϕ =(ϕh,ϕs) of the (partial) MaxSAT prob-
lem consists of a set ϕh of hard clauses and a set ϕs of soft
clauses. An assignment τ that satisfies every clause in ϕh is
a solution to ϕ . The cost of a solution τ to ϕ is C(ϕ,τ) =
∑c∈ϕs

(1−τ(c)), i.e., the number of soft clauses not satisfied

by τ . A solution τ is optimal if C(ϕ,τ)≤ C(ϕ,τ ′) holds for
any solution τ ′ to ϕ . The MaxSAT problem asks to find an
optimal solution to a given ϕ .

Let F = (A,R) be the AF of an enforcement instance.
For each a,b ∈ A, define a Boolean variable ra,b with the

interpretation τ(ra,b) = 1 iff the attack (a,b) is included
in the attack structure R′ of the solution AF F ′ = (A,R′).
We minimize the Hamming distance between the original
and solution attack structures via the soft clauses ϕs(F) =
∧

a,b∈A r′a,b, where r′a,b is ra,b if (a,b) ∈ R, and else ¬ra,b.

The computation of the grounded extension of F ′ is en-
coded via hard clauses. The idea is to map each argument a
in the grounded extension of F ′ to a level number Level(a)
corresponding to the number of applications of FF ′ to /0
after which the argument is included, that is, Level(a) =
min{n ∈ Z+ | a ∈ F n

F ′
(/0)}. To encode this, we define

Boolean variables la
n for each a ∈ A and n = 1, . . . ,⌈|A|/2⌉

with the interpretation τ(la
n) = 1 iff Level(a) ≤ n, and im-

pose the following constraints.

∀a ∈ A : ϕ
a
1 =

(

la
1 ↔

∧

b∈A

¬rb,a

)

∀a ∈ A,n≥ 2: ϕ
a
n =

(

la
n ↔

∧

b∈A

(

rb,a→
∨

c∈A

(rc,b∧ lc
n−1)

)

)

∀a ∈ A : ϕ
a
prop =

⌈|A|/2⌉
∧

n=2

(

la
n−1→ la

n

)

ϕ f irst =
∨

a∈A

la
1

Here ϕa
1 encodes that for argument a, Level(a) = 1 if and

only if a is unattacked. Likewise, ϕa
n for n≥ 2 encodes that

Level(a) ≤ n if and only if a is defended by the arguments
on levels 1, . . . ,n− 1. The formulas ϕa

prop and ϕ f irst are re-
dundant, but help guiding the MaxSAT solver in practice.
In analogy with root exists of the ASP encoding, ϕ f irst en-
codes that every grounded extension contains an unattacked
argument.

Let T ⊆ A be a set to be enforced under grounded. For
non-strict enforcement, the unit clauses

∧

a∈T la
⌈|A|/2⌉ make T

a subset of the grounded extension. For strict enforcement,
we need in addition the clauses

∧

a 6∈T ¬la
⌈|A|/2⌉ to make sure

that no other arguments are part of the grounded extension.
Furthermore, for a,b∈ T , the unit clause (¬ra,b) encodes the
fact that ra,b must be false. For strict enforcement la

n is false
for all n and for all a 6∈ T ; thereby we can replace the bound
⌈|A|/2⌉ by |T |.

6 Grounded Enforcement via CEGAR

Instead of a direct MaxSAT encoding, another way to
solve extension enforcement under grounded can be de-
rived based on the fact that the grounded extension is one
of the complete (and admissible) extensions. This gives
rise to a counterexample-guided abstraction refinement (CE-
GAR) procedure for grounded extension enforcement. The
approach iteratively optimally enforces T under complete
semantics using a direct MaxSAT encoding, as an abstrac-
tion of grounded enforcement. If T is the grounded exten-
sion of the AF resulting from the enforcement, the AF is an
optimal solution to grounded extension enforcement. If T is
not the grounded extension of the obtained AF, a constraint

ruling out the AF is added to the MaxSAT encoding as a re-
finement to the abstraction, and a MaxSAT solver is again
invoked. For obtaining a tighter and non-trivial abstraction
refinement and ruling out more non-solutions from further
consideration after each MaxSAT solver call, we make use
of theoretical observations from (Boella, Kaci, and van der
Torre 2009a; 2009b; Rienstra, Sakama, and van der Torre
2015) on what type of changes to an attack structure can and
can not influence the grounded extension of an AF.

In more detail, we propose the CEGAR algorithm pre-
sented as Algorithm 1, adapting (Wallner, Niskanen, and
Järvisalo 2017). For strict enforcement, we choose com-
plete as the semantics for the abstraction, and admissible for
non-strict (since complete and admissible coincide for non-
strict). In both cases we make use of the same soft clauses
ϕs as in the previous section. Strict enforcement of T under
complete semantics is encoded via the formula

EXT(s,F,T,com) =
∧

a,b∈T

¬ra,b∧
∧

a∈T

∧

b∈A\T

(rb,a→
∨

c∈T

rc,b)

∧
∧

a∈A\T

∨

b∈A

(rb,a∧
∧

c∈T

¬rc,b).

For non-strict enforcement under admissible, we also define
for each a ∈ A a Boolean variable xa with the interpretation
τ(xa) = 1 iff argument a is included in the extension of the
solution AF. The hard clauses

EXT(ns,F,T,adm) =
∧

a∈T

xa∧
∧

a,b∈A

(

ra,b→ (¬xa∨¬xb)
)

∧
∧

a,b∈A

(

(xa∧ rb,a)→
∨

c∈A

(xc∧ rc,b)

)

are used to solve non-strict enforcement under admissible.
In addition, we augment the abstraction by including

clauses ROOT(s,F,T) =
∧

a∈T ϕa
1 ∧

∨

a∈T la
1 (analogous to

encoding roots in the ASP and MaxSAT encodings) for
strict enforcement, stating that T should contain at least one
unattacked argument, which together with EXT(s,F,T,com)
implies that all unattacked arguments will be contained in T .
For non-strict, we add clauses ROOT(ns,F,T) =

∧

a∈A ϕa
1 ∧

∨

a∈A la
1 ∧
∧

a∈A\T (l
a
1 → xa) expressing that all unattacked ar-

guments should be contained in an admissible superset.
The abstraction is solved in the main loop using MaxSAT,

obtaining the attack relation CONSTRUCTAF(τ) = {(a,b) ∈
A×A | τ(ra,b) = 1}. We then check if T is (for strict) or is

Algorithm 1 CEGAR-based extension enforcement under
grounded semantics with M ∈ {s,ns}.

1: if M = s then σ ← com else σ ← adm
2: ϕh← EXT(M,F,T,σ)∧ ROOT(M,F,T)
3: while true do
4: (c,τ)← MAXSAT(ϕh,ϕs(F))
5: F ′← (A,CONSTRUCTAF(τ))
6: if M = s and T = grd(F ′) then return F ′

7: if M = ns and T ⊆ grd(F ′) then return F ′

8: ϕh← ϕh∧ REFINE(F ′)

●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●
●●●●
●●
●●●
●
●●●
●●
●●
●●●●●●●●
●●●●
●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●
●●●●●
●●●
●●●●
●

●
●
●●●
●●●●

●●●
●●
●

●●●
●
●●
●●●●
●
●●

●

●
●●
●●
●

●

●●
●
●

●
●
●●

●
●

●

0 200 400 600 800

0
2

0
0

4
0

0
6

0
0

8
0

0

instances solved

C
P

U
 t

im
e

●

MaxSAT−based:

Open−WBO

MaxHS

Maxino

CPLEX

QMaxSAT

CEGAR

CEGAR (naive)

ASP encoding:

Clingo

●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●
●●
●●●●

●●
●●
●●●●●●●●

●●●●●
●
●●●●●

●●
●●●
●

●●
●
●●
●●●●

●●
●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●
●●●

●

●●
●●
●
●
●
●
●●
●●

●

●

●

●
●

●

●
●

0 50 100 150 200 250 300

0
2

0
0

4
0

0
6

0
0

8
0

0

instances solved

C
P

U
 t

im
e

Figure 1: Comparison of approaches for strict (left) and non-strict (right) enforcement under grounded.

included in (for non-strict) the grounded extension of the
AF F ′ = (A,R′). If the check fails, we proceed by refin-
ing the abstraction. At this point we make use of theoretical
observations from (Boella, Kaci, and van der Torre 2009a;
2009b; Rienstra, Sakama, and van der Torre 2015). Specifi-
cally, in the labelling-based setting (Baroni, Caminada, and
Giacomin 2011), under grounded semantics an argument a∈
ingrd(F) if a ∈ grd(F), a ∈ outgrd(F) if there is a b ∈ grd(F)
such that (b,a) ∈ R, and a ∈ undecgrd(F) otherwise. Let

ATTADD(F) ={(a,b) 6∈ R | (a,b) ∈ (ingrd(F)× ingrd(F)) ∪

(ingrd(F)×undecgrd(F)) ∪

(outgrd(F)× ingrd(F)) ∪

(undecgrd(F)× ingrd(F))}

be the attacks that may alter the grounded extension of
(A,R) when added to R; e.g., if both a and b are part of
the grounded extension, adding attack (a,b) makes this set
conflicting. Further, let ATTREM(F) = {(a,b) ∈ R | (a,b) ∈
(ingrd(F)× outgrd(F)) ∪ (undecgrd(F)× undecgrd(F))} be
the attacks that can change the grounded extension of
(A,R) when removed from R. This yields a non-trivial
abstraction refinement REFINE(F) =

∨

(a,b)∈ATTADD(F) ra,b ∨
∨

(a,b)∈ATTREM(F)¬ra,b, stating that in the subsequent itera-

tions, we should add (respectively remove) an attack not
present (respectively present) in the current solution in such
a way that we obtain a different grounded extension.

7 Experiments
We evaluate the three approaches to grounded exten-
sion enforcement using state-of-the-art solvers: Clingo
v5.2.2 (Gebser et al. 2016) for ASP, and, for the di-
rect MaxSAT encoding, MaxHS (Davies and Bacchus
2013), Maxino (Alviano, Dodaro, and Ricca 2015),
Open-WBO (Martins, Manquinho, and Lynce 2014), and
QMaxSAT (Koshimura et al. 2012), using the MaxSAT
Evaluation 2017 versions, as well as the integer program-
ming (IP) solver CPLEX v12.7 using a standard trans-
lation from MaxSAT to IP (Ansótegui and Gabàs 2013;
Saikko, Berg, and Järvisalo 2016). We used Open-WBO as
the underlying MaxSAT solver in the CEGAR approach.

We generated benchmarks from instances from the 2017
ICCMA competition (Gaggl et al. 2016) (sets A, B, and C)
as follows. For each AF with at most 300 arguments, we
computed the grounded extension of the AF. Let pflip = 0.05.
Then, for each argument a, if a is in the grounded extension,
we include a in T with probability 1− pflip, and if not, we
include it with probability pflip. If the resulting set is empty,
we rerun the procedure. Intuitively, this creates a non-empty
’distorted’ version of the original grounded extension. We
repeated this procedure 5 times for each AF, resulting in a
total of 1340 enforcement instances.

A summary of the results is presented in Figure 1, show-
ing the number of solved instances (x-axis) under a per-
instance time limit (y-axis) up to 900 s. Overall, we ob-
serve that non-strict enforcement is expectedly harder to
solve due to the less constrained search space. The MaxSAT
and CEGAR approaches clearly outperform the ASP ap-
proach, potentially partially due to the size of the ASP pro-
grams after grounding. All MaxSAT solvers perform rel-
atively well. Among all the approaches Open-WBO—the
best-performing solver on unweighted instances in the 2017
MaxSAT Evaluation—on the direct MaxSAT encoding is the
dominant approach, also when compared to the commer-
cial CPLEX solver. CEGAR is competitive with MaxSAT
on non-strict, on which we also see a clear benefit from
the non-trivial abstraction refinement compared to a naive
refinement in which only the exact AF structure found is
ruled out from further consideration. While CEGAR solved
less instances than the best MaxSAT solver, CEGAR tends
to be fastest on instances which it solves. Further, CEGAR
was able to solve some non-strict instances with 250 argu-
ments, while the MaxSAT and ASP approaches solved only
instances with less than 150 and 50 arguments, respectively.

8 Conclusions

We proposed the first declarative approaches to the NP-hard
extension enforcement problem under grounded semantics.
Each of the approaches also allows for integrating structural
constraints e.g. on which particular attacks and non-attacks
may be subjected to change. The alternative MaxSAT and

CEGAR approaches show noticeably better scaling than the
ASP encoding based on an earlier ASP encoding for com-
puting the grounded extension. The approaches may be of
interest for potential further optimization problems related
to argumentation dynamics which turn out to be NP-hard
under the grounded semantics.

Acknowledgements

Work supported in part by Academy of Finland (grants
276412 and 312662), DoCS Doctoral Programme in Com-
puter Science and Research Funds of the University of
Helsinki, and Austrian Science Fund (FWF): P30168-N31.

References

Alviano, M.; Dodaro, C.; and Ricca, F. 2015. A MaxSAT
algorithm using cardinality constraints of bounded size. In
Proc. IJCAI, 2677–2683. AAAI Press.

Ansótegui, C., and Gabàs, J. 2013. Solving (weighted) par-
tial MaxSAT with ILP. In Proc. CPAIOR, volume 7874 of
LNCS, 403–409. Springer.

Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. Knowl. Eng. Rev.
26(4):365–410.

Baumann, R., and Brewka, G. 2010. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In
Proc. COMMA, volume 216 of FAIA, 75–86. IOS Press.

Baumann, R., and Brewka, G. 2015. AGM meets abstract ar-
gumentation: Expansion and revision for Dung frameworks.
In Proc. IJCAI, 2734–2740. AAAI Press.

Baumann, R. 2012. What does it take to enforce an ar-
gument? Minimal change in abstract argumentation. In
Proc. ECAI, volume 242 of FAIA, 127–132. IOS Press.

Boella, G.; Kaci, S.; and van der Torre, L. W. N. 2009a. Dy-
namics in argumentation with single extensions: Abstraction
principles and the grounded extension. In Proc. ECSQARU,
volume 5590 of LNCS, 107–118. Springer.

Boella, G.; Kaci, S.; and van der Torre, L. W. N. 2009b. Dy-
namics in argumentation with single extensions: Attack re-
finement and the grounded extension (extended version). In
ArgMAS Revised Selected and Invited Papers, volume 6057
of LNCS, 150–159. Springer.

Cayrol, C.; de Saint-Cyr, F. D.; and Lagasquie-Schiex,
M. 2010. Change in abstract argumentation frameworks:
Adding an argument. J. Artif. Intell. Res. 38:49–84.

Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith,
H. 2003. Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5):752–794.

Clarke, E. M.; Gupta, A.; and Strichman, O. 2004. SAT-
based counterexample-guided abstraction refinement. IEEE
T-CAD 23(7):1113–1123.

Coste-Marquis, S.; Konieczny, S.; Mailly, J.; and Marquis,
P. 2015. Extension enforcement in abstract argumentation
as an optimization problem. In Proc. IJCAI, 2876–2882.
AAAI Press.

Davies, J., and Bacchus, F. 2013. Exploiting the power
of MIP solvers in MaxSAT. In Proc. SAT, volume 7962 of
LNCS, 166–181. Springer.

de Saint-Cyr, F. D.; Bisquert, P.; Cayrol, C.; and Lagasquie-
Schiex, M. 2016. Argumentation update in YALLA (Yet
Another Logic Language for Argumentation). Int. J. Approx.
Reason. 75:57–92.

Diller, M.; Haret, A.; Linsbichler, T.; Rümmele, S.; and
Woltran, S. 2015. An extension-based approach to belief
revision in abstract argumentation. In Proc. IJCAI, 2926–
2932. AAAI Press.

Dimopoulos, Y., and Torres, A. 1996. Graph theoretical
structures in logic programs and default theories. Theoret.
Comput. Sci. 170(1-2):209–244.

Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–358.

Dunne, P. E., and Bench-Capon, T. J. M. 2002. Coherence
in finite argument systems. Artif. Intell. 141(1/2):187–203.

Dunne, P. E., and Wooldridge, M. 2009. Complexity of
abstract argumentation. In Argumentation in Artificial Intel-
ligence. Springer. 85–104.

Egly, U.; Gaggl, S.; and Woltran, S. 2010. Answer-set pro-
gramming encodings for argumentation frameworks. Argu-
ment & Computation 1(2):147–177.

Gaggl, S. A.; Linsbichler, T.; Maratea, M.; and Woltran, S.
2016. Introducing the second international competition on
computational models of argumentation. In Proc. SAFA, 4–
9. CEUR-WS.org.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made easy
with Clingo 5. In ICLP Tech. Commun., 2:1–2:15.

Koshimura, M.; Zhang, T.; Fujita, H.; and Hasegawa, R.
2012. QMaxSAT: A partial Max-SAT solver. J. SAT
8(1/2):95–100.

Martins, R.; Manquinho, V. M.; and Lynce, I. 2014. Open-
WBO: A modular MaxSAT solver,. In Proc. SAT, volume
8561 of LNCS, 438–445. Springer.

Niskanen, A.; Wallner, J. P.; and Järvisalo, M. 2016. Pakota:
A system for enforcement in abstract argumentation. In
Proc. JELIA, volume 10021 of LNCS, 385–400. Springer.

Rienstra, T.; Sakama, C.; and van der Torre, L. W. N. 2015.
Persistence and monotony properties of argumentation se-
mantics. In TAFA Revised Selected Papers, volume 9524 of
LNCS, 211–225. Springer.

Saikko, P.; Berg, J.; and Järvisalo, M. 2016. LMHS: A SAT-
IP hybrid MaxSAT solver. In Proc. SAT, volume 9710 of
LNCS, 539–546. Springer.

Wallner, J. P.; Niskanen, A.; and Järvisalo, M. 2017. Com-
plexity results and algorithms for extension enforcement in
abstract argumentation. J. Artif. Intell. Res. 60:1–40.

