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Abstract

Generalizing Bayesian networks, maximal ances-
tral graphs (MAGs) are a theoretically appealing
model class for dealing with unobserved variables.
Despite significant advances in developing prac-
tical exact algorithms for learning score-optimal
Bayesian networks, practical exact algorithms for
learning score-optimal MAGs have not been de-
veloped to-date. We develop here methodology for
score-based structure learning of directed maximal
ancestral graphs. In particular, we develop local
score computation employing a linear Gaussian
BIC score, as well as score pruning techniques,
which are essential for exact structure learning ap-
proaches. Furthermore, employing dynamic pro-
gramming and branch and bound, we present a first
exact search algorithm that is guaranteed to find a
globally optimal MAG for given local scores. The
experiments show that our approach is able to find
considerably higher scoring MAGs than previously
proposed in-exact approaches.

1 INTRODUCTION

Exact approaches to Bayesian network structure learn-
ing [Bartlett and Cussens, 2017, van Beek and Hoffmann,
2015, Yuan and Malone, 2013] have flourished in recent
years. Motivated by guarantees on learning globally optimal
structures over a justified Bayesian score and the resulting
gains in accuracy from limited number of observational
data points, advances in scalability of exact structure learn-
ing have been achieved through harnessing different search
techniques and optimality-preserving score pruning.

However, despite their popularity, Bayesian networks (BNs)
offer only a rather limited independence and causal model.
In particular, any causal inference based on BNs must as-
sume causal sufficiency, which is rarely satisfied in real-

world settings [Spirtes et al., 1993]. Thus, the demand for ac-
curate structure learning in the presence of latent variables is
not answered by the various exact approaches developed for
BN structure learning (BNSL). Maximal ancestral graphs
(MAGs), on the other hand, are a theoretically appealing gen-
eralization of BNs to account for unobserved variables and
latent confounding [Richardson and Spirtes, 2002, Spirtes
et al., 1993]. Since MAGs can represent marginalizations of
BNs and retain many of their important properties, they have
been extensively used in causal inference [Richardson and
Spirtes, 2003, Zhang, 2008a,b, Jaber et al., 2019, Perkovic
et al., 2017, Spirtes et al., 1993].

In contrast to BNs, for which significant advances in ex-
act structure learning algorithms have been made, exact
approaches to learning MAGs have not been developed, de-
spite the potential gains in applicability.1 Several constraint-
based learning algorithms for MAGs or their equivalence
classes [Ramsey et al., 2012, Colombo and Maathuis, 2014,
Zhang, 2008b, Claassen and Heskes, 2012, Bernstein et al.,
2020, Claassen et al., 2013] are in-exact and use indepen-
dence tests, which are not very accurate for large condition-
ing sets and relatively small sample sizes. As for score-based
learning, Tsirlis et al. [2018] recently presented a greedy
score-based approach under the BIC score (a consistent
scoring criterion for linear Gaussian parameterization of
MAGs [Richardson and Spirtes, 2002]) in which the needed
maximum likelihood estimates can be computed with the so-
called residual iterative conditional fitting algorithm (RICF)
[Drton et al., 2009]. This greedy search approach builds on
earlier developments for GSMAG and MMHC [Triantafillou
and Tsamardinos, 2016, Tsamardinos et al., 2006]. Further
studies in this direction include Chobtham and Constantinou

1Note that while there is recent work on even more general
model classes and settings; they are either inexact [Nowzohour
et al., 2017, Améndola et al., 2020] or operate on arguably less
justified objective functions [Rantanen et al., 2020, Triantafillou
and Tsamardinos, 2015, Hyttinen et al., 2014] as BIC or Bayesian
scores for discrete or linear Gaussian data [Geiger and Heckerman,
1994, Consonni and Rocca, 2012].
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Figure 1: (a) A (MAG). (b) A mixed graph that is not a
MAG: there is an inducing path between x and q.

[2020], who combine structure and causal effect estimation,
and GFCI which combines score-based and constraint-based
learning [Ogarrio et al., 2016]. However, all of these ap-
proaches employ forms of greedy search without guarantees
on the quality of the obtained solutions.

In this work, we develop score-based learning of MAGs via
exact search, motivated by the success of exact approaches
to BN structure learning. In particular, we formulate the
MAGSL problem of learning score-optimal MAGs employ-
ing the Gaussian BIC score. We outline sparsity conditions
under which exact search is possible, generalizing the par-
ent set bounds standardly employed in exact approaches to
BN structure learning. Lifting optimality-preserving score
pruning techniques essential for scaling up exact BN struc-
ture learning algorithms, we develop methodology of local
score computation and score pruning for MAGs. From score
computation to search for optimal MAGs, combining dy-
namic programming and branch-and-bound we present a
first exact search algorithm for learning MAGs for given
local scores. We evaluate this exact score-based MAG learn-
ing approach both in terms of runtime efficiency, comparing
to a baseline approach based on employing declarative meth-
ods (namely, answer set programming), and also empirically
show that our approach finds better scoring MAGs than its
direct competitors. All in all, our contributions open up new
avenues for developing increasingly efficient and accurate
exact approaches to learning MAGs.

2 MAG STRUCTURE LEARNING

Following Zhang [2008a], we consider MAGs without undi-
rected edges [Richardson and Spirtes, 2002].

Definition 1 (MAG). A mixed graph (V,E) over a set of
nodes V , and edge relation E = E→ ∪ E↔ consisting of
both directed and bidirected edges is a (directed) maximal
ancestral graph (MAG) if

i. the graph does not contain any directed or almost
directed cycles (ancestrality); and

ii. there is no inducing path between any two non-
adjacent vertices (maximality).

Ancestors of vi are the nodes vj from which there is a
directed path vj → · · · → vi to the node vi. A directed cycle
is a directed path vi → · · · → vi. An almost directed cycle is

a directed path vi → · · · → vj with a bi-directed edge vi ↔
vj . For example, the mixed graph shown in Figure 1 (a) does
not include an almost directed cycle. A collider on a path
has the adjacent edges on the path pointing towards the node,
i.e.,↔ vi ↔,→ vi ↔,↔ vi ← or→ vi ←. An inducing
path is a path vi · · · vj on which every vertex (except for the
endpoints vi, vj) is a collider on the path and every collider
is an ancestor of an endpoint vi, vj of the path. The path
x ↔ w ↔ y ↔ q in Figure 1 (b) is an inducing path. The
graphical separation criterion for MAGs is m-separation,
which is essentially d-separation after bi-directed edges↔
are replaced with structures← l→ explicitly marking the
unobserved l. This gives intuition to inducing paths, nodes
(e.g. x, q in Figure 1 (b)) connected by an inducing path
cannot be m-separated by any conditioning set.

The following lemma further characterizes inducing paths
in the context of MAGs.

Lemma 1. Every inducing path of length n ≥ 3 nodes in
a MAG between x and y is of the form x ↔ z1 ↔ . . . ↔
zn−2 ↔ y, where each zi is an ancestor of either x or y. In
particular, z1 is an ancestor of y and zn−2 is an ancestor of
x.

Proof. Let G be a MAG with an inducing path between
x and y going through the nodes z1, . . . , zn−2. The edges
between each zi, zi+1 must be bi-directed zi ↔ zi+1 (oth-
erwise zi or zi+1 would not be a collider). Due to maxi-
mality, G has to contain either x ↔ y, x ← y or x → y.
Node z1 cannot be an ancestor of x since that would in-
troduce a directed cycle x → z1 → · · · → x or an
almost directed cycle x ↔ z1 → · · · → x. Thus z1
is an ancestor of y and, by symmetry, zn−2 is an ances-
tor of x. There cannot be an inducing path of the form
x← z1 ↔ . . .↔ zn−2 ↔ y since otherwise z1 would not
be a collider. The inducing path can also not be of the form
x → z1 ↔ . . . ↔ zn−2 ↔ y since z1 is an ancestor of y
and thus otherwise there would be an almost directed cycle
z1 → · · · → y ↔ zn−2 → · · · → x→ z1 . This same logic
can be applied symmetrically to y. Therefore the inducing
path must be of the form x↔ z1 ↔ . . .↔ zn−2 ↔ y.

We define MAGSL as follows.

Problem 1 (MAGSL). Find a MAG G∗ = (V,E∗) such
that

G∗ ∈ argmaxG∈G s(G). (1)

where G denotes the class of MAGs and s gives a score for
each MAG G.

Note that the highest-scoring MAG is a representative of
its equivalence class; the common structural features of the
members of the equivalence class can then be further in-
spected by other methods such as FCI [Spirtes et al., 1993].



We use the BIC scoring function [Richardson and Spirtes,
2002, Tsirlis et al., 2018]

s(G) = lnLG(θ̂)− (|E|+ 2|V |)/2 · lnN, (2)

where N is sample size, LG is the multivariate Gaussian
likelihood function and θ̂ are maximum likelihood parame-
ters for the linear Gaussian model over G. The number of
parameters accounts here for the mean and variance for each
node, and one coefficient per directed or bi-directed edge.

BIC is asymptotically consistent scoring criterion for MAGs
[Richardson and Spirtes, 2002, Tsirlis et al., 2018]. Fur-
thermore, since Markov-equivalent MAGs can represent
the same multivariate Gaussians distributions [Richardson
and Spirtes, 2002, Corrollary 8.19] and Markov-equivalent
MAGs share adjacencies [Spirtes and Richardson, 1996],
the BIC score is score-equivalent.

Fortunately, the score function s factorizes according to
so-called c-components [Tian and Pearl, 2002, Richardson,
2009], which we define for the purpose of this paper as
follows. We denote the set of parents of variable v in a MAG
G by paG(v). Furthermore, we denote the parents of a c-
component C over nodes v1, . . . , vl with a list paG(C) =
(paG(v1), . . . , paG(vl)).

Definition 2 (local c-component). A local c-component is
a pair (Ci, pa(Ci)), where Ci is a graph the nodes of which
are strongly connected via bidirected edges and pa(Ci) is a
list of the parent sets of the nodes in Ci.

In Figure 1 (a), (x ↔ q, ({w}, ∅)) and (w ↔ y, (∅, {q}))
are local c-components. The score of a MAG G containing
l maximal local c-components indexed by i is

s(G) =
∑l

i=1
s(Ci, paG(Ci)), (3)

where s(·, ·) denote the local scores for the c-components.

To make local score computation and exact learning possible
for non-trivial instances, we use two restrictions for G, simi-
larly as what is used for BNSL. We use c to denote the local
c-component size limit (in terms of nodes in Ci). We use p
to denote the limit on parent relations for a c-component, i.e.,∑

x∈Ci
|pa(x)| ≤ p. This means that configuration c = 1, p

is BNSL with maximum number of parents p.

3 LOCAL SCORE COMPUTATION

The first challenge in learning MAGs is computing local
scores. There are vastly more local scores to compute than
in BNSL as we need to consider not only c-components
consisting of subsets of variables but also all different ways
the variables in a c-component can be connected with the
bi-directed edges. Further, the intricate properties of the
model class imply that an iterative method (with strong con-
vergence guarantees) is needed for local score computation

and that special care should be taken when pruning local
scores in order to not jeopardize exactness.

3.1 COMPUTING A LOCAL SCORE

We compute local scores as s(Ci, paG(Ci)) = s(G) −
s(G′), where G is a MAG with the local c-component Ci

and its parents; G′ is the empty MAG over all parents of Ci

not in Ci. The scores s(G′) are cached to speed up scoring,
similarly as in BNSL and in M3HC [Geiger and Hecker-
man, 1994, Tsirlis et al., 2018]. The maximum likelihood
estimates for the BIC score are computed using residual
iterative conditional fitting (RICF) of Drton et al. [2009].
The strong convergence properties of RICF state that from
a given starting point RCIF converges to an accumulation
point, all of which give the same value for the likelihood
function [Drton et al., 2009, Theorem 13]. There can be sev-
eral local optima especially for limited sample sizes [Drton
and Richardson, 2004, Améndola et al., 2020]. In practice,
for local c-components of limited size, RCIF usually con-
verges from random starting points to only a few different
likelihood values; see Section 5. For any c-component of
size 1, RCIF converges in one step and the produced local
scores exactly equal the corresponding BNSL local scores
computed with Gobnilp [Bartlett and Cussens, 2017].

3.2 COMPUTING ALL LOCAL SCORES

Suppose s(C,P ) is a local score where C is a c-component
over nodes x1, . . . , xk and each pa(xi) ∈ P describes the
parents of xi. We say that z ∈ pa(xi) is an internal parent if
z ∈ C and otherwise an external parent. If the c-component
includes inducing paths or (almost) directed cycles, i.e.,
violations of the MAG properties, it cannot be a part of an
optimal MAG. Thus, we call s(C,P ) a valid local score if
and only if the local c-component C with the parents in P
is a MAG itself. A valid score will always remain valid if
we only add external parents to it.

Every valid local score s(C,P ) over observed variables V ,
where the number of nodes in C is at most c and number
of parent relations is limited by

∑
x∈C |pa(x)| ≤ p, can be

computed as follows.

1. For all Y ⊆ V with 1 ≤ |Y | ≤ c, iterate over ev-
ery possible MAG over nodes Y in which every node
belongs to one and the same c-component. This cor-
responds to iterating all valid local scores Sinternal that
only contain internal parents. Ignore scores in which
the total number of parent relations is more than p.

2. Iterate over each local score in Sinternal and go over all
the ways of adding external parents to them (as long as
the parent limit p is not exceeded), forming Sexternal.

3. Return the local scores in Sinternal and Sexternal which
cannot be pruned.
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Figure 2: Pruning a local score for (b) due to a higher score
for (c) may prevent finding an optimal MAG (a), as replacing
(b) in (a) with (c) results in an inducing path btw. x and w.

The benefit of the above formulation is that we only need to
check acyclicity and maximality when constructing Sinternal
which can be multiple times smaller in size compared to
Sexternal (depending on the choice of p).

3.3 LOCAL SCORE PRUNING FOR MAGS

For BNSL, scaling up exact structure learning is made pos-
sible by score pruning techniques [de Campos and Ji, 2011].
The extension of standard score pruning from BNSL to
MAGSL would prune score s(C ′, P ′) if there is a score
s(C,P ) such that (1) s(C,P ) > s(C ′, P ′) and (2) the
mixed graph induced by (C,P ) is a subgraph of the mixed
graph induced by C ′, P ′. This is based on the following
intuition: if the optimal graph would include C ′, P ′, then
replacing it with C,P would give a higher scoring solution.
Since, the graph with C ′, P ′ is acyclic and only edges are
taken out, no cycles can be induced.

However, such a pruning rule is correct only if maximum c-
component size employed is c ≤ 3, as removing edges from
a local c-component may end up violating the maximality
property (recall that all nodes connected by an inducing
path must be adjacent). Consider Figure 2. The local c-
component in (b) included in the MAG in (a) cannot be
replaced by the local c-component in (c), as the endpoints
x,w of the inducing path x ↔ y ↔ z ↔ w would no
longer be adjacent. Thus pruning the local score of the
local c-component in (b) based on a higher scoring local
c-component (c) may jeopardize finding optimal solutions
(such as the MAG in (a)).

We will now propose two rules which provide a way of
score pruning in MAGSL for any choice of c in a way that
is guaranteed to maintain an optimal solution. Note that for
MAGs, local scores can be pruned based on a set of other
local scores, albeit with certain technical conditions.

For presentation of the rules, we use the concept of
maximality-preserving pair of nodes in a MAG which intu-
itively can only have a trivial inducing path between them
(i.e, an edge). If a MAG is non-maximal, it is not due to a
missing edge between any maximality-preserving pair.

Definition 3. Let x and y be nodes in graph G. We call
{x,y} a maximality-preserving pair in G if:

(a) there is no path of bidirected edges between x and y

q

zz $$
x dd

$$

oo // w oo // z::
zz

vs.

y

OO

q

{{
x cc

## y

q

##
+ w oo // z

y

OO

Figure 3: The local score for the left can be pruned if the
sum of local scores for the center and right is higher.

containing more than 3 nodes; or
(b) paG(x) ⊆ paG(y) or paG(y) ⊆ paG(x).

The correctness of the following pruning rules will be
proven later in this section. The first rule is a non-trivial
generalization of the standard pruning in BNSL.

Pruning Rule 1. Let C and C ′ be c-components over a
same set of nodes and let their parent set collections be P
and P ′, respectively. The score s(C ′, P ′) can be pruned if:
(1) s(C,P ) ≥ s(C ′, P ′);
(2) each pa(x) ∈ P is a subset of the corresponding
pa(x) ∈ P ′;
(3) if x ↔ y is missing from C ′, then it is missing from C
as well; and
(4) if x↔ y exists in C ′ but not in C, then {x, y} must be a
maximality-preserving pair in C.

The second rule generalizes the first by also considering
partitionings of a local c-component C into a set of smaller
local c-components C1, . . . , Cn.

Pruning Rule 2. Let C1, . . . , Cn and C ′ be c-components
with parent set collections P1, . . . , Pn and P ′, respectively.
Suppose the nodes in C1, . . . , Cn partition the nodes in C ′

to distinct subsets. The score s(C ′, P ′) can be pruned if:
(1)

∑
i s(Ci, Pi) ≥ s(C ′, P ′);

(2) each pa(x) ∈ P is a subset of the corresponding
pa(x) ∈ Pi (if x was partitioned into Ci);
(3) if x ↔ y is missing from C ′, then it is not featured in
any Ci, either; and
(4) if x ↔ y exists in C ′ but not in some Ci, then either x
or y was not partitioned into Ci or {x, y} is a maximality-
preserving pair in Ci.

Figure 3 shows an example of applying Pruning Rule 2. The
c-component over x,w, y, z with external parent q for x and
z (left) can be pruned if the c-components over x, y and
w, z (center, right) have a higher sum of scores. Note that
removing edges x↔ w and y ↔ z is permitted since the ab-
sence of inducing paths between x,w and y, z, respectively,
is guaranteed in any resulting graph.

To prove the correctness of the score pruning rules, we need
additional theory, which builds on important earlier work on
MAGs [Richardson and Spirtes, 2002, Zhang and Spirtes,
2005]. The first lemma characterizes the types of inducing
paths possible in MAGs.



Lemma 2. Let x and y be non-adjacent nodes in a MAG
G. If paG(x) ⊆ paG(y), then there can be no inducing path
between x and y.

Proof. Assume that paG(x) ⊆ paG(y). This means that any
ancestor of x in G is also an ancestor of y. By Lemma 1, an
inducing path between x and y would imply the existence
of the edge zn−2 ↔ y where zn−2 is an ancestor of x.
Clearly zn−2 cannot be also an ancestor of y since this
would introduce an almost directed cycle. Thus there is no
inducing path between x and y in G.

The next three lemmas identify which edges can be removed
without making nodes connected by inducing paths non-
adjacent, thus preserving maximality (Definition 1).

Lemma 3. A MAG remains a MAG after removing an edge
x↔ y if the longest inducing path between x and y has a
length less than 4 nodes.

Proof. The case where the only inducing path between x
and y has length 2 nodes is trivial. Moreover, there cannot
be an inducing path of length 3 nodes in a MAG, as it would
be of the form x ↔ z ↔ y where z is an ancestor of x or
y (Lemma 1), which would form an almost directed cycle
through x or through y.

Lemma 4. If paG(x) ⊆ paG(y) for nodes x and y in a
MAG G, then G will remain a MAG after removing edge
x↔ y.

Proof. A direct consequence of Lemma 2.

Lemma 5. A MAG remains a MAG after removing an arbi-
trary edge x→ y.

Proof. Let G be a MAG and let G′ be G after removing
an edge x→ y. Clearly, G′ does not introduce new cycles,
almost directed cycles or inducing paths. G′ could only be
non-maximal if there were an inducing path between x and
y in G′. This would mean that in the original G we had an
edge zn−2 ↔ y where zn−2 is an ancestor x (Lemma 1).
Hoever, since G has the edge x→ y, this would mean that
G contains an almost directed cycle x → y ↔ zn−2 →
· · · → x , which is not possible. Hence there is no inducing
path between x and y, and G′ is maximal.

We are finally ready to establish the correctness of Pruning
Rule 2 (and thus also of Pruning Rule 1).

Theorem 1. Let C ′ and C1, . . . , Cn be c-components with
parent sets P ′ and P1, . . . , Pn respectively. Suppose the
nodes in C1, . . . , Cn partition the nodes in C ′ to distinct
subsets. Score s(C ′, P ′) can be pruned if:
(1)

∑
i s(Ci, Pi) ≥ s(C ′, P ′), and

(2) for all x ∈ Ci, pa(x) ∈ Pi is a subset of the correspond-
ing pa′(x) ∈ P ′, and
(3) if x↔ y /∈ C ′ then x↔ y /∈ Ci for all x, y ∈ Ci, and
(4) if x ↔ y ∈ C ′ and x ↔ y /∈ Ci for some x, y ∈ Ci,
then {x,y} must be maximality-preserving pair in Ci.

Algorithm 1 A dynamic programming algorithm for com-
puting upper bounds, i.e. score-optimal ancestral solutions.

1: function UB( nodes U , reach RU , almost reach AU )
2: if U = ∅ then return 0
3: Let u0 ∈ U be the lexicographically least node in
U.

4: Let C be all the possible c-component and parent
set combinations (C, pa(C)) such that u0 ∈ C ⊆ U .

5: Remove each (C, pa(C)) ∈ C that would introduce
an (almost) directed cycle given RU , AU .

6: Let m← −∞
7: for each (C, pa(C)) ∈ C do
8: LetRU\C andAU\C be updated versions ofRU

and AU given (C, pa(C)).
9: m̂← UB(U \ C,RU\C , AU\C)

10: m← max(m, s(C, pa(C)) + m̂)
return m

Proof. Suppose a MAG G′ includes the local c-component
C ′ with parent sets P ′. We can replace this component with
C1, . . . , Cn and P1, . . . , Pn, to form a valid MAG G: (1)
G does not contain any edges which are not in G′. (2) A
MAG remains a MAG after removing edges x → y in G′

but not in G sequentially (Lemma 5). (3) Suppose that G
is missing an edge x ↔ y ∈ G′. If x /∈ Ci or y /∈ Ci

for all Ci, there are no inducing path between x and y in
G by Lemma 1 and so x ↔ y is allowed to be absent.
Otherwise, if x, y ∈ Ci for some Ci, we require {x, y} to
be a maximality-preserving pair in Ci. Therefore we have
either (a) paG(x) ⊆ paG(y) or (b) all paths of bidirectional
edges between x and y have less than 4 nodes. By Lemmas 4
and 3, resp., the edge x ↔ y may be absent in either case.
As

∑
i s(Ci, Pi) ≥ s(C ′, P ′), we do not need P ′ and C ′ to

form an optimal MAG.

4 EXACT STRUCTURE SEARCH

We turn to developing a first exact search procedure for
MAGSL. Several approaches for BNSL [Koivisto and Sood,
2004, Silander and Myllymäki, 2006, Yuan and Malone,
2013] can use the fact that if a sink node and edges to it are
removed from an optimal BN structure, then the remaining
BN structure is optimal with respect to the remaining vari-
ables. Although all MAGs do have sink nodes, unfortunately
removing a sink node does not always preserve optimality:
to see this, consider the covariance matrix

Cx =


1.00 0.00 0.20 0.00
0.00 1.00 0.00 0.20
0.20 0.00 1.04 0.50
0.00 0.20 0.50 1.04


with N = 100 samples. The optimal solution over all four
nodes is v1 → v3 ↔ v4 ← v2, while without v4 the opti-



Algorithm 2 Exact branch-and-bound algorithm for finding
score-optimal maximal and ancestral solutions S∗ (MAGs).

1: function SEARCH( nodes U , partial solution S )
2: if S is non-maximal then return
3: if U = ∅ then
4: if s(S∗) < s(S) then S∗ ← S
5: return
6: RU , AU ← reachability in S
7: if s(S) + UB(U,RU , AU ) ≤ S∗ then return
8: Let Ŝ be S extended with the UB solution.
9: if Ŝ is maximal then

10: if s(S∗) < s(Ŝ) then S∗ ← Ŝ
11: return
12: Let u0 ∈ U be the lexicographically least node in

U.
13: Let C be all the possible c-component and parent

set combinations (C, pa(C)) such that u0 ∈ C ⊆ U .
14: Remove each (C, pa(C)) ∈ C that would introduce

an (almost) directed cycle given RU , AU .
15: for each (C, pa(C)) ∈ C do
16: Let S′ be S with (C, pa(C)) added to it.
17: SEARCH(U \ C, S′)

mal solution is the empty graph. Intuitively, the correlation
between v1 and v3 is only worth the additional parameter
under the BIC score if the correlation of v4 on v3 is also
taken into account. Symmetrically, without v3 the optimal
solution is also the empty graph. The decomposability of
the score in Eq. 3 though directly implies that removing
a sink c-component (from which there are no edges out)
from an optimal MAG, retains optimality. However, not all
MAGs have so called sink c-components. Figure 1 (a) shows
a MAG for which there is no order for the c-components and
thus no sink c-components [Richardson and Spirtes, 2002].

4.1 A BRANCH-AND-BOUND APPROACH

Nevertheless, the conditions of a mixed graph being a MAG
(Definition 1) are rather restrictive in terms of search. Plac-
ing a single edge forbids the presence of a number of other
edges through the MAG conditions. Our approach takes ad-
vantage of this: after placing a local c-component (with its
parents) we disregard a large number of other c-components
whose edges would now result in non-MAG structures.

To use this, we keep track of the reach RU and almost reach
AU for any subset of nodes U ⊆ V . A node x reaches a
node y in a graph G if there exists a directed path from x
to y in G. Moreover, x almost reaches y in G if there exists
nodes v1, . . . , vn with x = v1, y = vn such that the edge
vj ↔ vj+1 exists in G for some j ∈ {1, . . . , n − 1} and
for all other i ∈ {1 . . . n − 1} the edge vi → vj is in G.
RU (AU ) implies a(n almost) directed cycle if a node can
(almost) reach itself.

Algorithm 1 uses dynamic programming [Koivisto and Sood,
2004, Silander and Myllymäki, 2006, Tian and He, 2009] to
compute an upper bound for the score of an optimal solu-
tion for nodes U such that, together with RU , AU , (almost)
directed cycles are not formed (Line 5). The algorithm it-
erates over the local c-components C containing a node
u0 (Line 8- 10). This solves a relaxation of the MAGSL
optimization problem as solutions need only be ancestral:
inducing paths between non-adjacent nodes are allowed. We
cache the solutions of each UB(U,RU , AU ) to avoid solving
subproblems repeatedly. For efficiency, we do not store the
almost reach from node x to node y if x can reach y.

Algorithm 2 uses branch and bound [Suzuki, 1996, Tian,
2000, Rantanen et al., 2017] to find an optimal, maximal
and ancestral solution S∗, by extending the partial solution
S over V \U to also cover the remaining nodes U . The algo-
rithm is invoked by SEARCH(V, S∅) where S∅ contains no
nodes and S∗ is initialized to a valid MAG (e.g. the empty
MAG). At each step, we ensure that S is maximal by check-
ing that there are no inducing paths between any unadjacent
x, y ∈ V \ U (Line 2). If there are no remaining nodes and
S has a better score than S∗, we update S∗ (Line 4). Other-
wise, if improving S∗ by assigning the remaining nodes U
to S is impossible, we backtrack in the search (Line 7). On
Line 8 we create Ŝ by extending S with the upper bound
solution obtained from Algorithm 1. If Ŝ is maximal, we
backtrack and also update S∗ if Ŝ has better score.

4.2 AN ALTERNATIVE ASP-BASED APPROACH

Motivated by the successes of declarative programming tech-
niques, in particular answer set programming (ASP) Gebser
et al. [2012], for learning globally optimal structures from
various graphical model classes and settings [Hyttinen et al.,
2014, Sonntag et al., 2015, Magliacane et al., 2016, Forré
and Mooij, 2018, Zhalama et al., 2019], we developed a first
ASP-based approach to MAGSL as a comparative baseline
exact approach. As the approach turns out to show weaker
performance than the branch-and-bound approach, we pro-
vide the detailed encoding as part of our code package. In
short, the ASP encoding is based on representing in a natural
way the search space of MAGs. This requires encoding the
ruling out of directed and almost directed cycles as well as
confirming that inducing paths only appear between adja-
cent nodes. Existence of specific edges is implied by the
chosen c-components, and each node is required to be con-
tained in exactly one c-component. The objective of finding
a best-scoring MAG structure is represented as weighted
soft constraints on the input c-component candidates.

5 EMPIRICAL EVALUATION

We empirically evaluate the runtime efficiency of the score
computation approach and the performance of our branch-



and-bound algorithm for MAGSL (referred to as BB) against
various competing learning algorithms in terms of runtime
efficiency and quality of the MAGs found. We implemented
the local score computation (Sect. 3) and Algorithms 1 and 2
in C++. The score computation software includes an effi-
cient C++ implementation of the RICF algorithm as well
as the score pruning. The experiments were run on on 2.83-
GHz Intel Xeon E5440 nodes under 100-GB memory limit.

Data We generated the synthetic data by sampling MAGs
over n = 7..12 nodes with expected degree is 2 or 3 and
the presence of directed and bi-directed edges equally prob-
able. The coefficients and covariances for the directed and
bidirected edges were drawn uniformly from ±[0.2, 0.8].
Variances of disturbances were drawn as |0.5 · s|+ 1, with
s ∼ N(0, 1). Rejection sampling was used to ensure the
models were valid linear Gaussian MAGs. For each model
we generated N = 200 samples.

In addition to synthetic MAGs, we use four Gaussian
Bayesian network benchmarks from the bnlearn network
repository: ecoli70, magic-niab, magic-irri and arth150 [Scu-
tari, 2010]. We sampled from N = 100 to N = 1600 sam-
ples from each benchmark. To inspect structure learning in
the presence of latent variables, we marginalized the data to
datasets of n = 7..11 highly correlated variables, reducing
the set of variables by repeatedly removing the variable for
which the sum of the absolute values of correlations to the
remaining variables was minimized.

Score Computation and Pruning We first look at the per-
formance of the local score computation part on the syn-
thetic data. Figure 4 shows the number of local scores pro-
duced for different numbers of nodes and c-component size
limits without (blue x) and with pruning (box plot). Note
that for c = 2 we use parent limit p = 8 and for c = 3 we
use p = 4, as these are still feasible choices. We observe
that increasing the c-component size limit from 2 to 3 re-
sults in substantial increase in the number of local scores.
The increase in the number of local scores for each addi-
tional node is perhaps more modest. There is considerable
instance-specific variation on the number local scores after
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Figure 5: Scoring and pruning time on synthetic data.

pruning. Figure 5 shows the runtime for local score com-
putation for different configurations. The runtime grows
exponentially with the number of nodes but we can compute
local scores on a single thread for up to 12 nodes in 10
hours. This is inline with BNSL, also there the computation
of local scores may take considerable amount of time.

Runtime Performance Figure 6 left and middle show run-
times (sorted by increasing runtime for each line) of our
branch and bound under the c-component size limits c = 2
and c = 3 on the synthetic data. Within approximately
1 hour, the approach scales up to 8-variable instances for
c = 2, 3. For c = 2 we can solve many instances with 9-12
nodes within the time limit of 10 hours. Runtime compar-
ison of BB with the alternative ASP-based approach (Sec-
tion 4.2) using the state-of-the-art Clingo ASP solver [Geb-
ser et al., 2012] is shown in Figure 6 right for the benchmark
datasets marginalized to 7-node instances. BB is consider-
ably faster than the ASP approach. Table 1 (c = 2) and
Table 2 (c = 3, 4) show further per-instance runtimes of
our BB approach on the benchmark instances. There is
some variation to the runtimes depending on the dataset. BB
scales best on magic-irri and magic-niab, solving many of
the 10-node instances for c = 2 within 10 hours.

Quality of Solutions We evaluate the performance of our
exact branch-and-bound search for MAGSL in terms of solu-
tion quality against competing in-exact approaches: the hill-
climbing-based in-exact MAGSL algorithm M3HC [Tsirlis
et al., 2018], the constraint-based FCI [Zhang, 2008b,
Spirtes et al., 1993] and its variant GFCI [Ogarrio et al.,
2016] that combines score-based and constraint-based learn-
ing. We employ the FCI and GFCI implementation from the
causal-cmd v1.2.1 package with Fisher-z-test α = 0.05 and
sem-bic-score. We directly obtained a single representative
MAG of the equivalence class returned by these algorithms.
As the other methods are considerable faster per a single
run (finishing often within minutes), we also bootstrapped
the data 50 times and then report the best result based on
score w.r.t. the original data. We also report (as “BN”) the
scores of the optimal Bayesian networks found by using
Gobnilp [Bartlett and Cussens, 2017].
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Table 1: Results on the benchmark datasets.
Benchmark dataset Time BIC score

Name N n BB, c=2 BB, c=2 BN FCI +bootstrap GFCI +bootstrap M3HC +bootstrap
arth150 100 8 7963s -233.27 -234.83 -283.86 -228.19 -257.75 -235.54 -443.16 -342.16
arth150 200 8 16550s -419.11 -421.39 -465.41 -409.08 -457.46 -402.72 -586.98 -457.29
arth150 400 8 30276s -777.26 -778.73 -819.2 -769.37 -905.43 -744.04 -849.61 -801.53
arth150 800 8 ≥10h timeout -1423.85 -1492.67 -1367.92 -1567.07 -1450.01 -1547.12 -1440.8
arth150 1600 8 ≥10h timeout -2780.39 -2928.61 -2584.09 -3057.74 -2643.8 -2880.17 -2786.27
ecoli70 100 8 5439s -701.23 -701.23 -749.24 -684.43 -745.36 -701.23 -791.43 -707.0
ecoli70 200 8 8285s -1378.43 -1378.43 -1386.35 -1378.43 -1386.35 -1252.9 -1386.35 -1378.43
ecoli70 400 8 12256s -2684.62 -2685.26 -2696.84 -2413.51 -2696.84 -2685.26 -2696.84 -2684.62
ecoli70 800 8 18096s -5330.34 -5332.49 -5332.61 -5332.61 -5332.61 -5332.49 -5332.61 -5332.61
ecoli70 1600 8 19717s -10728.61 -10728.61 -10728.61 -10728.61 -10728.61 -10728.61 -10728.61 -10728.61
magic-irri 100 8 45s -1091.59 -1091.59 -1097.93 -1085.44 -1093.47 -1092.7 -1096.7 -1094.05
magic-irri 200 8 169s -2169.11 -2170.97 -2174.51 -2174.51 -2175.51 -2171.45 -2174.81 -2169.22
magic-irri 400 8 269s -4228.14 -4229.13 -4245.32 -4230.37 -4233.32 -4229.09 -4244.8 -4230.23
magic-irri 800 8 1283s -8358.48 -8358.48 -8367.11 -8363.27 -8360.05 -8360.05 -8358.48 -8358.48
magic-irri 1600 8 2085s -16718.88 -16718.88 -17169.02 -16726.55 -16720.1 -16718.89 -16730.5 -16719.3
magic-irri 100 9 160s -1236.84 -1236.84 -1243.38 -1230.9 -1238.92 -1238.15 -1242.15 -1239.7
magic-irri 200 9 4215s -2396.24 -2398.1 -2428.62 -2403.56 -2402.64 -2398.84 -2405.28 -2401.46
magic-irri 400 9 11081s -4677.92 -4678.9 -4735.4 -4684.57 -4693.9 -4681.44 -4701.12 -4683.74
magic-irri 800 9 2421s -9440.41 -9440.41 -9449.04 -9445.2 -9441.98 -9441.98 -9440.41 -9440.41
magic-irri 1600 9 ≥10h timeout -18492.31 -19076.71 -18500.66 -18498.54 -18496.35 -18503.37 -18492.31
magic-irri 100 10 1595s -1352.6 -1352.6 -1359.14 -1346.66 -1354.68 -1353.91 -1357.91 -1355.27
magic-irri 200 10 12354s -2665.85 -2667.71 -2698.23 -2673.17 -2672.25 -2668.44 -2674.73 -2668.81
magic-irri 400 10 33771s -5209.08 -5210.07 -5266.57 -5215.74 -5225.06 -5212.61 -5232.29 -5214.12
magic-irri 800 10 - memout -9788.63 -9797.26 -9793.43 -9790.2 -9790.2 -9788.63 -9788.63
magic-irri 1600 10 ≥10h timeout -20669.1 -21253.5 -20677.45 -20675.33 -20673.15 -20680.17 -20672.53
magic-niab 100 8 <1s -974.23 -974.23 -976.16 -976.04 -976.55 -974.23 -988.99 -985.05
magic-niab 200 8 3s -1850.27 -1850.91 -1855.29 -1853.83 -1853.77 -1851.43 -1861.7 -1856.23
magic-niab 400 8 2s -4110.33 -4110.33 -4113.24 -4113.02 -4118.7 -4110.93 -4127.8 -4113.53
magic-niab 800 8 5s -8776.99 -8777.64 -8780.52 -8780.14 -8777.64 -8777.64 -8784.93 -8779.73
magic-niab 1600 8 195s -15306.12 -15306.12 -15364.39 -15324.25 -15310.85 -15308.73 -15322.14 -15311.86
magic-niab 100 9 1s -1103.85 -1103.85 -1108.14 -1106.59 -1109.02 -1106.0 -1121.46 -1116.43
magic-niab 200 9 11s -2127.89 -2128.7 -2133.84 -2132.4 -2132.33 -2129.99 -2140.25 -2134.78
magic-niab 400 9 42s -4633.3 -4633.64 -4641.52 -4639.44 -4644.11 -4636.36 -4653.24 -4638.94
magic-niab 800 9 60s -9787.39 -9788.03 -9790.91 -9790.53 -9788.03 -9788.03 -9795.32 -9790.93
magic-niab 1600 9 2154s -19712.27 -19712.27 -19770.19 -19729.26 -19716.07 -19713.93 -19729.03 -19718.87
magic-niab 100 10 29s -1185.68 -1185.87 -1191.14 -1189.02 -1191.04 -1187.08 -1204.67 -1199.64
magic-niab 200 10 137s -2382.11 -2383.33 -2388.17 -2388.82 -2387.41 -2386.28 -2395.33 -2392.04
magic-niab 400 10 1360s -4639.42 -4639.61 -4657.5 -4652.51 -4650.7 -4642.03 -4664.04 -4650.03
magic-niab 800 10 550s -10819.85 -10820.72 -10834.1 -10826.23 -10820.51 -10820.51 -10841.72 -10828.19
magic-niab 1600 10 15520s -21758.51 -21758.51 -21818.07 -21777.13 -21762.3 -21760.18 -21775.26 -21767.31
magic-niab 100 11 159s -1189.28 -1189.47 -1195.64 -1195.29 -1195.46 -1191.42 -1209.09 -1204.06
magic-niab 200 11 2597s -2390.1 -2390.61 -2397.73 -2399.39 -2395.77 -2394.64 -2405.08 -2399.61
magic-niab 400 11 - memout -5080.62 -5099.19 -5095.97 -5085.56 -5083.75 -5108.45 -5095.06
magic-niab 800 11 - memout -11870.66 -11889.45 -11886.63 -11874.24 -11872.92 -11890.16 -11880.38
magic-niab 1600 11 - memout -23697.44 -23757.0 -23723.23 -23701.24 -23699.11 -23714.19 -23704.74

Figure 7 shows the Bayes factors of the found MAGs with re-
spect to the baseline optimal Bayesian network. The Bayes
factors are based on the Gaussian BIC scoring function,
which was computed for output MAGs from all competing
methods. To score the found MAGs, every c-component
was scored by running ICF 100 times from different starting
points; BIC was calculated according to the highest likeli-
hood value found. We also used this strategy for computing
the local scores used by our method for Figure 7. After prun-

ing, on average 0.28% of the remaining local scores had
two ICF accumulation points for c = 2, and 0.45% had two
or three ICF accumulation points for c = 3. Specifically, 6
out of the 40 instances for c = 2 had local score(s) remain-
ing with two ICF accumulation points. For c = 3, 9 out
of the 40 instances had local score(s) remaining with two
ICF accumulation points, and 6 instances had local score(s)
remaining with three ICF accumulation points.



Table 2: Results on the benchmark datasets.
Benchmark dataset Time BIC score

Name N n BB, c=3 BB, c=4 BB, c=3 BB, c=4 BN FCI +bootstrap GFCI +bootstrap M3HC +bootstrap
arth150 100 7 528s 6323s -224.74 -224.74 -226.3 -233.97 -219.27 -244.24 -227.01 -395.44 -305.74
arth150 200 7 1482s 9848s -377.96 -377.96 -379.95 -411.06 -358.42 -430.95 -379.52 -538.38 -418.23
arth150 400 7 1426s 7629s -722.47 -722.47 -723.94 -749.46 -661.35 -775.41 -727.62 -746.74 -731.87
arth150 800 7 1447s 7599s -1380.36 -1380.36 -1380.36 -1449.18 -1235.14 -1523.58 -1389.68 -1476.19 -1389.73
arth150 1600 7 1778s 8901s -2696.91 -2696.91 -2696.91 -2527.26 -2500.61 -3153.36 -2724.3 -2815.5 -2703.04
ecoli70 100 7 519s 3523s -602.8 -602.8 -602.8 -606.68 -571.23 -602.8 -540.04 -691.1 -602.8
ecoli70 200 7 631s 4317s -1180.74 -1180.74 -1180.74 -1188.65 -1181.78 -1188.65 -1055.2 -1188.65 -1180.74
ecoli70 400 7 748s 4886s -2321.64 -2321.64 -2321.64 -2333.22 -2321.64 -2333.22 -2321.64 -2333.22 -2321.64
ecoli70 800 7 914s 8984s -4614.11 -4614.11 -4614.11 -4614.11 -4614.11 -4614.11 -4614.11 -4614.11 -4614.11
ecoli70 1600 7 980s 9640s -9326.18 -9326.18 -9326.18 -9326.18 -9326.18 -9326.18 -9326.18 -9326.18 -9326.18
magic-irri 100 7 17s 426s -977.01 -977.01 -977.01 -983.5 -978.75 -978.89 -977.01 -982.12 -978.75
magic-irri 200 7 51s 858s -1951.54 -1951.54 -1952.47 -1956.0 -1955.01 -1957.01 -1952.94 -1955.77 -1953.68
magic-irri 400 7 52s 886s -3802.84 -3802.84 -3803.83 -3818.42 -3804.46 -3808.49 -3803.83 -3817.89 -3804.46
magic-irri 800 7 198s 1739s -7520.48 -7520.48 -7520.48 -7529.57 -7525.01 -7528.95 -7520.48 -7520.48 -7520.48
magic-irri 1600 7 259s 3353s -15051.99 -15051.99 -15051.99 -15498.72 -15054.51 -15062.79 -15052.84 -15064.45 -15051.99
magic-irri 100 8 1144s ≥10h -1091.59 timeout -1091.59 -1097.93 -1085.44 -1093.47 -1092.7 -1096.7 -1094.05
magic-irri 200 8 3121s ≥10h -2169.11 timeout -2170.97 -2174.51 -2174.51 -2175.51 -2171.45 -2174.81 -2169.22
magic-irri 400 8 4930s ≥10h -4228.14 timeout -4229.13 -4245.32 -4230.37 -4233.32 -4229.09 -4244.8 -4230.23
magic-irri 800 8 20289s ≥10h -8358.48 timeout -8358.48 -8367.11 -8363.27 -8360.05 -8360.05 -8358.48 -8358.48
magic-irri 1600 8 ≥10h ≥10h timeout timeout -16718.88 -17169.02 -16726.55 -16720.1 -16718.89 -16730.5 -16719.3
magic-niab 100 7 <1s 15s -845.77 -845.77 -845.77 -848.0 -846.58 -845.77 -845.77 -857.54 -856.6
magic-niab 200 7 3s 86s -1616.51 -1616.27 -1616.99 -1620.13 -1617.77 -1618.42 -1617.4 -1623.32 -1618.87
magic-niab 400 7 2s 125s -3593.07 -3593.07 -3593.15 -3595.95 -3593.21 -3594.29 -3593.17 -3603.88 -3594.87
magic-niab 800 7 6s 288s -6618.23 -6618.23 -6618.88 -6621.76 -6621.76 -6618.88 -6618.42 -6626.17 -6620.72
magic-niab 1600 7 81s 1249s -13206.57 -13206.57 -13206.57 -13249.49 -13209.71 -13206.65 -13206.65 -13222.01 -13214.8
magic-niab 100 8 3s 8757s -974.23 -974.23 -974.23 -976.16 -976.04 -976.55 -974.23 -988.99 -985.05
magic-niab 200 8 74s 26899s -1850.11 -1850.11 -1850.91 -1855.29 -1853.83 -1853.77 -1851.43 -1861.7 -1856.23
magic-niab 400 8 61s ≥10h -4109.82 timeout -4110.33 -4113.24 -4113.02 -4118.7 -4110.93 -4127.8 -4113.53
magic-niab 800 8 131s ≥10h -8776.99 timeout -8777.64 -8780.52 -8780.14 -8777.64 -8777.64 -8784.93 -8779.73
magic-niab 1600 8 4700s ≥10h -15306.12 timeout -15306.12 -15364.39 -15324.25 -15310.85 -15308.73 -15322.14 -15311.86

There is noticeable variation (see Figure 7) with respect to
the dataset: for many the MAGs found are 10 times more
likely than BNs, for some BNs are equally likely. FCI and
GFCI perform somewhat poorly, suggesting that they can-
not find very high scoring MAGs over the 200 data samples
given. The MAGs found by bootstrapped M3HC are bet-
ter, often more likely than BNs. The MAGs found by our
approach are still better, 2-10 times more likely than the
optimal BNs. Note that our method is feasible with different
parent relation limits p, i.e., p = 8 for c = 2 and p = 4 for
c = 3, 4. There is an interesting trade-off as to whether to
allow for larger c-components or more parent relations.

Tables 1 and 2 give the BIC scores obtained on the bench-
mark data, with highest score for each instance in bold.
Optimal BNs achieve the highest score for a minority of the
instances. Relative performance of the in-exact algorithms
depends noticeably on the dataset and the number of sam-

n=7
d=2

n=8
d=2

n=7
d=3

n=8
d=3

Parameter configuration

0

10

20

30

40

Ba
ye

s f
ac

to
r v

s. 
op

tim
al

 B
N BB, c=2

BB, c=3
M3HC
M3HC (bootstrap)
FCI
FCI (bootstrap)
GFCI
GFCI (bootstrap)

Figure 7: Bayes factors against the optimal BN on synthetic
data from MAGs with average node degree d.

ples. FCI, GFCI and M3HC can in some cases (especially
for arth150 and ecoli70) find high-scoring solutions. For
magic-niab and magic-irri our BB obtains clearly better so-
lutions (using c = 2, 3, 4) on this metric than its in-exact
competitors. Moreover, the solutions of BB are guaranteed
globally optimal over the input scores, i.e., higher-scoring
solutions are known not to exist within the limits c and p.

6 CONCLUSION

MAGs are a generalization of BNs, allowing for unobserved
variables. We developed algorithmic solutions—including
score computation, score pruning, and a practical exact
search algorithm—to learning score-optimal MAG, mo-
tivated by the impact of such solutions in the realm of
BNs. Potential avenues for developing further approaches to
MAG structure learning include approaches with improved
scalability [Lee and van Beek, 2017, Tsamardinos et al.,
2006, Chickering, 2002], liftings of techniques currently
mostly limited to DAG structures, e.g., Bayesian model
averaging through exact computation [Liao et al., 2019,
Koivisto and Sood, 2004, Tian and He, 2009] or MCMC
sampling [Kuipers and Moffa, 2017, Koller and Friedman,
2009, Silva and Ghahramani, 2006], and techniques for fo-
cusing search on promising local c-components towards
scaling to large-scale structures [Scanagatta et al., 2015].
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