
SET PARTITIONING VIA INCLUSION–EXCLUSION∗

ANDREAS BJÖRKLUND† , THORE HUSFELDT† , AND MIKKO KOIVISTO‡

Key words. Set partition, graph colouring, exact algorithm, zeta transform, inclusion–exclusion

AMS subject classifications. 05C15, 68W01, 68R10, 90C27

Abstract. Given a set N with n elements and a family F of subsets, we show how to partition N
into k such subsets in 2nnO(1) time. We also consider variations of this problem where the subsets
may overlap or are weighted, and we solve the decision, counting, summation, and optimisation
versions of these problems. Our algorithms are based on the principle of inclusion–exclusion and the
zeta transform.

In effect we get exact algorithms in 2nnO(1) time for several well-studied partition problems
including Domatic Number, Chromatic Number, Maximum k-Cut, Bin Packing, List Colouring, and
the Chromatic Polynomial. We also have applications to Bayesian learning with decision graphs and
to model-based data clustering.

If only polynomial space is available, our algorithms run in time 3nnO(1) if membership in F
can be decided in polynomial time. We solve Chromatic Number in O(2.2461n) time and Domatic
Number in O(2.8718n) time.

Finally, we present a family of polynomial space approximation algorithms that find a number

between χ(G) and d(1 + ε)χ(G)e in time O(1.2209n + 2.2461e−εn).

1. Introduction. Graph colouring, domatic partitioning, weighted k-cut, and a
host of other problems can be viewed as special cases of partitioning an n-set N into
subsets S1, . . . , Sk from a given family F. More generally, given functions f1, . . . , fk
we want to sum the product f1(S1) · · · fk(Sk) or optimise the sum f1(S1)+· · ·+fk(Sk)
over all partitions (S1, . . . , Sk) of N .

Ignoring for a moment factors that are polynomial in n, k, and the range of fc,
we solve this problem in time 2n using two simple ideas. The first idea is to express
the problem as an inclusion–exclusion formula over the subsets of N . In its simplest
form, it says that N can be covered with k sets from F if and only if∑

X⊆N

(−1)|X|a(X)k > 0 , (1.1)

where a(X) denotes the number of sets from F not intersecting X. The second idea
is to evaluate the summands quickly by first building a table containing all the a(X)
using an algorithm known as the fast zeta transform. For our more general applica-
tions, we also need some other standard techniques such as dynamic programming,
embedding into large integers, and self-reducibility, but even so our arguments remain
short, elementary, and self-contained.

1.1. Applications. Perhaps the simplest application of our result is Bin Pack-
ing, where we are given a weight w(x) for each x ∈ N and F consists of the subsets
S ⊆ N satisfying

∑
x∈S w(x) ≤ B.

But typically we consider more constrained partitions. Most notably our results
apply to some well-known NP-hard problems on graphs or hypergraphs that ask for
a vertex partition into subgraphs that satisfy a given property, such as independence
or dominance. Table 1.1 shows some examples.

1Previous versions of this paper appeared as [Inclusion–exclusion algorithms for counting set
partitions, Proc. 47th FOCS, 2006] by the first two authors, and independently as [An O∗(2n)
algorithm for graph coloring and other partitioning problems via inclusion-exclusion, Proc. 47th

2

Name [23] Property of S ∈ F

Domatic Number S is a dominating set in G
Chromatic Number S is a independent set in G
Partition into Hamiltonian Subgraphs G[S] is Hamiltonian
Partition into Forests G[S] is a forest
Partition into Perfect Matchings G[S] is a perfect matching
Bounded Component Spanning Forest G[S] connected,

∑
v∈S w(v) ≤ B

Table 1.1
Some exact partition problems where N are the vertices of a graph G.

The most obvious application is of course Minimum Set Cover and its many
variants. However, this may be a misleading example, because in those problems,
the set F is given explicitly as part of the input and is often small compared to n;
for example the clauses of a monotone satisfiability problem or the edges of a sparse
hypergraph. Our algorithms apply to these problems as well, and become interesting
when F is large compared to n.

The most general formulation of our result replaces the family F with functions
f1, . . . , fk, which allows us to consider ‘weighted’ partitions with the objective function
f1(S1) + · · ·+ fk(Sk). The applications of this framework include Maximum k-Cut
and the graph colouring problems List Colouring and Chromatic Sum.

Typically, we actually solve the related counting version of the problem. For
example, we count the number of k-colourings of a graph, which is known as the
problem of computing the Chromatic Polynomial. In the weighted case, we com-
pute the sum of the product f1(S1) · · · fk(Sk) over all partitions; we give applications
to Bayesian data clustering and decision graph learning.

1.2. Further Results. We note that (1.1) immediately yields an |F|2nnO(1)

time, polynomial space algorithm. We take a closer look at polynomial space al-
gorithms for Chromatic and Domatic Number. Using the fastest currently known
algorithm in the literature for counting independent sets [22] to compute a(X), the
total running time to evaluate the sum in (1.1) becomes O(2.2461n). For Domatic
Number, we need a more complicated argument that can be seen as an extension of
our main result, together with a recent algorithm to count the number of minimal
dominating sets [20] and arrive at total time O(2.8718n). Both of these algorithms
are the fastest polynomial space algorithms known for these problems, in fact they
are faster than the best exponential space algorithms known prior to this paper.

Finally, we derive a family of exponential-time approximation algorithms based
on first removing large independent sets and then applying our ideas on the remaining
graph. For instance, we can approximate χ(G) within a factor 2 in time O(1.3467n)
and polynomial space. The approximability of the chromatic number is very well
studied; the best known polynomial time algorithm guarantees only an approxima-
tion ratio of O(n log−3 n log log2 n) [25], and χ(G) is NP-hard to approximate within
n1−o(1) [51].

FOCS, 2006] by the third author.
2Department of Computer Science, Lund University, Sweden
3Helsinki Institute for Information Technology, Basic Research Unit, Helsinki University of Tech-

nology and Department of Computer Science, University of Helsinki, Finland

3

Time O(cn) Problem Reference

c =2.4423 Find χ Lawler [35]
2.4151 Find χ Eppstein [15]
2.4023 Find χ Byskov [11]
2.3236 Find χ Björklund and Husfeldt [9]
2.2590 Decide χ ≤ 5 Beigel and Eppstein [7]
2.1592 Decide χ ≤ 5 Byskov [11]
2.1020 Decide χ ≤ 5 Byskov and Eppstein [12]
2.1809 Decide χ ≤ 6 ibid.
2.9416 Decide δ ≥ 3 Riege and Rothe [39]
2.8718 Find δ Fomin et al. [20]
2.6949 Decide δ ≥ 3 Riege et al. [40]

Table 1.2
Previous algorithms for Chromatic Number χ and Domatic Number δ.

Our inclusion–exclusion formulas themselves provide characterizations of well-
studied graph numbers. Most notably, for the chromatic polynomial we arrive at

P (G; k) =
k∑
r=1

(
k

r

)(∑
X⊆V

(−1)|X|ar(X)
)
, (1.2)

where ar(X) denotes the number of ways to choose r independent sets S1, . . . , Sr ⊆
V \X, such that |S1| + · · · + |Sr| = n. To the best knowledge of the authors, these
characterizations are new and might be of independent combinatorial interest; in any
case, their proofs are elementary.

1.3. Previous Work and Discussion. Previous research on graph partitioning
is well characterised by the effort put into the graph colouring problem. This is the
set partition problem where N are the vertices of a graph and F are its independent
sets.

A way to solve this problem that goes back at least to Lawler [35], is to use
dynamic programming over the subsets of N : Build a table g(X,m) with entries for
every X ⊆ N and m ≤ k. Iterate over the subsets in order of increasing size and use
g(X,m) =

∑
S∈F g(X\S,m−1), to check for each m ≤ k whether X can be covered by

m of the subsets. Clearly, the algorithm’s running time is bounded by |F|2nnO(1), and
it is never worse than within a polynomial factor of

∑
S∈F 2n−|S| ≤

∑n
`=0

(
n
`

)
2` = 3n.

Ingenious ways to enumerate and bound the size of the family F (corresponding to
minimal dominating sets in the case of Domatic Number or to maximal independent
sets in the case of Chromatic Number) have resulted in the time bounds O(2.8718n)
for Domatic Number [20] and O(2.4022n) for Chromatic Number [11]. Reducing these
constants towards two has been a perpetual algorithmic challenge (see Table 1.2), and
the possibility of ever arriving within a polynomial factor of time 2n, for example for
Chromatic Number, has been a well-known open problem [48].

Our algorithms beat the running time of previous algorithms that decide k-
colourability for small values of k. The exceptions are 3- and 4-colourability, which
can be decided in time O(1.3289n) [7] and O(1.7504n) [11], respectively, well beyond
the reach of our constructions.

For polynomial space, the first non-trivial algorithm for finding the chromatic
number, by Christofides [14] in 1971, runs in time n!nO(1). Feder and Motwani [16]

4

gave a randomised linear space algorithm with running time O
(
(χ/e)n

)
, improv-

ing Christofides’ result for small values of χ. The running time of an algorithm by
Angelsmark and Thapper [1] can be given as O

(
(2 + logχ)n

)
, an asymptotic im-

provement over Christofides’ result for all values of χ. Very recently, running times
of the form O(cn) have appeared; Bodlaender and Kratsch [10] achieved O(5.283n)
and Björklund and Husfeldt [9] arrived at O(8.3203n) and O(2.4423n). The bound
given in the present paper, O(2.2416n), will improve whenever the running time for
counting independent sets is improved, but there is little hope that this approach
will ever arrive within a polynomial factor of 2n because counting independent sets is
#P -complete [24, 45]. The existence of such an algorithm remains open.

For Domatic Number, exponential space algorithms that are faster than 3n have
appeared only recently. Fomin et al. [20] provided an O(2.8718n) time algorithm for
deciding the domatic number, and Riege et al. [40] presented an O(2.6949n) time,
polynomial space algorithm for deciding if the domatic number is at least three. No
prior nontrivial polynomial space algorithm for the general problem is known to the
authors.

The related counting problem of finding P (G, k), the number of k-colourings of
graph G, has been very well studied within Algebraic Graph Theory, where it is known
as computing the chromatic polynomial. Anthony [2] surveys and compares previous
methods, see also [8, 46]. The Whitney expansion,

P (G; k) =
∑
H⊆E

(−1)|H|kn−r〈H〉 , (1.3)

where r〈H〉 is the rank of the subgraph induced by the edge set H, requires time
2m. On some instances, a faster way is the deletion–contraction method, based on the
recurrence

P (G; k) = P (G− e, k) + P (G/e, k) ,

where G − e and G/e are constructed by deleting or contracting edge e, which runs
within a polynomial factor of

(
1
2 (1 +

√
5)
)n+m = O(1.6180n+m). Finally, the relation

between P and the Tutte polynomial
∑
tijx

iyj ,

P (G; k) = (−1)n−1k

n−1∑
i=1

ti0(1− k)i

leads to an algorithm that runs within a polynomial factor of
(
m
n−1

)
< mn = 2n logm ≤

4n logn. All these algorithms can be seen to run in polynomial space.
The application of inclusion–exclusion to combinatorial optimisation goes back

to Ryser’s formula for the permanent [42], which remains the most effective way to
count the number of matchings in a bipartite graph. The first explicit reference to
combinatorial optimisation is for the TSP by Kohn, Gottlieb, and Kohn [30], and a
concise paper by Karp [29] applies the idea to a number of problems. Similar ideas
were later used by Bax and Franklin [4, 5, 6] and Björklund and Husfeldt [9]. All of
these examples consider partitions and other constrained covers from the family F = E
of graph edges. The contribution of the present paper is to observe that inclusion–
exclusion can be almost as powerful when the size of the family F is exponential in
the size of the universe. For graph colouring, an earlier paper [9] already tentatively
explores this idea.

5

2. Preliminaries.

2.1. The Principle of Inclusion–Exclusion. We begin with a basic principle
of combinatorics. We state both the unweighted and the weighted version [42] and
give a proof for completeness.

Lemma 1. Let B be a finite set with subsets A1, . . . , An ⊆ B. With the convention
that

⋂
i∈∅ Ai = B, the following holds:

1. The number of elements of B which lie in none of the Ai is

∣∣ n⋂
i=1

Ai
∣∣ =

∑
X⊆{1,...,n}

(−1)|X| ·
∣∣⋂
i∈X

Ai
∣∣ .

2. Let w : B → R be a real-valued weight function extended to the domain 2B by
setting w(A) =

∑
a∈A w(a). Then

w
(n⋂
i=1

Ai
)

=
∑

X⊆{1,...,n}

(−1)|X| · w
(⋂
i∈X

Ai
)
.

Proof. We analyse the contribution of every element a ∈ B to both sides of the
expression. If a lies in none of the Ai then it contributes w(a) to the left hand side. To
the right hand side it contributes w(a) exactly once, namely in the term corresponding
to X = ∅. Conversely, assume that a lies in Ai for all i ∈ I 6= ∅. Its contribution to
the left hand side is 0. On the right hand side, since a lies in the intersection

⋂
i∈X Ai

for every X ⊆ I, its total contribution is

∑
X⊆I

(−1)|X|w(a) = w(a)
|I|∑
i=0

(
|I|
i

)
(−1)i = 0 ,

by the Binomial Theorem.

2.2. Fast Zeta Transform on Subset Lattices. Let N be an n-element set
and R the set of real numbers. The zeta transform [41] on the subset lattice (2N ,⊆)
of N is an operator that maps every function f : 2N → R into another function
f̂ : 2N → R, defined by

f̂(Y) =
∑
S⊆Y

f(S) for Y ⊆ N .

We say that f̂ is the zeta transform of f .
The straightforward way to compute the zeta transform evaluates f̂(Y) anew

at every Y , using O(3n) additions in total. However, this can be improved to only
O(n2n) additions using Yates’s method [50], [31, Section 4.3.4]; the resulting algorithm
is sometimes called the fast Möbius transform [28, 32], in this paper we term it the
fast zeta transform.

Lemma 2. Let N be a set of n elements. Then the zeta transform on the subset
lattice of N , restricted to functions to the integer range [−M,M], can be computed in
O(n2n) additions with O(n logM)-bit integers.

Proof. We assume N = {1, 2, . . . , n} for convenient notation. Define g0, g1, . . . , gn
at every Y ⊆ N by g0(Y) = f(Y) and

gi(Y) =
{
gi−1(Y) + gi−1(Y \ {i}) , if i ∈ Y ,
gi−1(Y) , otherwise (i = 1, 2, . . . , n) .

6

One can show by induction on i that gi(Y) =
∑
S f(S), where S runs through all

subsets of Y such that

{ j ∈ S : j > i } = { j ∈ Y : j > i } .

Specifically, we have gn = f̂ . When we evaluate the recursion we store all the values
gi(Y) as they are computed; thus we can compute each gi from gi−1 inO(2n) additions.
We conclude that f̂ can be computed in O(n2n) additions with integers from the range
[−2nM, 2nM].

2.3. Model of Computation. To avoid cumbersome runtime bounds we use
the notation O∗ to suppress polylogarithmic factors, that is, we write O∗(τ) when we
have O(τ logd τ) for some constant d in the familiar Landau notation. We write log x
for dlog2 xe.

The model of computation used in this work is the random access machine. We
operate on large integers of bit length polynomial in n, so we make the conservative
assumption that operations (including comparison) are considered unit-time only for
constant-size integers. In this model, two b-bit integers can be added, subtracted,
and compared in O(b) time, and multiplied in O(b log b log log b) = O∗(b) time [43],
recently improved to b log b2O(log∗ b) [21].

3. Results. We begin with an algorithm for counting set covers in Section 3.1.
This is the simplest version of our results, but already suffices for computing the
chromatic number, see in Proposition 1 of Section 4.1. In Section 3.2, we extend the
result to counting set partitions. In Section 3.3 we consider the problem of summing
over weighted partitions, where the weight of a partition factorises into a product of
the weights of its members. Finally, in Section 3.4 we address the optimisation version
of the general problem, finding a partition that maximises the sum of the weights of
its members, provided that the weights are small integers.

3.1. Set Cover. A set system consists of an n-element set N and a family F of
subsets of N . A k-cover is a tuple (S1, . . . , Sk) over F such that

S1 ∪ · · · ∪ Sk = N , (3.1)

possibly with overlap and repetition. This leads to a counting problem:

Counting Set Covers
Input: A set system (N,F) and an integer k.
Output: The number ck(F) of k-covers.

Lemma 3. Let a(X) =
∣∣{S ∈ F : S ∩ X = ∅ }

∣∣ denote the number of sets in F

that avoid X. Then

ck(F) =
∑
X⊆N

(−1)|X|a(X)k . (3.2)

Proof. This is a direct application of Lemma 1, where B is the set of k-tuples
(S1, . . . , Sk) over F, and Ai ⊆ B are those k-tuples that avoid the singleton {i}, i.e.,
i /∈ S1 ∪ · · · ∪ Sk. Then ck(F) is exactly the number of k-tuples in B that lie in none
of the Ai. Furthermore,

⋂
i∈X Ai contains those k-tuples that avoid all of X, so that∣∣⋂

i∈X Ai
∣∣ = a(X)k.

Theorem 1. Counting Set Covers can be solved in O∗(2n) time.

7

Proof. Observing that

a(X) =
∑

S⊆N\X

f(S) = f̂(N \X) ,

where f is the indicator function of F, we can compute a table containing a(X) for
all X ⊆ N using the fast zeta transform. We then raise each entry to the kth power
and sum these values according to (3.2).

3.2. Set Partition. A k-partition of a set system is a tuple (S1, . . . , Sk) over F

such that

S1 ∪ · · · ∪ Sk = N , Si ∩ Sj = ∅ (i 6= j) . (3.3)

Counting Set Partitions
Input: A set system (N,F) and an integer k.
Output: The number pk(F) of k-partitions.

Lemma 4. Let ak(X) denote the number of k-tuples (S1, . . . , Sk) over F for which
Sc ∩X = ∅ (1 ≤ c ≤ k) and

|S1|+ · · ·+ |Sk| = n . (3.4)

Then

pk(F) =
∑
X⊆N

(−1)|X|ak(X) . (3.5)

Proof. Again, we appeal to Lemma 1, where B is the set of k-tuples (S1, . . . , Sk)
from F that satisfy (3.4), and Ai ⊆ B are those k-tuples that avoid {i}. Then pk(F)
counts those choices that lie in none of the Ai, and

∣∣⋂
i∈X Ai

∣∣ = ak(X).
Theorem 2. Counting Set Partitions can be solved in O∗(2n) time.
Proof. Write f̂ (`)(Y) for the number of sets S ∈ F with |S| = ` and S ⊆ Y , and

observe that it is the zeta transform of the indicator function

f (`)(S) =

{
1, if S ∈ F and |S| = ` ,
0, otherwise.

Thus, the fast zeta transform computes a table containing f̂ (`)(Y) for all ` and Y
within the stated time bound.

Once these values have been computed, we can evaluate ak(X) for any fixed
X ⊆ N by dynamic programming in time polynomial in k and n as follows. Define
g(j,m) to be the number of j-tuples (S1, . . . , Sj) for which Sc ∩X = ∅ (1 ≤ c ≤ j)
and |S1|+ · · ·+ |Sj | = m, formally

g(j,m) =
∑

`1+···+`j=m

j∏
c=1

f̂ (`c)(N \X) ,

Then ak(X) = g(k, n), and we can compute it from the recursion

g(j,m) =
m∑
`=0

g(j − 1,m− `)f̂ (`)(N \X) ,

observing g(1,m) = f̂ (m)(N \X). Finally, we sum the ak(X) according to (3.5).

8

3.3. Sum of Weighted Partitions. We generalise the results of the previous
section by associating each partition with a weight.

As before, let N be a ground set of n elements. If S1, . . . , Sk are subsets of a
set Y ⊆ N , we call S = (S1, . . . , Sk) a k-tuple on Y ; if, additionally, the members
S1, . . . , Sk are mutually disjoint and their union is Y , then S is a k-partition of Y .
Note that k may well be larger than n, and some of the sets Sc may well be empty;
this generality turns out to be useful in some applications.

Let f be a weight function that associates each k-tuple on the ground set N with
an integer. Let pk(f) denote the sum of all weighted k-partitions of N , that is,

pk(f) =
∑
S

f(S) ,

where S = (S1, . . . , Sk) runs through all ordered k-partitions of N . We consider the
problem of computing pk(f) in the special case where the weight f(S) factorises into
a product f1(S1) · · · fk(Sk), in other words, f is a tensor product f1 ⊗ · · · ⊗ fk:

Sum Weighted Partitions
Input: An n-element set N and functions f1, . . . , fk from the subsets of N to integers

from the range [−M,M].
Output: The value pk(f) for f = f1 ⊗ · · · ⊗ fk.

We note that if every weight function fc is simply the indicator of a set system F,
then pk(f) coincides with the pk(F) introduced in the previous section.

We will show that Sum Weighted Partitions can be solved in time 2n upto
some factors polynomial in n, k, and logM .

Theorem 3. Sum Weighted Partitions can be solved in O∗(2nk logM) time.
We prove this result in the remainder of this section. We begin with an inclusion–

exclusion expression.
Lemma 5. Let bk(X) denote the sum of the weights f(S) over all k-tuples S =

(S1, . . . , Sk) on N \X such that

|S1|+ · · ·+ |Sk| = n . (3.6)

Then

pk(f) =
∑
X⊆N

(−1)|X|bk(X) .

Proof. We appeal to the weighted version of Lemma 1. Let B denote the set
of k-tuples (S1, . . . , Sk) on N satisfying (3.6), let Ai ⊆ B denote those k-tuples that
avoid {i}, and define w(S) = f1(S1) · · · fk(Sk). Then pk(f) = w

(
A1 ∩ · · · ∩ Ak

)
and

w
(⋂

i∈X Ai
)

= bk(X).
It remains to show how to compute bk(X). Now we make use of the factorisation

of f .
Lemma 6. The values bk(X) can be computed for all X ⊆ N in O∗(2nk logM)

total time.
Proof. Write f̂ (`)

c (Y) for the sum of the weights fc(S) over all S ⊆ Y with |S| = `.
Using fast zeta transform we can compute the values f̂ (`)

c (Y) for all c, `, and Y in
O∗(kn2n logM) = O∗(2nk logM) time. Once these values have been computed, we
can evaluate bk(X) for any fixed X ⊆ N by dynamic programming in time polynomial
in k and n, and logarithmic in M , as described in the next paragraphs.

9

To obtain a runtime that is roughly linear in k, as claimed, we compute bk(X)
in a divide-and-conquer manner, instead of the related sequential approach used in
the proof of Theorem 2. To this end, assume w.l.o.g. that k = 2q for some integer
q. (Otherwise, if k < 2q < 2k, consider a larger input with 2q − k additional input
functions that evaluate to 1 at ∅, and to 0 elsewhere.) Let g(s, t,m) denote the sum
of the weights fs(Ss) · · · ft(St) over all (t − s + 1)-tuples (Ss, . . . , St) on N \X such
that |Ss|+ · · ·+ |St| = m, formally

g(s, t,m) =
∑

`s+···+`t=m

t∏
c=s

f̂ (`c)
c (N \X) ,

where each `c, for s ≤ c ≤ t, runs through the integers in {0, . . . ,m}. Observe that
bk(X) = g(1, k, n). Our algorithm computes g(1, k, n) via the recurrence equation

g(s, t,m) =
∑

m0+m1=m

g(s, b(s+ t)/2c,m0) g(b(s+ t)/2c+ 1, t,m1) ,

where m0 and m1 run through the integers in {0, . . . ,m}, with the base case

g(c, c,m) = f̂ (m)
c (N \X) for c = 1, . . . , k .

Note that while the above recurrence equation holds for any pair (s, t), our algorithm
will compute g(s, t,m) only at specific pairs encountered when iteratively halving
subranges of {1, . . . , k}.

To analyse the runtime, we first bound the sizes of the integers involved in the
computations. We show by induction on t− s that the absolute value of g(s, t,m) is
bounded above by nmM t−s+1mt−s. For the base case, g(c, c,m), this holds, since the
absolute value of f̂ (m)

c (N \X) is at most nmM . For the general case, g(s, t,m), our
claim can be verified by induction, as follows. If m0 +m1 = m, the absolute value of
g(s, c,m0)g(c+ 1, t,m1), whenever s ≤ c < t, is bounded by(

nm0M c−s+1mc−s
0

)(
nm1M t−cmt−c−1

1

)
≤ nm0+m1M t−s+1mc−smt−c−1

= nmM t−s+1mt−s−1 .

Thus, the absolute value of g(s, t,m) is at most nmM t−s+1mt−s.
We then complete the runtime analysis. Let T (j) denote the time needed for

computing g(s, t,m) for all m = 0, . . . , n but fixed s and t satisfying t− s+ 1 = j. By
the above analysis,

T (j) = O∗
(
n2 log

(
nnM jnj−1

))
= O∗

(
n3 + jn2 logM

)
.

(We note that one could save roughly a factor n by computing the convolution using
a fast Fourier transform.) Since k is a power of 2, the total runtime is given by

T (k) + 2 · T (k/2) + 4 · T (k/4) + · · ·+ k · T (1) = O∗
(
kn3 + (log k)kn2 logM

)
= O∗

(
kn2(n+ logM)

)
.

Thus we have shown how to compute bk(X) for all X ⊆ N within the stated total
time.

10

3.4. Finding a Heaviest Partition. Next we turn to an optimisation problem:

Max Weighted Partition
Input: An n-element set N and functions f1, . . . , fk from the subsets of N to integers

from the range [−M,M].
Output: A k-partition (S1, . . . , Sk) of N that maximises f1(S1) + · · ·+ fk(Sk).

We reduce this problem to Sum Weighted Partitions. The embedding tech-
nique and self-reducibility argument we use are rather standard; for some previous
instantiations see, e.g., Williams [47] and Koivisto [33].

Theorem 4. Max Weighted Partition can be solved in O∗(2nk2M) time.
Proof. Assume without loss of generality that the range of the input functions is

{0, 1, . . . ,M}. (For, if this was not the case, we could add M to every value fc(S)
and work within the range {0, 1, . . . , 2M}.)

With each input function fc associate another function f ′c defined by f ′c(S) =
βfc(S) for S ⊆ N , where β is a suitable number to be specified soon. Let f ′ denote
the tensor product of f ′1, . . . , f

′
k, and observe that the sum of the k-partitions of N

weighted by the product of the new weights f ′c can be expressed as

pk(f ′) =
∑
S

βf1(S1)+···+fk(Sk) =
kM∑
r=0

αrβ
r ,

where αr is the number of k-partitions of N for which the original weight (i.e., the
sum of the original weights) equals r. If we choose β sufficiently large, say β = kn+1,
this coefficient representation is unique, and we can deduce the coefficients αr from
the number pk(f ′); in particular, we find the largest r for which αr > 0, that is, the
maximum weight achieved by any k-partition of N . As the range of each function
f ′c is {0, 1, . . . , βM}, we can compute pk(f ′) in O∗(2nkM log β) = O∗(2nkM) time;
deducing the coefficients αr is then much easier.

It remains to show how to find a k-partition that achieves a given weight W
when such a partition exists. We use self-reducibility as follows. Think of a partition
into k parts as assigning a colour C(i) ∈ {1, . . . , k} to each element i ∈ N . Take an
element i from N . We search for a colour C(i) ∈ {1, 2, . . . , k} such that the remaining
elements in N \ {i} have a colouring that together with C(i) achieves the weight W .
More precisely, for a candidate colour C(i) = c define f̃c(S) = fc(S) if i ∈ S, and
f̃c(S) = 0 otherwise; for j 6= c set f̃j = fj . Then compute the maximum weight over
all k-partitions of N \ {i} for the modified weight functions, say W̃ . If W̃ = W , then
we may assign C(i) to c and iterate for the remaining elements in N \ {i} (i.e., find
a k-partition of N \ {i} that achieves the weight W for the modified weight functions
f̃1, . . . , f̃k). Note that for at least one assignment C(i) = c we must have W̃ = W .
Finally we obtain a required k-partitioning (S1, . . . , Sk) by setting Sc = {i : C(i) = c}.
In the first iteration we need to compute the maximum weight at most k times, which
takes O∗(2nk2M) time. This is also the overall time complexity as the time bounds
for the smaller subproblems decay exponentially fast.

4. Applications.

4.1. Graph Colouring. A k-colouring of a graph G = (V,E), |V | = n is
a mapping V → {1, . . . , k} that gives different values (‘colours’) to neighbouring
vertices. The chromatic number χ(G) is the smallest k for which G admits a k-
colouring.

11

In this section we have N = V and F = S, the family of nonempty independent
sets of G.

Chromatic Number
Input: A graph G = (V,E) and an integer k.
Output: Is χ(G) ≤ k?

Lemma 7. χ(G) ≤ k if an only if ck(S) > 0.
Proof. A k-colouring is a covering with k independent sets, so if it exists, ck(S) >

0. On the other hand, if S1, . . . , Sk cover V (possibly non-distinct and non-disjoint)
then C(v) = min{ c : v ∈ Sc } is a colouring of size at most k.

Proposition 1. Chromatic Number can be solved in O
(
2nnk polylog(nk)

)
time and O(2nn) space. Note that an O∗(2n) bound is immediate from Theorem 1,
but here we give a more careful analysis and a more direct proof.

Proof. Recall that a(X) denotes the number of S ∈ S with S ∩X = ∅, and let
N(v) = {v} ∪ {u ∈ V : uv ∈ E } denote v and its neighbours.

We will first argue that a(X) satisfies the recurrence

a(X) = a
(
X ∪ {v}

)
+ a
(
X ∪N(v)

)
+ 1 , (v 6∈ X) . (4.1)

To see this consider the nonempty independent sets S disjoint from X. They can be
partitioned into two classes: either v ∈ S or v /∈ S. The latter sets are counted in
a
(
X ∪ {v}

)
. It remains to argue that the sets S 3 v are counted in a

(
X ∪N(v)

)
+ 1.

We will do this by counting the equipotent sets S \ {v} instead. Since S contains
v and is independent, it cannot contain other vertices from N(v). Thus S \ {v} is
disjoint from N(v) and X. Now, either S is the singleton {v} itself, accounted for
by the ‘+1’ term, or S \ {v} is a nonempty independent set and therefore counted in
a
(
X ∪N(v)

)
.

The recurrence (4.1) gives us an algorithm for a(X), at the bottom of the recursion
we have a(V) = 0. The operations are on O(n)-bit integers, so the entire table can
be constructed in O(2nn) time and space by storing every a(X) as it is computed.
Finally, we need to raise each of the a(X) to the kth power as we sum them, amounting
to log k multiplications and additions of nk-bit numbers.

Chromatic polynomial
Input: A graph G, and an integer k ∈ {0, 1, . . . , n}.
Output: The number of k-colourings of G.

Proposition 2. The number P (G; k) of k-colourings of an n-vertex graph G can
be found in time and space O∗(2n).

Proof. Every partition into r non-empty independent sets corresponds to (k)r =
k(k − 1)(k − 2) · · · (k − r + 1) different k-colourings, so

P (G; k) =
k∑
r=1

k!
(k − r)!

pr(S)
r!

=
k∑
r=1

(
k

r

)
pr(S) ,

which can be computed using Theorem 2.
The function P (G; ·) from integers to integers is known to be a degree n polyno-

mial, so we can recover its coefficients by computing P (G; k) at k = 0, 1, . . . , n and
interpolating the unique polynomial through these points. This representation then
allows us to evaluate the chromatic polynomial at other points, such as computing
P (G;−1), the number of acyclic orientations of G [44].

12

List colouring is a variant of graph colouring where the admissible colours of
each vertex are restricted to a list L(v) ⊆ Z. The graph is L-colourable if there is a
colouring V → Z such that every v ∈ V receives a colour from L(v). This generalises
k-colouring from the case where every L(v) is {1, . . . , k}.

List Colouring
Input: A graph G = (V,E), and a list L(v) for every v ∈ V.
Output: Can G be L-coloured?

Proposition 3. List Colouring can be solved in O∗(2n) time.
Proof. First observe that we can assume that every list L(v) contains at most

d(v) colours, so that the total number of colours is at most 2|E|. Otherwise we could
replace every list for which |L(v)| > d(v) by only a single, fresh colour cv, solve the
resulting list colouring problem, and subsequently clean up the result by replacing
every cv by a colour from L(v) that is not used by any of v’s neighbours.

We will reduce to Max Weighted Partition. Assume w.l.o.g. that the union
of the available colours is {1, 2, . . . , k} with k ≤ n(n− 1). For each color c = 1, . . . , k
define the function fc : 2V → {0, 1} by fc(S) = 1 if S is independent (or empty) and
c ∈ L(v) for all v ∈ S; otherwise, fc(S) = 0. Let W denote the maximum value of
f1(V1) + · · ·+ fk(Vk) over all k-partitions (V1, . . . , Vk) of V.

Now the input graph is L-colourable if and only if W = k. Namely, if W = k,
there are k independent (or empty) sets V1, . . . , Vk such that their union is V and
each Vc only contains vertices v for which c is from L(v). Thus, the sets V1, . . . , Vk
determine a unique list-colouring (C that satisfies v ∈ VC(v) for all v ∈ V). On the
other hand, if C is a list colouring, then each set Vc = {v : C(v) = c} is independent
(or empty) and c ∈ L(v) for all v ∈ Vc, implying W = k.

By Theorem 4, the maximum weight W can be computed in O∗(k22n) = O∗(2n)
time.

We raise the question of computing in cn time the list chromatic number, which
is the smallest k such that the graph can be L-coloured whenever |L(v)| ≥ k for every
v ∈ V.

Next, we turn to the Chromatic Sum problem, also called Minimum Colour Sum.

Chromatic Sum
Input: A graph G = (V,E).
Output: A colouring C : V → {1, . . . , n} that minimises

∑
v∈V C(v).

The objective for ordinary graph colouring is to minimise maxv∈V C(v). Simple
examples like • •

•

•
• •
•

•
show that the optimal colour classes for Chromatic Number

and Chromatic Sum, or even the number of colours used, are not the same.
Proposition 4. Chromatic Sum can be solved in time O∗(2n).
Proof. We reduce to Max Weighted Partition. Define the functions f1, . . . , fn

as

fc(S) =

{
−c|S| , if S is independent or empty,
−n2 , otherwise.

This way, every partition into k independent sets will have value−(1·|S1|+· · ·+k·|Sk|),
which is larger than any partition that uses a dependent set, and is maximised at a
partition that minimises the colour sum of k colours.

13

4.2. Other Graph Partitioning Problems. The properties in Table 1.1 are
all polynomial time checkable given G, so membership of a given vertex subset in F

can be verified in time polynomial in n, an overhead that vanishes in our notation.
The exception is Partition into Hamiltonian Subgraphs, because Hamiltonicity
is an NP-hard property. However, we can enumerate all vertex subsets U such that
G[U] is Hamiltonian in time O∗(2n) [26]. Thus we can build a large incidence table
for F beforehand and perform the membership tests in constant time when they are
needed.

Another set cover variant is worth pointing out as well: A k-packing of a set
system (N,F) is a tuple (S1, . . . , Sk) over F such that Si ∩ Sj = ∅ (i 6= j). This is
interesting only if F does not contain the empty set.

Counting Set Packings
Input: A set system (N,F) and an integer k.
Output: The number of k-packings.

Proposition 5. Counting Set Packings can be solved in O∗(2n) time.
Proof. The problem reduces to Sum Weighted Partitions with k + 1 input

functions, where f1, . . . , fk are the indicator function on F and fk+1 is identically 1.

We give another example of a weighted partitioning problem:

Max k-Cut
Input: A graph G = (V,E) with edge weights w(e) for e ∈ E,
Output: A partition of V into k subsets V1, . . . , Vk maximising the sum of the weights

w(e) over the edges e ∈ E whose end points lie in different sets Vi and Vj .

The unweighted version is equivalent to yet another graph colouring problem,
Max k-Colourable Subgraph on the complementary graph.

Proposition 6. Max k-Cut restricted to integer weights in the range [−M,M]
can be solved in O∗(2nM) time.

Proof. The problem reduces to Max Weighted Partition with k input func-
tions f1, . . . , fk, defined by fc(S) = −

∑
e∈E(S) w(e), where E[S] consists of the edges

in E whose end points both lie in S. Namely, minimising the total weight of edges
within the sets V1, . . . , Vk is equivalent to maximising the total weight of edges between
these sets.

4.3. Bayesian Partition Models. First consider Bayesian model-based clus-
tering (see, e.g., [3, 17, 27, 37]). Let y1, . . . , ym be data points, and let S denote the
unknown partition of the index set {1, . . . ,m} into k clusters S1, . . . , Sk. Each cluster
Sc is associated with a component model parameterised by θc, such that the distribu-
tion of yj , given that j belongs to Sc, is P (yj | θc). The partition S and the parameters
θ = (θ1, . . . , θk) are further assigned modular prior distributions, P (S) =

∏
c ρc(Sc)

and P (θ) =
∏
c qc(θc). (Note that one obtains valid functions ρ1, . . . , ρk, e.g., by

dividing any respective, given weight functions w1, . . . , wk by the kth root of the
normalisation constant

∑
S

∏
c wc(Sc).)

We will focus on the problem of computing the so-called marginal likelihood of a
clustering model. This quantity, sometimes called the evidence, is defined as the total
probability of the data y, and is obtained by integrating out the unknown partition

14

and the model parameters:

P (y) =
∑
S

k∏
c=1

fc(Sc) = pk(f1 ⊗ · · · ⊗ fk) ,

where

fc(Sc) = ρc(Sc)
∫ ∏

j∈Sc

P (yj | θc)qc(θc)dθc . (4.2)

Computing and comparing P (y) for different numbers k is useful, e.g., for selecting a
plausible number of clusters. For finding an optimal clustering, one usually considers
the corresponding max–sum expression.

Consider then a similar class of models often used in supervised classification
and related tasks; now one seeks clusters in a feature space. Partition models (or,
equivalently, decision graphs) generalize the popular decision tree models in that they
can represent arbitrary (not only tree-structured) partitions of a feature space (e.g.,
[13]). A probabilistic partition model specifies a conditional distribution of a class
variable y given a feature vector x, as follows. The feature space X is partitioned into
disjoint subsets S1, . . . , Sk. Each subset Sc is assigned a simple model parametrised
by θc, such that the distribution of y, given that x belongs to Sc, is P (y|x, θc). In
what follows, we will assume that X is a finite set of n elements. We further consider
a Bayesian approach [34] where the partition S and the parameters θ = (θ1, . . . , θk)
are assigned prior distributions, P (S) =

∏
c ρc(Sc) and P (θ) =

∏
c qc(θc).

Given m data points (x1, y1), . . . , (xm, ym), the marginal likelihood, or the evi-
dence, of a Bayesian partition model is defined as the conditional probability of the ob-
served classifications y = (y1, . . . , ym) given the respective features x = (x1, . . . , xm),
and is given by

P (y|x) =
∑
S

k∏
c=1

fc(Sc) = pk(f1 ⊗ · · · ⊗ fk) ,

where

fc(Sc) = ρc(Sc)
∫ m∏

j=1:xj∈Sc

P (yj |xj , θc)qc(θc)dθc . (4.3)

The quantity P (y|x) is useful, for instance, in feature selection: one computes P (y|x)
for different sets of feature variables, x, and selects the one that gives the largest value.
If one is interested in the best partition, the sum–product expression is replaced by
its max–sum counterpart.

We see that in both cases, in data clustering and partition models, the marginal
likelihood can be computed by the algorithm we gave for Sum Weighted Parti-
tions. Here we assume that, as usual [13, 34], the parametric models and the priors
ρc and qc are chosen such that the terms (4.2) and (4.3) can be efficiently computed
for any given set Sc, and are given as input. Then the inclusion–exclusion algo-
rithm computes the quantities P (y) and P (y|x) in O∗(2m) and O∗(2n) artihmetic
operations, respectively. However, it should be noted that the weights are typically
rational numbers rather than small integers; it is not clear whether fixed precision
computation produces numerically stable results, or whether it is better to operate

15

with large integers to get accurate results. Likewise, it seems that our algorithm for
Max Weighted Partition is not suitable for solving the optimisation versions of
these problems, although it may produce good approximations.

5. Polynomial Space. Theorem 5.
1. If membership in F can be decided in nO(1) space and time then Counting

Set Covers and Counting Set Partitions can be solved nO(1) space and
O∗(3n) time.

2. If f1, . . . , fk can be computed in nO(1) space and time then Sum Weighted
Partitions and Max Weighted Partitions can be solved in (nk)O(1)

space and O∗(3nk logM) or O∗(3nk2M) time, respectively.
Proof. We look at Counting Set Covers first. The only part of our construc-

tions that is not in polynomial space are the tables for a(X), which we computed
using the fast zeta transform. Instead of this, we need to compute a(X) anew for
every term when we evaluate (3.2). To compute a(X) we test every subset S ⊆ N \X
for membership in F, amounting to 2|N |−|X| membership tests. The total running
time is then within a polynomial factor of

∑
X⊆N

2|N |−|X| =
n∑
r=0

(
n

r

)
2n−r = 3n .

The argument for Counting Set Partitions is similar. To find ak(X), the
dynamic program needs to evaluate f̂ (`)(N \X) for ` = 1, . . . , n, which again amounts
to testing every subset S ⊆ N \X for membership in F.

For Sum Weighted Partitions the dynamic program for bk(X) needs to evalu-
ate f̂ (`)

c (N \X) for c = 1, . . . , k and ` = 1, . . . , n. Each of these requires us to evaluate
fc(S) for all S ⊆ N \X with |S| = `, leading to the same calculation as above.

Finally, Max Weighted Partition reduces to Sum Weighted Partitions in
polynomial space.

For example, this works for all the problems in Table 1.1, except for Partition
into Hamiltonian Subgraphs. We also note that the covering and partitioning
problems can be solved in polynomial space and timeO∗(2n|F|) if F can be enumerated
with polynomial delay, which may be faster if F is small. More interestingly, there
are cases where we can enumerate the members of F faster than checking all subsets.
The next two subsections consider such examples.

5.1. Chromatic Number. We spell out the implication for Chromatic Number,
turning to a rich literature about counting independent sets. Very recently, continuing
a line of improvements, Fürer and Kasiviswanathan [22] showed that the independent
sets in a n-vertex graph can be counted in time bounded by O(1.2461n).

Proposition 7. Chromatic Number can be solved in O(2.2461n) time and
polynomial space.

Proof. To evaluate a(X) in (3.2) we construct the graph G[V \X] induced by the
complement of X and run the algorithm from [22] in time O(1.2461n−|X|). The total
running time becomes

n∑
r=0

(
n

r

)
O(1.2461n−r) = O(2.2461n) .

16

5.2. Domatic Number. A vertex set D ⊆ V dominates the graph G = (V,E)
if each vertex in V has distance at most one to a vertex in D. The domatic number
δ(G) of G is the largest integer k such that there is a partition V = D1∪ · · ·∪Dk into
pairwise disjoint dominating subsets.

Domatic Number
Input: A graph G = (V,E), and an integer k.
Output: Is δ(G) ≥ k?

A polynomial space algorithm for Domatic Number in O∗(3n) time is immediate
from Theorem 5. To improve this result, we will pack the vertices with minimal
dominating sets instead of partitioning them into dominating sets. A dominating set
is minimal if removing any of its vertices destroys the dominance property. Fomin et
al. [20] observed that the minimal dominating sets can be enumerated faster than by
considering all vertex subsets.

Proposition 8. Domatic Number can be solved in O(2.8718n) time and poly-
nomial space.

Proof. Set N = V and let F denote the family of minimal dominating sets of G.
We will reduce to Counting Set Packings of Proposition 5. To see that this solves
the original problem, a packing with k sets from F can be extended into a k-partition
into (non-minimal) dominating sets by adding N \

(
S1 ∪ · · · ∪ Sk

)
to S1. Conversely,

any k-partition into dominating sets can be shrunk into a k-packing from F.
For the time bound, the algorithm in Proposition 5 reduces to solving an instance

of Sum Weighted Partitions where the fc are the indicator function of F, and as in
the proof of Theorem 5, this basically amounts to computing the values f̂ (`)

c (Y) for all
values of ` and Y in polynomial space. Using the enumeration algorithm and notation
from [20, proof of Theorem 5.1], the time to compute f̂ (`)

c (Y) is O(λn+α4(n−|Y |)) for
λ < 1.1487 and α4 = 2.9248, which leads to the stated bound. (However, as the
authors point out, it is unclear exactly how close this bound is from the true running
time of their branching algorithm.)

6. Approximation. Our techniques can be used to create exponential-time ap-
proximation algorithms. We present the idea in terms of graph colouring.

Proposition 9. For every ε > 0, the chromatic number χ of a graph on n
vertices can be approximated by a value χ̄ obeying χ ≤ χ̄ ≤ d(1 + ε)χe which can be
found in polynomial space and time O(1.2209n + 2.2461e

−εn).
Proof. Fix some ε > 0. We will perform the following operation a number of

times:
Find the largest independent set and remove it from the graph. Repeat until the

graph has at most e−εn vertices. Let s be the number of thus removed independent
sets. We run the exact algorithm in Proposition 7 for the resulting graph to find its
chromatic number χ0. Our approximation is χ̄ = χ0 + s.

We need to argue χ̄ is not far from the actual chromatic number. First note that
χ̄ ≥ χ since the subgraph obtained after removing an independent set has chromatic
number at least χ−1. Second, χ0 ≤ χ since a subgraph cannot have larger chromatic
number than its host graph. We note that s ≤ t for every integer t obeying

(1− 1/χ)t ≤ e−ε

since every graph with chromatic number χ has an independent set consisting of at
least a fraction 1/χ of its vertex set. Furthermore, (1 − 1/χ)t ≤ e−t/χ and thus
s ≤ dεχe.

17

Turning to the running time, we note that the fastest known polynomial space
algorithm finding a largest independent set in a graph runs in time O(1.2209n) [19].

The above approximation idea translates to the general case of finding a minimal
covering provided F has the following properties:

1. there is a fast algorithm to find the largest S ∈ F.
2. F is hereditary, that is S ⊂ T ∈ F implies S ∈ F.

An example of an interesting family of sets that is not hereditary is given by the
induced trees of a graph. On the other hand, the induced forests are a hereditary
family. In fact, some recent algorithms [38, 18] find a maximum induced forest in
time O(1.7548n), satisfying also the first requirement. Thus our constructions give a
good approximation algorithm for finding a small partition into induced forests.

7. Acknowledgments. The first two authors are indebted to Bolette A. Mad-
sen [36] for making them think about these problems. M.K. is grateful to Heikki
Mannila for valuable conversations on this work. Reference [30] was unearthed by
Ryan Williams. This work was supported in part by the Academy of Finland, Grant
109101 (M.K.).

REFERENCES

[1] O. Angelsmark and J. Thapper. Partitioning based algorithms for some colouring problems.
In Recent Advances in Constraints, Springer LNAI volume 3978, pages 44–58, 2005.

[2] M. H. G. Anthony. Computing chromatic polynomials. Ars Combinatorica, 29(C):216–220,
1990.

[3] J. D. Banfield and A. E. Raftery. Model-based Gaussian and non Gaussian clustering. Biomet-
rics, 49:803–821, 1993.

[4] E. T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path problem. Information
Processing Letters, 47(4):203–207, 1993.

[5] E. T. Bax. Algorithms to count paths and cycles. Information Processing Letters, 52(5):249–
252, 1994.

[6] E. T. Bax and J. Franklin. A finite-difference sieve to count paths and cycles by length.
Information Processing Letters, 60(4):171–176, 1996.

[7] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). J. Algorithms, 54(2):168–204, 2005.
[8] N. Biggs. Algebraic graph theory. Cambridge University Press, 2nd edition, 1993.
[9] A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and number of perfect

matchings. Algorithmica, to appear. Prelim. version in Proc. 33rd ICALP, Springer LNCS
volume 4051, pages 548–559, 2006.

[10] H. L. Bodlaender and D. Kratsch. An exact algorithm for graph coloring with polynomial
memory. Technical Report UU-CS-2006-015, Utrecht University, 2006.

[11] J. M. Byskov. Enumerating maximal independent sets with applications to graph colouring.
Operations Research Letters, 32:547–556, 2004.

[12] J. M. Byskov and D. Eppstein. An algorithm for enumerating maximal bipartite subgraphs.
Manuscript, 2004.

[13] D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian
networks with local structure. In Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence (UAI 1997), pages 80–89, 1997.

[14] N. Christofides. An algorithm for the chromatic number of a graph. Computer J., 14:38–39,
1971.

[15] D. Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph
Algorithms and Applications, 7(2):131–140, 2003.

[16] T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability problems. J.
Algorithms, 45(2):192–201, 2002.

[17] M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(3):381–396, 2002.

[18] F. V. Fomin, S. Gaspers, and A. V. Pyatkin. Finding a minimum feedback vertex set in time
O(1.7548n). In Proc. 2nd IWPEC, Springer LNCS volume 4169, pages 184–191, 2006.

18

[19] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n) Inde-
pendent Set algorithm. In Proc. 17th SODA, pages 18–25, 2005.

[20] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov. Combinatorial bounds via
measure and conquer: Boundings minimal dominating sets and applications. In Proc. 16th
ISAAC, Springer LNCS volume 4288, pages 573–582, 2006.

[21] M. Fürer. Faster integer multiplication. In Proc. 39th STOC, ACM Press, pages 57–66, 2007.
[22] M. Fürer and S. P. Kasiviswanathan. Algorithms for counting 2-SAT solutions and colorings

with applications. In Proc. 3rd Intl. Conf. on Algorithmic Aspects in Information and
Management (AAIM), Springer LNCS volume 4508, pages 47–57, 2007.

[23] M. Garey and D. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. W. H. Freeman, San Francisco, 1979.

[24] C. Greenhill. The complexity of counting colourings and independent sets in sparse graphs and
hypergraphs. Computational Complexity, 9:52–73, 2000.

[25] M. M. Halldórsson. A still better performance guarantee for approximate graph coloring.
Information Processing Letters, 45:19–23, 1993.

[26] M. Held and R. Karp. A dynamic programming approach to sequencing problems. SIAM J.
Appl. Math., 10:196–210, 1962.

[27] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys,
31(3):264–323, 1999.

[28] R. Kennes. Computational aspects of the Moebius transform of a graph. IEEE Transactions
on Systems, Man, and Cybernetics, 22:201–223, 1991.

[29] R. M. Karp. Dynamic programming meets the principle of inclusion-exclusion. Oper. Res.
Lett., 1:49–51, 1982.

[30] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the Traveling Salesman
Problem. In ACM ’77: Proceedings of the 1977 annual conference, ACM Press, pages
294–300, 1977.

[31] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. 3rd ed.,
Addison–Wesley, 1997.

[32] M. Koivisto. Sum–Product Algorithms for the Analysis of Genetic Risks. Ph.D. Thesis, Uni-
versity of Helsinki, January 2004.

[33] M. Koivisto. Optimal 2-constraint satisfaction via sum–product algorithms. Information Pro-
cessing Letters, 98:24–28, 2006.

[34] M. Koivisto and K. Sood. Computational aspects of Bayesian partition models. In International
Conference on Machine Learning (ICML 2005), pages 433–440, 2005.

[35] E. L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Letters, 5(3):66–67, 1976.

[36] B. A. Madsen. An algorithm for exact satisfiability analysed with the number of clauses as
parameter. Information Processing Letters, 97(1):28–30, 2006.

[37] F. A. Quintana and P. L. Iglesias. Bayesian clustering and product partition models. Journal
of the Royal Statistical Society B, 65(2):557–574, 2003.

[38] I. Razgon. Exact computation of maximum induced forest. In Proc. 10th SWAT, Springer
LNCS volume 4059, pages 160–171, 2006.

[39] T. Riege and J. Rothe. An exact 2.9416n algorithm for the three domatic number problem. In
Proc. 30th MFCS, Springer LNCS volume 3618, pages 733–744, 2005.

[40] T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact algorithm for the
domatic number problem. Information Processing Letters, 101(3):101–106, 2007.

[41] G.-C. Rota. On the foundations of combinatorial theory. I. Theory of Möbius functions. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:340–368, 1964.

[42] H. J. Ryser. Combinatorial Mathematics. Number 14 in Carus Math. Monographs. Math.
Assoc. America, 1963.

[43] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292,
1971.

[44] R. P. Stanley. Acyclic orientations of graphs. Disc. Math. 5:171-178, 1973.
[45] S. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput.,

31(2):398–427, 2001.
[46] H. S. Wilf. Algorithms and complexity. Prentice–Hall, 1986.
[47] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. The-

oretical Computer Science, 348:257–265, 2005.
[48] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. In Combinatorial opti-

mization: Eureka, you shrink!, Springer LNCS volume 2570, pages 185–207, 2003.
[49] G. J. Woeginger. Space and time complexity of exact algorithms: Some open problems. In

Proc. 1st IWPEC, Springer LNCS volume 3162, pages 281–290, 2004.

19

[50] F. Yates. The design and analysis of factorial experiments. Technical Communication no. 35
of the Commonwealth Bureau of Soils, 1937.

[51] D. Zuckerman. Linear degree extractors and the inapproximability of Max Clique and Chro-
matic Number. Theory of Computing, 3:103–128, 2007. Prelim. version in Proc. 38th
STOC, ACM Press, pages 681–690, 2006.

