
A Hybrid Approach to Optimization in Answer Set Programming

Paul Saikko1, Carmine Dodaro2, Mario Alviano3, and Matti Järvisalo1
1HIIT, Department of Computer Science, University of Helsinki, Finland

2DIBRIS, University of Genova, Italy
3DeMaCS, University of Calabria, Italy

{paul.saikko, matti.jarvisalo}@helsinki.fi, dodaro@dibris.unige.it, alviano@mat.unical.it

Abstract

Answer set programming (ASP) is today a successful ap-
proach to knowledge representation and reasoning in vari-
ous real-world problem domains. ASP offers an expressive
rule-based constraint modelling language, supporting concise
declarative modelling of both decision and optimization prob-
lems within the first or the second level of the polynomial hi-
erarchy. In this paper, we propose a new approach to solving
optimization problems via ASP, i.e., to the problem of finding
optimal solutions (in terms of optimal answer sets or stable
models) under a given weight function over soft atoms (weak
constraints). Our approach constitutes the first adaptation of
the so-called implicit hitting set approach in the context of
ASP. In particular, in contrast to the earlier proposed family
of core-guided algorithms for optimization in answer set pro-
gramming, we present a hybrid approach which makes use of
interactions between an ASP decision solver (as an unsatisfi-
able core extractor) and an integer programming solver (as a
minimum-cost hitting set algorithm). We explain how various
concepts and features specific to ASP and IP can be harnessed
within the approach, including several ways for obtaining bet-
ter upper and lower bounds during search, with the aim of
speeding up the computation of an optimal answer set. By a
careful integration of the interactions between state-of-the-art
ASP and IP solvers, we show that already our first implemen-
tation provides a complementary approach when empirically
compared to the currently available solvers supporting opti-
mization in answer set programming.

1 Introduction
Answer set programming (ASP) (Gelfond and Lifschitz
1991; Niemelä 1999; Marek and Truszczyński 1999; Lifs-
chitz 2002; Gelfond and Kahl 2014) is a well-known declar-
ative problem solving paradigm, and has established itself as
a successful approach to knowledge representation and rea-
soning in various real-world problem domains (Balduccini
et al. 2001; Koponen et al. 2015; Gebser, Ryabokon, and
Schenner 2015; Baral and Uyan 2001; Marileo and Bertossi
2010). Implementations of ASP reasoning systems offer
non-monotonic reasoning under the answer set (or stable
model) semantics over an expressive rule-based constraint
modelling language, supporting concise declarative mod-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

elling of both decision and optimization problems within the
first or the second level of the polynomial hierarchy.

In particular, computational problems in the real world
often give rise to an objective of finding optimal solutions
in terms of, for example, minimizing use of resources, or
maximizing profit or well-being. Early ASP systems have
addressed optimization problems in terms of finding opti-
mal stable models under weak constraints, allowing for ex-
pressing various types of objective functions uniformly. This
fact has been central for developing successful ASP-based
approaches to various important real-world problems (Al-
viano, Dodaro, and Maratea 2017; Abseher et al. 2016;
Ricca et al. 2012). The development of effective algorith-
mic techniques to finding optimal stable models for answer
set programs is therefore important for extending the reach
of ASP as an already established problem solving paradigm.

Current algorithms are mainly branch and bound, im-
plemented for example in Smodels (Simons, Niemelä, and
Soininen 2002), DLV (Leone et al. 2006), and Clasp (Geb-
ser, Kaufmann, and Schaub 2012), and the so-called core-
guided approaches (Andres et al. 2012; Alviano et al.
2015; Alviano, Dodaro, and Ricca 2015), originally intro-
duced in the field of maximum satisfiability (Fu and Ma-
lik 2006; Marques-Silva and Manquinho 2008; Marques-
Silva and Planes 2008; Manquinho, Silva, and Planes 2009;
Ansótegui, Bonet, and Levy 2009). Our focus here is mainly
on the latter type of algorithms.

Currently implemented core-guided ASP optimization al-
gorithms are based on a two-step loop. The first step ap-
plies decision procedures developed for ASP for extract-
ing unsatisfiable cores, that is, sets of weak constraints
(or soft atoms) that cannot be jointly satisfied by any sta-
ble model of the input program. The second step com-
piles the knowledge expressed by the unsatisfiable core in
ASP rules, namely, that at least one of the weak constraints
in the core has to be violated under any (optimal) stable
model. The different core-guided algorithms available to-
day, as implemented in Clasp and Wasp (Andres et al. 2012;
Alviano and Dodaro 2016), differ mainly in terms of the de-
tails of the compilation step, and are often more efficient
than branch and bound for unweighted optimization prob-
lems. On the other hand, if weak constraints in the unsatisfi-
able core have heterogeneous weights, then the compilation
step has to introduce new copies of the weak constraints in

order to encode a preference for higher weights, and such
copies may deteriorate the performance of the solver.

Beyond branch-and-bound and core-guided approaches,
there have been attempts to use integer programming (IP)
solvers for finding optimal stable models (Liu, Janhunen,
and Niemelä 2012). Specifically, the task of finding an opti-
mal stable model can be monolithically encoded into the task
of finding an optimal solution to an IP: linear inequalities
are used to declaratively represent the stable models of the
ASP program in input, while weighted weak constraints are
compiled into the objective function of the IP (under mini-
mization or maximization).

In this paper, we propose a new approach to solving
optimization problems in ASP. Specifically, we present
the first adaptation of the implicit hitting set (IHS) (Karp
2010; Moreno-Centeno and Karp 2013; Saikko, Wallner,
and Järvisalo 2016) approach in the context of ASP, moti-
vated by the success of IHS algorithms in MaxSAT solv-
ing (Davies and Bacchus 2011; Davies 2013; Saikko 2015;
Saikko, Berg, and Järvisalo 2016). While IHS could be con-
sidered a core-guided approach, its second step is not a com-
pilation step, but instead consists of computing a minimum-
cost hitting set of the extracted unsatisfiable cores; the hit
weak constraints are temporarily not enforced in the sub-
sequent extraction step, which either terminates with a new
unsatisfiable core, or with an optimal stable model.

In contrast to the previously proposed family of core-
guided algorithms for optimization in ASP, IHS is a hybrid
approach that makes use of interactions between an ASP de-
cision solver and an IP solver. In a nutshell, the ASP solver
is used as an unsatisfiable core extractor, and the IP solver
computes minimum-cost hitting sets of the extracted un-
satisfiable cores. Rather than relying only on one type of
declarative solver (either an ASP decision procedure or an IP
solver), the approach aims at taking advantage of the “best
of both worlds”: an ASP solver is used as an efficient proof
search engine for the task of core extraction, while the task
of handling potentially very heterogeneous weights is passed
on to an IP solver. A further main advantage of the proposed
approach is that the ASP program in input is not modified
at all for the whole duration of search for an optimal sta-
ble model. This is in contrast to the core-guided algorithms
currently available in ASP systems, whose compilation step
brings in extra rules to the input program; such extra rules
make the subsequent core extraction steps harder, and poten-
tially bloat up the program in case of heterogeneous weights.

In the following, we explain how various concepts and
features specific to ASP and IP can be harnessed within the
approach, including several ways for obtaining better upper
and lower bounds during the search, with the aim of speed-
ing up the computation of an optimal stable model. By a
careful integration of the interactions between the state-of-
the-art ASP solver Wasp and IP solver CPLEX, we show
that a resulting implementation of the approach provides a
competitive and complementary approach when empirically
compared to the currently available solvers supporting opti-
mization in ASP.

This paper is organized as follows. We start with prelim-
inaries on ASP, and briefly recall a previous core-guided al-

gorithm (Section 2). We then give an overview of a basic
IHS approach to optimization in ASP, and describe in detail
various search techniques and optimizations to the basic al-
gorithm which are central for making the approach compet-
itive in practice (Section 3). We provide details of our first
implementation of the proposed approach, and overview the
results of an empirical evaluation of the approach from vari-
ous perspectives (Section 4). Finally, before conclusions, we
review related work (Section 5).

2 ASP and Optimization
In this section we recall the syntax and semantics of answer
set programs to the extent necessary and as is convenient for
the rest of the paper. We opt for soft atoms instead of weak
constraints as weak constraints are normalized in terms of
soft atoms by modern grounders. The semantics of a logic
program with soft atoms is given by the so-called optimal
stable models. Finally, we recall the notion of unsatisfiable
cores, and give an example of a core-guided algorithm as
currently available in modern ASP solvers.

Answer Set Programs
Let A be a fixed, countable set of (propositional) atoms in-
cluding ⊥. A literal ` is either an atom p, or its negation ∼p,
where ∼ denotes default negation. Let ` denote the comple-
ment of `, i.e., p := ∼p, and ∼p := p, for all p ∈ A. For
a set L of literals, L := {` | ` ∈ L}, L+ := L ∩ A, and
L− := L ∩ A. A program Π consists of a set of disjunctive
and choice rules, which have respectively the forms

p1 ∨ · · · ∨ pm ← `1, . . . , `n (1)

{`1, . . . , `n} ≤ k (2)
where p1, . . . , pm are distinct atoms, `1, . . . , `n are distinct
literals, and k,m, n ≥ 0. For a rule r of the form (1), the
disjunction p1 ∨ · · · ∨ pm is called the head of r, denoted
H(r); the conjunction `1, . . . , `n is the body of r, denoted
B(r). With a slight abuse of notation, H(r) and B(r) also
denote the sets of their elements. A constraint is a rule of
the form (1) such that H(r) ⊆ {⊥}. For a rule r of the
form (2), let lits(r) be {`1, . . . , `n}, and bound(r) be k. Let
heads(Π, p) be the set of rules r ∈ Π of the form (1) such
that p ∈ H(r).

An interpretation I is a subset ofA\ {⊥}; atoms in I are
assigned true, and those in A \ I are assigned false. I is a
model of a rule r of the form (1), denoted I |= r, if H(r) ∩
I 6= ∅whenever B(r)+ ⊆ I and B(r)−∩I = ∅. I is a model
of a rule r of the form (2), denoted I |= r, if |lits(r)+ ∩
I| + |lits(r)− \ I| ≤ bound(r). I is a model of a program
Π, denoted I |= Π, if it is a model of all rules in Π. The
definition of stable models is based on the following notion
of reduct. Let Π be a program, and I be an interpretation.
The reduct of Π with respect to I , denoted ΠI , is obtained
from Π by deleting each rule r of the form (1) such that
B(r)−∩I 6= ∅, by replacing each rule r of the form (2) with
rules of the form p ← for all p ∈ lits(r) ∩ I , and removing
negated atoms in the remaining rules. An interpretation I is
a stable model of Π if I |= Π and there is no J ⊂ I such
that J |= ΠI . We denote by SM (Π) the set of stable models

of Π. If SM (Π) 6= ∅ then Π is coherent, otherwise it is
incoherent.
Example 2.1. Let Π1 be the program

a ∨ c← ∼b,∼d ⊥ ← sa,∼a {sa, sb, sc, sd} ≤ 4
a← c,∼d ⊥ ← sb,∼b
c← a,∼b ⊥ ← sc,∼c
b ∨ d← ∼c ⊥ ← sd,∼d

We have that I1 = {b, sb} and I2 = {d, sd} are among the
stable models of Π1. The program reduct ΠI1

1 is {a ← c,
c ← a, ⊥ ← sa,∼a, ⊥ ← sc,∼c, ⊥ ← sd,∼d, sb ←},
and it can be checked that no strict subset of I1 is a model of
ΠI1

1 . A similar observation holds for ΠI2
1 . �

Let W be a finite set of (soft) atoms, such that each
atom p ∈ W is associated with a positive integer de-
noted weight(p). The cost of an interpretation I for W is
W(I) :=

∑
p∈W\I weight(p). For any pair I, J of interpre-

tations, J <W I if W(J) < W(I). I is an optimal stable
model of a program Π with respect to a setW of soft atoms if
I ∈ SM (Π) and there is no J ∈ SM(Π) such that J <W I .
We denote by OSM (Π,W) the set of optimal stable models
of Π with respect toW .
Example 2.2 (Continuing Example 2.1). Let W1 be
{sa, sb, sc, sd}, and weight be {sa 7→ 1, sb 7→ 2, sc 7→ 4,
sd 7→ 8}. It can be checked that OSM (Π1,W1) is {I2}, as
for exampleW1(I2) = 7 < 13 =W1(I1). �

Unsatisfiable Cores and Core-Guided Algorithms
Intuitively, an unsatisfiable core (or simply core) witnesses
the fact that a set of (soft) atoms cannot be jointly satisfied
by any stable model of the program in input. Formally, for a
program Π and a set S of atoms, a set C ⊆ S is an unsatisfi-
able core of Π with respect to S if Π∪{⊥ ← ∼p | p ∈ C} is
incoherent, that is, there is no stable model of Π containing
all atoms in C. We denote by cores(Π, S) the set of cores of
Π with respect to S.
Example 2.3 (Continuing Example 2.2). The unsatisfi-
able cores of Π1 and W1 are {sa, sb}, {sa, sd}, {sb, sc},
{sb, sd}, {sc, sd}, and their supersets. �

Modern ASP solvers implement several algorithms for
computing optimal stable models via unsatisfiable core anal-
ysis. All of them are based on the following underlying idea:
a set of soft atoms that cannot be jointly satisfied, i.e., an un-
satisfiable core, is identified. The reason of unsatisfiability
represented by the core is removed by modifying the pro-
gram and the soft atoms. This process is repeated until a
stable model is found, which is also guaranteed to be opti-
mal. The definition and implementation of such algorithms
take advantage of the fact that modern ASP solvers accept
as input a set S of atoms, called assumptions, in addition to
the usual logic program Π. They return a stable model I of
Π such that S ⊆ I if it exists, or otherwise an unsatisfiable
core of Π with respect to S if such an I does not exist.

An example of such an algorithm is ONE, presented as Al-
gorithm 1, whose main steps are described next. Every atom
p is associated with a weight w(p), initially set to zero if
p 6∈ W , and to weight(p) otherwise. The ASP solver is then

Algorithm 1: Unsatisfiable core analysis with ONE

Input : A coherent program Π, and a nonempty set of
soft atomsW .

Output: An optimal stable model I ∈ OSM (Π,W).
1 for p ∈ A do w(p) := 0;
2 for p ∈ W do w(p) := weight(p);
3 loop
4 (I, C) := solve(Π, {p ∈ A | w(p) 6= 0});
5 if I 6= ⊥ then return I;
6 Let C be {p0, . . . , pn} (for some n ≥ 0), and

s1, . . . , sn be |C| − 1 fresh atoms;
7 mw := min{w(p) | p ∈ C};
8 for i ∈ [0..n] do w(pi) := w(pi)−mw ;
9 for i ∈ [1..n] do w(si) := mw ;

10 Π := Π ∪ {{∼p0, . . . ,∼pn, s1, . . . , sn} ≤ n + 1}
∪ {⊥ ← si,∼si−1 | i ∈ [2..n]};

called to search for a stable model containing all soft atoms.
If an unsatisfiable core {p0, . . . , pn} is found, at least one
of p0, . . . , pn must be false in any optimal stable model, and
hence the lower bound is increased by the smallest weight
among w(p0), . . . , w(pn). Such a quantity is removed from
p0, . . . , pn and assigned to n new soft atoms s1, . . . , sn (note
that there are n+ 1 atoms in the core, while only n new soft
atoms are introduced). The new soft literals and the choice
rule {∼p0, . . . ,∼pn, s1, . . . , sn} ≤ n + 1 enforce the next
call to function solve to search for a stable model satisfying
at least n literals among p0, . . . , pn. Moreover, symmetry
breakers of the form ⊥ ← si,∼si+1 are also added to Π, so
that si is true if and only if at least n− i + 1 literals among
p0, . . . , pn are true. The program is processed again until a
stable model is found, at which point the algorithm termi-
nates. Note that the program Π is assumed to be coherent to
simplify the presentation.

Example 2.4 (Continuing Example 2.3). At the beginning,
w(a) = w(b) = w(c) = w(d) = 0 and w(sa) = 1, w(sb)
= 2, w(sc) = 4, w(sd) = 8. Assume that the first call
to solve(Π1, {sa, sb, sc, sd}) returns (⊥, {sc, sd}). Then a
fresh atom s1 is created and w(sc) = 0, w(sd) = 4, w(s1)
= 4. Moreover, {∼sc,∼sd, s1} ≤ 2 is added to Π1. Assume
that the subsequent call to solve(Π1, {sa, sb, sd, s1}) returns
(⊥, {sa, sb}). Then a fresh atom s2 is created and w(sa)
= 0, w(sb) = 1, w(s2) = 1. Moreover, {∼sa,∼sb, s2} ≤
2 is added to Π1. Assume that the subsequent call to
solve(Π, {sb, sd, s1, s2}) returns (⊥, {sb, s2}). Then a fresh
atom s3 is created and w(sb) = 0, w(s2) = 0, w(s3) = 1.
Moreover, {∼sb,∼s2, s3} ≤ 2 is added to Π1. The subse-
quent call to solve(Π1, {sd, s1, s3}) returns (I2, ∅) and the
algorithm terminates returning I2. �

3 Implicit Hitting Set Approach for ASP
We now detail an implicit hitting set approach to optimiza-
tion in ASP which is based on iteratively alternating between
calls to an unsatisfiable core extractor (implemented via an
ASP solver) and a minimum-cost hitting set algorithm (im-
plemented via IP). We will first give a basic overview of

ASP Solver
solve(Π,W \HS)

IP Solver
MCHS (C,W)

HS

incoherent
C := C ∪ {C}

Input
Π,W W,weight

coherent
Output stable model I

Figure 1: Overview of the implicit hitting set approach to
ASP optimization

the approach, and will later on describe several search tech-
niques that are important in practice for making an efficient
solver with this approach.

The Basic Approach
As a starting point, the approach is based on the following
observations. Any stable model I of a program Π omits at
least one atom of every core C of Π with respect to any set
W of atoms (this is a direct consequence of the definition
of unsatisfiable core given in the previous section). Stated
differently, if I ∈ SM (Π), then W \ I forms a hitting set
of the set cores(Π,W) of all cores of Π with respect toW .
Recall that a hitting set of a set S of sets intersects (or hits)
each set of S. Hence, if I ∈ SM (Π), then (W \ I) ∩C 6= ∅
for all C ∈ cores(Π,W). We define the cost of such a hitting
set, denoted cost(W \ I), as the sum of the weights of its
atoms, and therefore we have that cost(W \ I) = W(I).
Then we can establish the following duality between optimal
stable models of Π with respect to W , and minimum-cost
hitting sets (MCHS) of cores(Π,W).

Theorem 3.1. Let Π be a program, andW be a set of soft
atoms. Then I ∈ OSM (Π) if and only ifW \ I is an MCHS
of cores(Π,W).

Let C be a subset of cores(Π,W). The computation of an
MCHS of C can be passed on to an IP solver by means of
the integer linear program

minimize
∑
p∈W

weight(p) · bp

subject to
∑
p∈C

bp ≥ 1 ∀C ∈ C,

bp ∈ {0, 1} ∀p ∈ W,

where each soft atom p is associated to a new binary variable
bp. Note that the weights of the soft atoms are used to define
the objective function, while each core in C is associated
with an inequality. We denote by MCHS (C,W) a call to the
IP solver for the above program.

The implicit hitting set algorithm for ASP, outlined in Fig-
ure 1, uses of sets C and HS to store respectively the ex-
tracted cores and one of its hitting sets, and performs the
following steps.

1. C := ∅, HS := ∅;
2. (I, C) := solve(Π,W \HS);

3. if I = ⊥, then C := C ∪ {C}, HS := {p | bp = 1 in the
output of MCHS (C,W)}, and go to step 2;

4. I is given in output, and denoted by IHS (Π,W).

Initially both C and HS are empty. The ASP solver is ini-
tialized with the program Π and the assumptions are set
to W \ HS , and the IP solver is initialized with the objec-
tive function associated withW (and their weights). The al-
gorithm then alternates invoking the two solvers: the ASP
solver searches for a core C of Π with respect toW \ HS ;
if found, C is added to C. The IP solver is asked to compute
a new minimum-cost hitting set HS of C. The algorithm ter-
minates once the ASP solver does not find a core of Π with
respect toW \ HS , that is, a stable model I (containing the
atoms inW \HS) is found.

Proposition 3.1. The implicit hitting set algorithm for ASP
halts.

Proof. As in the previous section, we assume without loss
of generality that Π is coherent in order to simplify the pre-
sentation. Hence, there exists some I ∈ SM (Π). The hitting
set HS hits each core in C, so each call to the ASP solver
(step 2) results in either a new core C ∈ cores(Π,W) \ C
or a stable model I . The algorithm must eventually find a
stable model and consequently halt because cores(Π,W) is
finite (cores(Π,W) ⊆ 2W).

Theorem 3.2. Let Π be a coherent program, andW be a set
of soft literals. Then IHS (Π,W) is in OSM (Π,W).

Proof. For the sake of a contradiction, if IHS (Π,W) ∈
SM (Π) \ OSM (Π,W), then there would be I ∈ SM (Π)
with W(I) < W(IHS (Π,W)). Let HS = W \ I,HS ′ =
W \ IHS (Π,W) be the hitting sets of cores(Π,W) associ-
ated with I and IHS (Π,W) respectively, and let C be the
cores extracted by the algorithm. Since C ⊆ cores(Π,W) is
an invariant of the algorithm, we have that HS and HS ′ are
hitting sets of C as well. However,W(I) <W(IHS (Π,W))
implies that cost(HS) < cost(HS ′), which contradicts the
fact that HS ′ is a MCHS of C.

Example 3.1 (Continuing Example 2.3). At the beginning,
both C and HS are empty. Assume that the first call to
solve(Π1,W1) returns (⊥, {sc, sd}). Now, C = {{sc, sd}},
and hence HS = {sc}. Say that the subsequent call to
solve(Π1, {sa, sb, sd}) returns (⊥, {sa, sb}). Then, C =
{{sc, sd}, {sa, sb}}, and HS = {sa, sc}. Assume that the
subsequent call to solve(Π1, {sb, sd}) returns (⊥, {sb, sd}).
Thus C = {{sc, sd}, {sa, sb}, {sb, sd}}, and HS =
{sb, sc}. Say that solve(Π1, {sa, sd}) returns (⊥, {sa, sd}).
We have C = {{sc, sd}, {sa, sb}, {sb, sd}, {sa, sd}}, and
HS = {sa, sb, sc}. Finally, solve(Π1, {sd}) returns (I2, ∅),
and the algorithm terminates returning I2. �

Algorithm 2: Bounds–based implicit hitting set algo-
rithm for ASP optimization

Input : A coherent program Π, and a nonempty set of
soft atomsW .

Output: An optimal stable model I ∈ OSM (Π,W).
1 C := ∅; HS := ∅; LB := 0; UB :=∞;
2 while LB < UB do
3 loop
4 (I, C) := solve(Π,W \HS);
5 if I 6= ⊥ then
6 ifW(I) < UB then
7 UB :=W(I);
8 Ibest := I;
9 break;

10 HS := HS ∪ C;
11 C := C ∪ {C};
12 HS := MCHS (C,W);
13 LB :=W(W \HS);
14 return Ibest ;

Search Techniques
The basic approach can be refined through a bounds-based
view. In fact, costs of optimal hitting sets found by the IP
solver give increasing lower bounds on the cost of optimal
stable models. On the other hand, upper bounds on the cost
of optimal stable models are naturally given by any com-
puted stable model. Hence termination of the algorithm can
be stated in terms of these bounds: termination happens once
the upper and lower bounds match. For the implicit hitting
set algorithm, this happens when Π is coherent with assump-
tionsW\HS , and a stable model of cost cost(HS) is found.

The bounds-based view allows for the integration of sev-
eral search techniques for obtaining better bounds during the
computation and speeding up the convergence to an optimal
stable model. We describe such techniques in this section.
The first two techniques also have the added benefit of yield-
ing intermediate solutions during search.

Core Minimization. The computation of minimum-cost
hitting sets takes advantage of a simple destructive algorithm
to minimize cores (Bakker et al. 1993): for each atom p in
an extracted core C, we check if C \ {p} is also a core; if
this is the case, we remove p from C. After this process, C
is minimal, that is, no subset of C is a core. Moreover, if an
atom p cannot be removed from C, then Π is coherent with
assumptions C \ {p}, and we find an answer set and a cor-
responding upper bound (Alviano and Dodaro 2016). How-
ever, in some cases the check with assumptions C \ {p} is
computationally hard. In practice, we mitigate this potential
problem by imposing a resource limit on the minimization
process and leave the core only partially minimized if the
limit is exceeded.

Disjoint Cores. Calls to the IP solver are expensive, and
therefore we do not call the IP solver after each extracted
core, but instead we first extract a disjoint set of cores. Such

a strategy is shown in Algorithm 2, and it is essentially the
“disjoint” strategy of (Saikko 2015) applied to ASP; it can
be also seen as an extension of the preliminary disjoint cores
analysis step of Wasp (Alviano and Dodaro 2016). The algo-
rithm maintains upper and lower bounds, initially set to ∞
and 0, respectively (line 1). The main loop of the algorithm
(lines 2–12) is repeated until the bounds match, and com-
putes non-overlapping cores of Π with respect to W \ HS
(the inner loop in lines 3–10). Specifically, soft atoms of ex-
tracted cores are added to HS (line 10), which guarantees
that those atoms will not occur in subsequent cores extracted
in the same iteration of the main loop. By searching for dis-
joint cores, we may find a stable model which possibly im-
proves the upper bound (lines 7–8) and which—regardless
of whether the upper bound is improved—terminates the
inner loop (line 5). After that, an optimal hitting set is
computed (line 11), the lower bound is possibly improved
(line 12), and the main loop is repeated. We note that stable
models found by Algorithm 2 give upper bounds that allow
for reduced cost fixing (as explained next), or even let the al-
gorithm halt earlier (when the bounds match there is no need
to extract more cores). Moreover, disjoint sets of cores may
even lead to better lower bounds because no hitting set can
hit multiple cores in a disjoint set with a single atom.
Example 3.2 (Continuing Example 2.3). At the begin-
ning LB = 0 and UB = ∞. Let solve(Π1,W1) return
(⊥, {sc, sd}). Then HS = {sc, sd} and C = {{sc, sd}}.
Now let solve(Π1, {sa, sb}) return (⊥, {sa, sb}).
Therefore HS = W1 and C = {{sc, sd}, {sa, sb}}.
Then let solve(Π1, ∅) return (I1, ∅), and therefore
UB is set to 13 and Ibest is updated. The call to
MCHS ({{sc, sd}, {sa, sb}},W1) returns {sa, sc}; there-
fore HS = {sa, sc} and LB is updated to 5. The algorithm
then starts a second iteration of the main loop. �

Reduced Cost Fixing is an established technique in IP
solving (Danzig, Fulkerson, and Johnson 1954; Crowder,
Johnson, and Padberg 1983; Nemhauser and Wolsey 1999),
and was recently applied in the context of MaxSAT (Bac-
chus et al. 2017). Here we use reduced cost fixing to simplify
the input ASP program during the execution of the implicit
hitting set algorithm. In a nutshell, the technique works on
the linear programming (LP) relaxation of the hitting set IP
(that is, the IP without integrality constraints), and aims at
fixing the value of some variables by combining an optimal
solution of the LP and the current upper bound. The reduced
cost rc(bp) of a variable bp in an optimal LP solution quan-
tifies the minimum amount by which a unit increase of the
value of bp would increase the cost of the LP. Since an op-
timal solution of the LP provides a lower bound lb for the
IP, and also a lower bound lb + rc(bp) for all variables bp
assigned 0, we check whether lb+rc(bp) > UB , where UB
is the cost of the best stable model computed so far. If this is
the case, we fix bp = 0 in the IP, and also reduce the search
space of the ASP solver by adding the integrity constraint
⊥ ← p.

Clark’s Completion based Bounds. The reduced cost
fixing procedure depends on good upper and lower bounds
to be effective. The lower bound given by a minimum-cost

hitting set is usually very low in the first steps of compu-
tation due to the small number of extracted cores. With the
goal of enabling earlier application of reduced cost fixing,
we derive an initial lower bound from the Clark’s comple-
tion of Π, a notion capturing the supported models of Π as an
overapproximation of the stable models of Π (Clark 1977).
For our purposes, we target Clark’s completion towards lin-
ear programs in order to use an LP solver to obtained lower
bounds from the completion. The Clark’s completion of a
program Π is denoted Comp(Π), and comprises the follow-
ing constraints: for each atom p ∈ A, p ∈ {0, 1} (each atom
is either true or false); ⊥ = 0 (⊥ is false); for each disjunc-
tive rule r ∈ Π,∑

p∈H(r)∪B(r)−

p +
∑

p∈B(r)+

(1− p) ≥ 1,

and for each choice rule r ∈ Π,∑
p∈lits(r)+

p +
∑

p∈lits(r)−

(1− p) ≤ bound(r)

(each rule is satisfied); for each atom p ∈ A \ {⊥} not oc-
curring positively in any choice rule of Π,

(1− p) +
∑

r∈heads(Π,p)

rp ≥ 1,

and for r ∈ heads(Π, p), rp ∈ {0, 1},

rp +
∑

p′∈(H(r)\{p})∪B(r)−

p′ +
∑

p′∈B(r)+

(1− p′) ≥ 1

(1− rp) + (1− p′) ≥ 1 ∀p′ ∈ (H(r) \ {p}) ∪B(r)−

(1− rp) + p′ ≥ 1 ∀p′ ∈ B(r)+

(true atoms are supported; rp = 1 if and only if rule r sup-
ports p). In particular, this is a relaxation of Π in that its
solution gives a lower bound for the cost of optimal stable
models of Π with respect toW . Solving the Clark’s comple-
tion using an LP solver is efficient, and gives lower bounds
which can improve subsequent search by e.g. enabling more
reduced cost fixing.

Non-core Constraints. The Clark’s completion may also
provide additional information for the IP solver, as con-
straints involving only soft atoms can be added to the IP.
For example, if Π contains a rule of the form W ← for
some ∅ ⊂W ⊆ W , we can instruct the IP solver that no hit-
ting set contains every p ∈ W , i.e.,

∑
p∈W bp < |W |. Such

constraints possibly allow the IP solver to find hitting sets
hitting several cores of Π even without explicitly extracting
the cores. We note that these constraints are not necessar-
ily cores of Π with respect toW , and therefore the IP being
solved is not a pure hitting set problem, though its solutions
are still hitting sets of cores(Π,W).

4 Experiments
We overview results of an empirical evaluation of the im-
plicit hitting set approach to optimization in ASP, consid-
ering the effectiveness of the approach from multiple view-
points: the impact of the different search techniques included

in our implementation; comparison with the current state of
the art solvers for optimization in ASP; and the robustness
of the approach in terms of the impact of high-resolution
weights. The experiments were run on a cluster of machines
with Intel Xeon E5-2680 processors using CentOS Linux
7.4. All solvers are subject to per-instance time and memory
limits respectively set to 30 minutes and 50 GB.

We implemented the implicit hitting set approach to op-
timization in ASP, referred to in the following as ASP-HS,
using Wasp 2.0 as the core extractor and CPLEX 12.7 (IBM
2017) as the underlying IP and LP solver for computing hit-
ting sets and for obtaining bounds via LP relaxations. All of
the search techniques described in Section 3 are integrated
in ASP-HS.

We used the following benchmarks from the 2015 and
2017 ASP Competitions (Gebser, Maratea, and Ricca 2017;
2015): Bayes, Markov, SuperTree, and TravelingSales-
man (2017 ASP Competition); SteinerTree, ValvesLoca-
tion, and VideoStreaming (2015 ASP Competition); Sys-
temSynthesis, StillLife, CrossingMinimization, Maximal-
Clique, and ADF-WF (2015 ASP Competition). Moreover,
we used instances of causal discovery (Hyttinen, Eber-
hardt, and Järvisalo 2014) as a further problem domain re-
ferred to as CausalGraph, as well as instances of Fastfood
and OpenDoors from the Asparagus repository (https:
//asparagus.cs.uni-potsdam.de/). All instances but
those of ADF-WF, MaximalClique, CrossingMinimization,
StillLife and SystemSynthesis are weighted.

Impact of Search Techniques. We first investigate the
marginal impact of the individual search techniques de-
scribed in Section 3 on the efficiency of ASP-HS. For this,
we ran the default ASP-HS with all of the techniques en-
abled, and versions with exactly one of the following tech-
niques disabled: disjoint cores (No disjoint); bounding tech-
niques including reduced cost fixing (No reduced cost) and
Clark’s completion based bounds (No Clark LB); core min-
imization (No minimize); and non-core constraints (No non-
core). The results are shown in Table 1 and Figure 2. We ob-
serve that core minimization and disjoint core computations
make the greatest marginal contributions in terms of the
number of solved instances. In fact, both of these techniques
seem crucial for the CausalGraph problem domain. Further-
more, core minimization alone is important for SuperTree,
while disjoint cores alone is crucial for TravelingSalesman.
We also observed that the resource limits set on minimiza-
tion had a notable impact only on the TravelingSalesman
instances. The positive effects of lower bounding techniques
and integration of non-core constraints is less pronounced,
but still both allow for solving more instances without intro-
ducing significant overhead in any benchmark.

Comparison with State of the Art. We compare with
Wasp 2.0, using the core-guided algorithm ONE, and Clasp
3.3.2, using both the core-guided algorithm OLL (usc) and
its default branch-and-bound algorithm (bb). The solvers
were run using their default settings. The results are shown
in Table 2 and Figure 3. Overall, ASP-HS is very com-
petitive when compared to other core-guided approaches.
In fact, ASP-HS complements all of the other solvers, and

Table 1: Impact of individual search techniques on the performance of ASP-HS. For each variant, “#s” gives the number of
instances solved within the per-instance time limit, and “time” the cumulative running times on all instances, incl. timeouts.

ASP-HS No non-core No Clark LB No reduced cost No disjoint No minimize
Family #s time #s time #s time #s time #s time #s time
Weighted
Bayes1000 (20) 11 17793.4 9 21403.9 11 17658.6 11 17591.5 14 16573.4 11 19074.5
CausalGraph (20) 18 8891.7 17 8521.5 17 8748.1 14 12197.1 8 23941.8 10 20308.7
Fastfood (20) 9 20490.9 9 20498.1 9 20486.6 9 20880.1 8 22473.5 8 22977.6
Markov (20) 1 35607.2 0 36000.0 1 35739.1 1 35880.0 2 34508.5 0 36000.0
MaxSAT (20) 12 17690.5 10 21667.5 12 17624.9 12 17642.5 10 20485.2 10 19950.3
OpenDoors (20) 20 297.5 20 297.3 20 283.4 20 318.3 20 408.8 20 316.6
SteinerTree (20) 0 36000.0 0 36000.0 0 36000.0 0 36000.0 0 36000.0 0 36000.0
SuperTree (20) 5 27358.7 5 27364.6 5 27556.6 5 27338.1 5 27735.5 0 36000.0
TravelingSalesman (20) 10 19510.3 11 17890.8 10 19208.0 10 19104.6 5 27455.5 9 20445.0
ValvesLocation (20) 15 10470.8 15 10497.8 15 9942.4 15 10480.0 14 11768.2 15 11315.8
VideoStreaming (20) 11 16201.9 11 16202.7 11 16201.3 11 16202.2 11 16202.0 11 16201.7
All Weighted 112 210313 107 216344 111 209450 108 213634 97 237552 94 238590
Unweighted
ADF-WF (20) 20 2701.8 19 2984.7 20 1753.1 20 3113.1 19 3129.5 19 4089.2
CrossingMinimization (20) 19 2788.5 19 2781.6 19 3032.1 19 2766.6 18 7404.0 18 3686.7
MaximalClique (20) 0 36000.0 0 36000.0 0 36000.0 0 36000.0 0 36000.0 0 36000.0
StillLife (20) 2 35531.5 1 35756.1 1 35380.3 0 36000.0 0 36000.0 0 36000.0
SystemSynthesis (20) 0 36000.0 0 36000.0 0 36000.0 0 36000.0 0 36000.0 0 36000.0
All Unweighted 41 113022 39 113523 40 112166 39 113880 37 118534 37 115776

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 30 40 50 60 70 80 90 100 110

Ti
m

e
 (

se
c)

Instances solved

No disjoint (U) : 37
No minimize (U) : 37
No non-core (U) : 39

No reduced cost (U) : 39
No Clark LB (U) : 40

ASP-HS (U) : 41
No minimize (W) : 94

No disjoint (W) : 97
No non-core (W) : 107

No reduced cost (W) : 108
No Clark LB (W) : 111

ASP-HS (W) : 112

Figure 2: Impact of individual search techniques in ASP-HS
on weighted (W) and unweighted (U) instances.

performs best on TravelingSalesman. On the other hand,
the branch-and-bound approach of Clasp is overall effec-
tive on weighted instances, and outperforms all core-guided
approaches on Markov, FastFood, and SuperTree. Concern-
ing unweighted instances, the performance of ASP-HS is on
par with Clasp-bb, but does not reach the performance of
the other core-guided approaches. This is somehow expected
because for unweighted instances the number of iterations of
ONE and OLL is bound by the number of soft atoms. On the
contrary, we expected more positive results from weighted
instances because ONE and OLL introduce several copies of
the initial soft atoms, while in ASP-HS weights are handled
by CPLEX. A more in-depth analysis of Bayes will help to
understand the obtained results.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 40 60 80 100 120 140

Ti
m

e
 (

se
c)

Instances solved

Clasp-bb (U) : 40
ASP-HS (U) : 41

Wasp (U) : 62
Clasp-usc (U) : 69
Clasp-usc (W) : 99

Wasp (W) : 103
ASP-HS (W) : 112

Clasp-bb (W) : 145

Figure 3: Comparison of the performance of ASP-HS with
the core-guided approaches in Wasp and Clasp on weighted
(W) and unweighted (U) instances.

Impact of Weight Precision. For evaluating the impact
of weight precision on solver performance, we focus on
the benchmark Bayes, whose instances encode instances of
Bayesian network structure learning, a central combinato-
rial optimization problem from the field of machine learn-
ing. The task is to find an optimal acyclic graph induced
by choosing the set of parent nodes, each of different value,
for each node in the graph. The weights of these instances
arise from statistical tests, which naturally results in high-
precision weights. The accuracy of the computed network
structures depends on the precision of weights, but the ASP
encoding for this problem divides all weights by X = 1000.
From the perspective of the application domain, this is an

Table 2: Comparison of the performance of ASP-HS with Wasp and Clasp.
ASP-HS Wasp Clasp-usc Clasp-bb

Family #s time #s time #s time #s time
Weighted
Bayes1000 (20) 11 17793.4 15 11362.2 16 8943.7 15 9659.9
CausalGraph (20) 18 8891.7 13 14487.4 4 28800.7 18 5899.2
Fastfood (20) 9 20490.9 11 16554.4 12 17125.2 20 96.3
Markov (20) 1 35607.2 0 36000.0 0 36000.0 15 12289.0
MaxSAT (20) 12 17690.5 19 4174.7 15 11095.5 10 18258.3
OpenDoors (20) 20 297.5 20 214.85 20 137.9 20 158.1
SteinerTree (20) 0 36000.0 1 34242.1 1 34201.1 3 31035.8
SuperTree (20) 5 27358.7 5 27494.7 7 24536.8 11 21604.7
TravelingSalesman (20) 10 19510.3 3 31145.8 4 29505.1 4 29557.6
ValvesLocation (20) 15 10470.8 16 9431.4 9 23189.9 16 7866.9
VideoStreaming (20) 11 16201.9 0 36000.0 11 16200.3 13 12794.6
All Weighted 112 210313 103 221107 99 229736 145 149220
Unweighted
ADF-WF (20) 20 2701.8 15 9847.4 20 182.1 20 73.2
CrossingMinimization (20) 19 2788.5 19 1933.2 19 1802.9 13 13686.2
MaximalClique (20) 0 36000.0 8 25002.1 12 18699.0 0 36000.0
StillLife (20) 2 35531.5 19 4439.2 12 15515.8 7 24313.5
SystemSynthesis (20) 0 36000.0 1 34936.9 6 29358.8 0 36000.0
All Unweighted 41 113022 62 76159 69 65559 40 110073

Table 3: Impact of weight precision on the performance of
ASP-HS and Wasp on the Bayes benchmark family.

ASP-HS Wasp
Family solved time solved time
Bayes1 (60) 23 73881.3 5 99335.6
Bayes10 (60) 23 73273.9 6 97480.6
Bayes100 (60) 23 72843.5 12 89454.1
Bayes1000 (60) 27 64406.4 35 51484.3
Total 96 284405 58 337755

unnatural choice, but gives us a natural way to evaluate how
the precision of weights influence the performance of ASP
solvers. Specifically, we varied X ∈ {1, 10, 100, 1000},
and refer to the corresponding benchmark by BayesX . The
smaller the X , the more precisely (better) the solutions to
the ASP instances reflect the optimal solutions to the orig-
inal problem instances. The comparison between ASP-HS
and Wasp is shown in Table 3 and Figure 4. While the run-
ning time performance of Wasp noticeably deteriorates as
weight precision is increased, with only 5 out of a total of
60 instances solved for X = 1; we observed similar be-
havior for Clasp-usc as well. In contrast, the performance of
ASP-HS is mostly maintained when increasing precision.

5 Related Work
The first ASP solver applying unsatisfiable cores for opti-
mization was Unclasp (Andres et al. 2012), based on Clasp
and implementing the algorithm OLL. A main drawback
of OLL is that it may add new constraints if soft literals
introduced by unsatisfiable core analysis belong to subse-
quently detected unsatisfiable cores, and these new con-
straints only slightly differ from earlier extracted cores. This
drawback was later circumvented in the MaxSAT solver
MSCG (Morgado, Dodaro, and Marques-Silva 2014) us-

0 5 10 15 20 25 30 35
Instances solved

0

200

400

600

800

1000

1200

1400

1600

1800

Ti
m

e

Bayes1 ASP-HS: 23
Bayes1 Wasp: 5
Bayes100 ASP-HS: 23
Bayes100 Wasp: 12
Bayes1000 ASP-HS: 27
Bayes1000 Wasp: 35

Figure 4: Comparison of ASP-HS with Wasp on the Bayes
benchmark family.

ing an encoding based on sorting networks. Subsequently,
the ASP solver Wasp (Alviano et al. 2015) also imple-
ments OLL. The algorithms OLL and PMRES are also
the origin of two other algorithms for MaxSAT, ONE and
K (Alviano, Dodaro, and Ricca 2015), today implemented
in Wasp and Clasp. Both of these solvers apply a technique
for shrinking unsatisfiable cores (Alviano and Dodaro 2016;
2017).

The idea of implicit hitting set algorithms traces back to
Reiter (1987) who developed a domain-specific approach to
diagnosis using conflict sets (cores) and hitting sets. Later,
implicit hitting set algorithms were proposed by Moreno-
Centeno and Karp (2013) using notions of separation or-
acles (polynomial-time algorithms, in contrast to using

NP-decision procedures for core extraction, thus covering
less general problems) and circuits (essentially unsatisfiable
cores); specifically, they implemented the idea in the context
of an NP-complete multigenome alignment problem.

More recently, IHS solvers have been proposed for
MaxSAT (Davies and Bacchus 2011; 2013b; 2013a; Davies
2013; Saikko 2015; Saikko, Berg, and Järvisalo 2016), and
their success is the main motivation of the present work.
The approach has also been lifted to weighted CSPs (Delisle
and Bacchus 2013) and most recently to satisfiability mod-
ulo theories (Fazekas, Bacchus, and Biere 2018), as well as
to finding smallest-cardinality unsatisfiable subformulas (Ig-
natiev et al. 2015). More generally, the hitting set duality
principle underlying core-guided algorithms has been suc-
cessfully applied to various other NP-hard problems, such
as enumerating of subset-minimal cores (Liffiton et al. 2016;
Bailey and Stuckey 2005; Arif, Mencı́a, and Marques-Silva
2015), computing implicants and implicates of proposi-
tional formulas (Rymon 1994; Previti et al. 2015), quan-
tified Boolean formula satisfiability (Janota and Marques-
Silva 2015), model-based diagnosis (Stern et al. 2012),
and computing Horn least upper bounds (Mencı́a, Previti,
and Marques-Silva 2015). Moreover, Saikko, Wallner, and
Järvisalo (2016) presented an extendable and generic frame-
work for implicit hitting set algorithms, which is focused
on applying one or several SAT solvers in addition to an IP
solver for instantiating problems also in higher levels of the
polynomial hierarchy, providing an implementation instanti-
ating the framework for the second-level complete problem
of propositional abduction. Following this trend, our work
brings the IHS approach to answer set optimization. To the
best of our knowledge, practical instantiations of the general
IHS approach to optimization in ASP have not been devel-
oped earlier.

6 Conclusions

The ability to solve optimization problems, i.e., to find op-
timal solutions, considerably extends the range of applica-
tions of answer set programming as a declarative problem
solving paradigm. We described a first approach of an an-
swer set optimizer based on the implicit hitting set paradigm.
This constitutes a hybrid approach, making use of both
an ASP decision solver (as an unsatisfiable core extractor,
covering both normal and disjunctive programs) and an IP
solver (as a hitting set algorithm). The approach can benefit
from advances in both ASP and IP solver technology. To this
end, we described new combinations of interacting search
techniques that are not directly available to ASP optimizers
purely based on ASP decision solvers. We showed empiri-
cally that our first implementation of the approach is already
promising as a complementary approach to optimization in
ASP. Interesting directions for further work include a closer
investigation into the interactions between different search
techniques within the approach and adopting further IP tech-
niques for further speeding up the approach in practice.

Acknowledgements
Work supported by Academy of Finland (grants 276412,
312662), Doctoral Programme in Computer Science of
the University of Helsinki, POR CALABRIA FESR 2014-
2020 project “DLV Large Scale” (CUP J28C17000220006),
EU H2020 PON I&C 2014-2020 project “S2BDW” (CUP
B28I17000250008), and GNCS-INdAM.

References
Abseher, M.; Gebser, M.; Musliu, N.; Schaub, T.; and Woltran, S.
2016. Shift design with answer set programming. Fund. Inform.
147(1):1–25.
Alviano, M., and Dodaro, C. 2016. Anytime answer set optimiza-
tion via unsatisfiable core shrinking. Theor. Pract. Log. Prog. 16(5-
6):533–551.
Alviano, M., and Dodaro, C. 2017. Unsatisfiable core shrinking
for anytime answer set optimization. In Proc. IJCAI, 4781–4785.
ijcai.org.
Alviano, M.; Dodaro, C.; Marques-Silva, J.; and Ricca, F. 2015.
Optimum stable model search: algorithms and implementation. J.
Log. Comput. in press.
Alviano, M.; Dodaro, C.; and Maratea, M. 2017. An ad-
vanced answer set programming encoding for nurse scheduling. In
Proc. AI*IA, volume 10640 of LNCS, 468–482. Springer.
Alviano, M.; Dodaro, C.; and Ricca, F. 2015. A MaxSAT algo-
rithm using cardinality constraints of bounded size. In Proc. IJCAI,
2677–2683. AAAI Press.
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T. 2012.
Unsatisfiability-based optimization in clasp. In ICLP Tech. Com-
mun., volume 17 of LIPIcs, 211–221. Leibniz-Zentrum für Infor-
matik.
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. Solving (weighted)
partial MaxSAT through satisfiability testing. In Proc. SAT, volume
5584 of LNCS, 427–440. Springer.
Arif, M. F.; Mencı́a, C.; and Marques-Silva, J. 2015. Efficient MUS
enumeration of Horn formulae with applications to axiom pinpoint-
ing. In Proc. SAT, volume 9340 of LNCS, 324–342. Springer.
Bacchus, F.; Hyttinen, A.; Järvisalo, M.; and Saikko, P. 2017. Re-
duced cost fixing in MaxSAT. In Proc. CP, volume 10416 of LNCS,
641–651. Springer.
Bailey, J., and Stuckey, P. J. 2005. Discovery of minimal un-
satisfiable subsets of constraints using hitting set dualization. In
Proc. PADL, volume 3350 of LNCS, 174–186. Springer.
Bakker, R. R.; Dikker, F.; Tempelman, F.; and Wognum, P. M.
1993. Diagnosing and solving over-determined constraint satis-
faction problems. In Proc. IJCAI, 276–281. Morgan Kaufmann.
Balduccini, M.; Gelfond, M.; Watson, R.; and Nogueira, M. 2001.
The usa-advisor: A case study in answer set planning. In Proc. LP-
NMR, volume 2173 of LNCS, 439–442. Springer.
Baral, C., and Uyan, C. 2001. Declarative specification and so-
lution of combinatorial auctions using logic programming. In
Proc. LPNMR, volume 2173 of LNCS, 186–199. Springer.
Clark, K. L. 1977. Negation as failure. In Symposium on Logic
and Data Bases, 293–322. Plemum Press.
Crowder, H.; Johnson, E. L.; and Padberg, M. 1983. Solving
large-scale zero-one linear programming problems. Oper. Res.
31(5):803–834.
Danzig, G. B.; Fulkerson, D. R.; and Johnson, S. M. 1954. Solution
of a large-scale traveling-salesman problem. Oper. Res. 2:393–410.

Davies, J., and Bacchus, F. 2011. Solving MAXSAT by solving a
sequence of simpler SAT instances. In Proc. CP, volume 6876 of
LNCS, 225–239. Springer.
Davies, J., and Bacchus, F. 2013a. Exploiting the power of MIP
solvers in MaxSAT. In Proc. SAT, volume 7962 of LNCS, 166–181.
Springer.
Davies, J., and Bacchus, F. 2013b. Postponing optimization to
speed up MAXSAT solving. In Proc. CP, volume 8124 of LNCS,
247–262. Springer.
Davies, J. 2013. Solving MAXSAT by Decoupling Op-
timization and Satisfaction. Ph.D. Dissertation, University
of Toronto. http://www.cs.toronto.edu/˜jdavies/
Davies_Jessica_E_201311_PhD_thesis.pdf.
Delisle, E., and Bacchus, F. 2013. Solving weighted CSPs by
successive relaxations. In Proc. CP, volume 8124 of LNCS, 273–
281. Springer.
Fazekas, K.; Bacchus, F.; and Biere, A. 2018. Implicit hitting set
algorithms for maximum satisfiability modulo theories. In Proc. IJ-
CAR, volume 10900 of LNCS, 134–151. Springer.
Fu, Z., and Malik, S. 2006. On Solving the Partial MAX-SAT
Problem. In Proc. SAT, volume 4121 of LNCS, 252–265. Springer.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-driven
answer set solving: From theory to practice. Artif. Intell. 187:52–
89.
Gebser, M.; Maratea, M.; and Ricca, F. 2015. The design of the
sixth answer set programming competition. In Proc. LPNMR, vol-
ume 9345 of LNCS, 531–544. Springer.
Gebser, M.; Maratea, M.; and Ricca, F. 2017. The design of the
seventh answer set programming competition. In Proc. LPNMR,
volume 10377 of LNCS, 3–9. Springer.
Gebser, M.; Ryabokon, A.; and Schenner, G. 2015. Combining
heuristics for configuration problems using answer set program-
ming. In Proc. LPNMR, volume 9345 of LNCS, 384–397. Springer.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representation, Rea-
soning, and the Design of Intelligent Agents: The Answer-Set Pro-
gramming Approach. Cambridge University Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Gen. Comput.
9(3/4):365–386.
Hyttinen, A.; Eberhardt, F.; and Järvisalo, M. 2014. Constraint-
based causal discovery: Conflict resolution with answer set pro-
gramming. In Proc. UAI, 340–349. AUAI Press.
IBM. 2017. CPLEX Optimizer. http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/.
Ignatiev, A.; Previti, A.; Liffiton, M. H.; and Marques-Silva, J.
2015. Smallest MUS extraction with minimal hitting set dualiza-
tion. In Proc. CP, volume 9255 of LNCS, 173–182. Springer.
Janota, M., and Marques-Silva, J. 2015. Solving QBF by clause
selection. In Proc. IJCAI, 325–331. AAAI Press.
Karp, R. M. 2010. Implicit hitting set problems and multi-genome
alignment. In Proc. CPM, volume 6129 of LNCS, 151. Springer.
Koponen, L.; Oikarinen, E.; Janhunen, T.; and Säilä, L. 2015. Op-
timizing phylogenetic supertrees using answer set programming.
Theor. Pract. Log. Prog. 15(4-5):604–619.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.;
and Scarcello, F. 2006. The DLV system for knowledge represen-
tation and reasoning. ACM T. Comput. Log. 7(3):499–562.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J. 2016.
Fast, flexible MUS enumeration. Constraints 21(2):223–250.

Lifschitz, V. 2002. Answer set programming and plan generation.
Artif. Intell. 138:39–54.
Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer set program-
ming via mixed integer programming. In Proc. KR. AAAI Press.
Manquinho, V. M.; Silva, J. P. M.; and Planes, J. 2009. Algorithms
for weighted Boolean optimization. In Proc. SAT, volume 5584 of
LNCS, 495–508. Springer.
Marek, V. W., and Truszczyński, M. 1999. Stable models and an al-
ternative logic programming paradigm. In The Logic Programming
Paradigm – A 25-Year Perspective. Springer. 375–398.
Marileo, M. C., and Bertossi, L. E. 2010. The consistency extrac-
tor system: Answer set programs for consistent query answering in
databases. Data & Knowl. Eng. 69(6):545–572.
Marques-Silva, J., and Manquinho, V. M. 2008. Towards more
effective unsatisfiability-based maximum satisfiability algorithms.
In Proc. SAT, volume 4996 of LNCS, 225–230. Springer.
Marques-Silva, J., and Planes, J. 2008. Algorithms for maximum
satisfiability using unsatisfiable cores. In Proc. DATE, 408–413.
IEEE.
Mencı́a, C.; Previti, A.; and Marques-Silva, J. 2015. SAT-based
Horn least upper bounds. In Proc. SAT, volume 9340 of LNCS,
423–433. Springer.
Moreno-Centeno, E., and Karp, R. M. 2013. The implicit hitting
set approach to solve combinatorial optimization problems with an
application to multigenome alignment. Oper. Res. 61(2):453–468.
Morgado, A.; Dodaro, C.; and Marques-Silva, J. 2014. Core-
guided MaxSAT with soft cardinality constraints. In Proc. CP,
volume 8656 of LNCS, 564–573. Springer.
Nemhauser, G. L., and Wolsey, L. A. 1999. Integer and Combina-
torial Optimization. Wiley-Interscience.
Niemelä, I. 1999. Logic programming with stable model seman-
tics as constraint programming paradigm. Ann. Math. Artif. Intell.
25(3–4):241–273.
Previti, A.; Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2015.
Prime compilation of non-clausal formulae. In Proc. IJCAI, 1980–
1988. AAAI Press.
Reiter, R. 1987. A theory of diagnosis from first principles. Artif.
Intell. 32(1):57–95.
Ricca, F.; Grasso, G.; Alviano, M.; Manna, M.; Lio, V.; Iiritano, S.;
and Leone, N. 2012. Team-building with answer set programming
in the Gioia-Tauro seaport. Theor. Pract. Log. Prog. 12(3):361–
381.
Rymon, R. 1994. An SE-tree-based prime implicant generation
algorithm. Ann. Math. Artif. Intell. 11(1-4):351–366.
Saikko, P.; Berg, J.; and Järvisalo, M. 2016. LMHS: A SAT-IP
hybrid MaxSAT solver. In Proc. SAT, volume 9710 of LNCS, 539–
546. Springer.
Saikko, P.; Wallner, J. P.; and Järvisalo, M. 2016. Implicit hitting
set algorithms for reasoning beyond NP. In Proc. KR, 104–113.
AAAI Press.
Saikko, P. 2015. Re-implementing and extending a hybrid SAT-IP
approach to maximum satisfiability. Master’s thesis, University of
Helsinki. http://hdl.handle.net/10138/159186.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending and im-
plementing the stable model semantics. Artif. Intell. 138(1-2):181–
234.
Stern, R. T.; Kalech, M.; Feldman, A.; and Provan, G. M. 2012.
Exploring the duality in conflict-directed model-based diagnosis.
In Proc. AAAI. AAAI Press.

