
Fourier Meets M öbius: Fast Subset Convolution

Andreas Björklund
Lund University

Department of Computer Science
P.O.Box 118, SE-22100 Lund, Sweden
andreas.bjorklund@anoto.com

Thore Husfeldt
Lund University

Department of Computer Science
P.O.Box 118, SE-22100 Lund, Sweden

thore.husfeldt@cs.lu.se

Petteri Kaski
Helsinki Institute for Information Technology HIIT

University of Helsinki
Department of Computer Science

P.O.Box 68, FI-00014 University of Helsinki,
Finland

petteri.kaski@cs.helsinki.fi

Mikko Koivisto
Helsinki Institute for Information Technology HIIT

University of Helsinki
Department of Computer Science

P.O.Box 68, FI-00014 University of Helsinki,
Finland

mikko.koivisto@cs.helsinki.fi

ABSTRACT
We present a fast algorithm for the subset convolution prob-

lem: given functions f and g defined on the lattice of subsets
of an n-element set N , compute their subset convolution f∗g,
defined for all S ⊆ N by

(f ∗ g)(S) =
X

T⊆S

f(T)g(S \ T) ,

where addition and multiplication is carried out in an ar-
bitrary ring. Via Möbius transform and inversion, our al-
gorithm evaluates the subset convolution in O(n22n) addi-
tions and multiplications, substantially improving upon the
straightforward O(3n) algorithm. Specifically, if the input
functions have an integer range {−M,−M+1, . . . , M}, their
subset convolution over the ordinary sum–product ring can
be computed in Õ(2n log M) time; the notation Õ suppresses
polylogarithmic factors. Furthermore, using a standard em-
bedding technique we can compute the subset convolution
over the max–sum or min–sum semiring in Õ(2nM) time.

To demonstrate the applicability of fast subset convolu-
tion, we present the first Õ(2kn2 + nm) algorithm for the
Steiner tree problem in graphs with n vertices, k terminals,
and m edges with bounded integer weights, improving upon
the Õ(3kn+2kn2+nm) time bound of the classical Dreyfus–
Wagner algorithm. We also discuss extensions to recent
Õ(2n)-time algorithms for covering and partitioning prob-
lems (Björklund and Husfeldt, FOCS 2006; Koivisto, FOCS
2006).

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-

ity]: Numerical Algorithms and Problems; F.2.2 [Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07,June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems; G.2.1 [Discrete Mathe-

matics]: Combinatorics; G.2.2 [Discrete Mathematics]:
Graph Theory

General Terms
Algorithms, Theory

Keywords
Convolution, Möbius transform, Steiner tree

1. INTRODUCTION

1.1 Background and Main Result
Many hard computational problems admit a recursive so-

lution via a convolution-like recursion step over the subsets
of an n-element ground set N . More precisely, for every
S ⊆ N , one computes the “solution” h(S) defined by

h(S) =
X

T⊆S

f(T)g(S \ T) , (1)

where f(T) and g(S \ T) are previously computed solutions
for the subproblems specified by T and S \T , and the arith-
metic is carried out in an appropriate semiring; the most
common examples in applications being perhaps the inte-
ger sum–product ring and the integer max–sum semiring.
Given f and g, a direct evaluation of h for all S ⊆ N re-
quires Ω(3n) semiring operations. To our knowledge, this is
also the fastest known evaluation approach until the present
work.

In a first attempt to improve upon the direct evaluation,
the convolution analogy suggests the natural approach to
evaluate (1) as a product of some type of Fourier trans-
forms of f and g via a fast Fourier transform (FFT) and its
inverse—in general, this approach has proven to be spectac-
ularly successful in domains ranging from signal processing
to number theory; see Maslen and Rockmore [17] for a sur-
vey of generalized FFTs. For example, considering a slightly
different convolution operation of the form

h′(S) =
X

T⊆N

f
`
T
´
g
`
S∆T

´
, (2)

where S∆T = (S \ T) ∪ (T \ S), the Fourier approach im-
mediately yields an evaluation approach requiring O(n2n)
ring operations via the fast Fourier transform on Z

n
2 , the

elementary Abelian group of order 2n. However, the con-
volution (1) is “truncated” from T ⊆ N to T ⊆ S, which
in effect renders the operation somewhat incompatible with
group-theoretic Fourier transforms and associated “natural”
convolution operations performed over the entire group. A
simple zero-padding trick allows one to evaluate (1) via the
FFT on Z

n
3 (equivalently, the classical n-dimensional FFT

with padding on each dimension), but this unfortunately
does not improve upon the direct evaluation strategy.

A second attempt at analogy will prove to be more suc-
cessful. Indeed, the truncation to T ⊆ S and the sum over
all T ⊆ S in (1) suggests a connection with the classical
Möbius transform [1, 20, 25] on the lattice of subsets of N ,
which is further motivated by the fact that a fast algorithm
is known for evaluating the Möbius transform and its inverse
on the subset lattice.

It turns out that—in analogy with the Fourier approach—
the evaluation of (1) in O(n22n) ring operations can be
achieved via a product (“convolution over rank”) of “ranked”
extensions of the classical Möbius transforms of f and g on
the subset lattice, followed by a “ranked” Möbius inversion.
This is the main result of this paper.

Theorem 1. The subset convolution over an arbitrary

ring can be evaluated in O(n22n) ring operations.

Furthermore, the basic fast convolution operation admits
considerable extensions and variations, which we believe will
find applications beyond the ones we proceed to outline in
what follows.

1.2 Application to Specific Computational
Problems

Besides the algebraic complexity we also study the im-
plementation of the fast subset convolution algorithm on
the ordinary sum–product ring of integers. The model of
computation assumed in our analyses is the random access
machine with the restriction that arithmetic operations (in-
cluding comparison) are considered unit-time only for inte-
gers of constant size. To avoid cumbersome expressions in
runtime bounds we may use the notation Õ to hide poly-
logarithmic factors, that is, we may denote Õ(τ) when we
have O(τ logd τ) for some constant d in the familiar Landau
notation.

Our main result easily implies the following.

Theorem 2. The subset convolution over the inte-

ger sum–product ring can be computed in Õ(2n log M)
time, provided that the range of the input functions is

{−M,−M + 1, . . . , M}.

Combinatorial optimization problems usually concern the
max–sum or min–sum semiring. While our fast subset con-
volution algorithm does not directly apply to semirings where
additive inverses need not exist, we can, fortunately, embed
the integer max–sum (min–sum) semiring into the integer
sum–product ring.

Theorem 3. The subset convolution over the integer

max–sum (min–sum) semiring can be computed in Õ(2nM)
time, provided that the range of the input functions is

{−M,−M + 1, . . . , M}.

As an illustrative application of fast subset convolution,
we accelerate the classical Dreyfus–Wagner algorithm [6] for
the Steiner tree problem: given an undirected graph G =
(V, E), a weight w(e) > 0 for each edge e ∈ E, and a set
of vertices K ⊆ V , find a minimum-weight subgraph H of
G that connects the vertices in K. The Dreyfus–Wagner
algorithm runs in Õ(3kn+2kn2 +nm) time, where n = |V |,
m = |E|, and k = |K|. We give the first Õ(2kn2 +nm)-time
algorithm, provided that the edge weights are small integers.

The Dreyfus–Wagner algorithm and its variants play a
key role in solving various related problems. For example,
the Dreyfus–Wagner algorithm has recently been used as a
subroutine in fixed parameter tractable algorithms for cer-
tain vertex cover problems [13], as well as for near-perfect
phylogenetic tree reconstruction [4]. Regarding rectilinear
Steiner trees (RSTs), Ganley [11] writes: “The algorithm
of Dreyfus and Wagner is probably the most popular used
to date for computing optimal RSTs in practice.” Further-
more, other “hierarchical partitioning” algorithms similar to
that of Dreyfus and Wagner seem to appear in the litera-
ture with no explicit connection to the Steiner tree problem;
we will consider in some detail a recent algorithm by Scott,
Ideker, Karp, and Sharan [22] for detecting signaling path-
ways in protein interaction networks. Our improvement via
fast subset convolution concerns all these variants and ap-
plications, subject to the constraint that edge weights can
be represented by small integers.

We also note that many classical graph partitioning prob-
lems [12] can be solved by counting all valid partitions via
recursive application of subset convolution (over the inte-
ger sum–product ring). Thus, the present technique can be
seen as a generalization of the authors’ previous work [3, 16]
based on inclusion–exclusion and applies to a wider family
of partitioning problems. For example, we can now solve ex-
tended partitioning problems, such as finding all k-colorable
induced subgraphs of a given n-vertex graph, in Õ(2n) total
time.

1.3 Related Research and Discussion
Möbius transform and inversion play a central role in com-

binatorial theory, particularly in the theory of partially or-
dered sets, subset lattices being special cases [1, 20, 25]. The
fast Möbius transform and inversion algorithms on the sub-
set lattice can be considered folklore; Kennes [15] gives a
formal treatment, but the algorithm is, in essence, that of
Yates [27] for multiplying a vector of size 2n by a Kronecker
product of n matrices of size 2×2 in O(n2n) operations. As
far as we know, the connection of (ranked) Möbius inver-
sion and subset convolution has not been studied until the
present work.

For partitioning problems, we (the first two authors and
the last author, independently) recently found two mutually
different inclusion–exclusion algorithms [3, 16], which antic-
ipated the results of the present paper. Yet, these earlier
results, even when combined, do not immediately yield the
fast subset convolution algorithm. What remained to be
discovered was, in essence, the role of (fast) ranked Möbius
inversion.

For the Steiner tree problem, Fuchs, Kern, and Wang [8]
presented an O(2.684kp(n)) algorithm, and Mölle, Richter,
and Rossmanith [18] found an algorithm that, for any fixed
ǫ > 0, runs in O((2 + ǫ)kp(n)) time, where p(n) is a poly-
nomial function of n. Unfortunately, the degree of p(n)

grows rapidly when ǫ approaches zero, which renders the
algorithm impractical for small ǫ; in a subsequent work [7],

the degree of p(n) is improved to 12
√

ǫ−1 ln ǫ−1, resulting in
bounds like O(2.5kn14.2) and O(2.1kn57.6). Our accelerated
Dreyfus–Wagner algorithm is not only theoretically faster,
but may also have practical value when k is large enough
(say, k > 25).

The idea of embedding the integer max–sum or min-sum
semiring into the sum–product ring is not new. Some well-
known examples are Yuval’s [28] and others’ [10, 23, 24]
approaches to compute shortest paths via (fast) matrix mul-
tiplication. In our case the embedding technique provides
a more substantial gain. Indeed, compared to fast subset
convolution, fast matrix multiplication algorithms involve
large constant factors and their practical value is not clear;
the exponential speedup offered by fast matrix multiplica-
tion is currently by the ratio 3/2.376 [5] and cannot exceed
3/2, whereas the exponential speedup offered by fast subset
convolution is by the ratio log 3/ log 2 > 1.58 > 3/2.

1.4 Organization
The next section is devoted to proving our main theorem

(Theorem 1); in addition, we introduce some variants of the
subset convolution problem together with corresponding fast
algorithms. In Section 3 we give short proofs of Theorems 2
and 3 concerning the implementation in the sum–product
ring and the max–sum and min–sum semirings, which are
essential for the applications. We consider the Steiner tree
problem in detail in Section 4; also other applications to
extended partitioning and hypergraph problems are illus-
trated, but in somewhat less detail.

2. FAST SUBSET CONVOLUTION
OVER A RING

Throughout this section we assume that R is an arbitrary
(possibly noncommutative) ring and that N is a set of n
elements, n ≥ 0. Let f (respectively, g) be a function that
associates with every subset S ⊆ N an element f(S) (re-
spectively, g(S)) of the ring R.

2.1 Subset Convolution
Define the convolution f ∗ g for all S ⊆ N by

(f ∗ g)(S) =
X

T⊆S

f(T)g(S \ T) , (3)

or, equivalently, in a more symmetric form

(f ∗ g)(S) =
X

U, V ⊆ S

U ∪ V = S

U ∩ V = ∅

f(U)g(V) . (4)

It follows that the convolution operation is associative (and
commutative if R is commutative).

2.2 Möbius Transform and Möbius Inversion
on the Subset Lattice

We recall the classical Möbius transform and inversion
formulas on the subset lattice together with their fast evalu-
ation algorithms. The Möbius transform of f is the function
f̂ that associates with every X ⊆ N the ring element

f̂(X) =
X

S⊆X

f(S) . (5)

Given the Möbius transform f̂ , the original function f may
be recovered via the Möbius inversion formula

f(S) =
X

X⊆S

(−1)|S\X|f̂(X) . (6)

The fast Möbius transform [15, 27] is the following algo-
rithm for computing the Möbius transform (5) in O(n2n)
ring operations. By relabeling if necessary, we may assume
that N = {1, 2, . . . , n}. To compute f̂ given f , let initially

f̂0(X) = f(X)

for all X ⊆ N , and then iterate for all j = 1, 2, . . . , n and
X ⊆ N as follows:

f̂j(X) =

(

f̂j−1(X) if j /∈ X ,

f̂j−1(X \ {j}) + f̂j−1(X) if j ∈ X .
(7)

It is straightforward to verify by induction on j that this
recurrence gives f̂n(X) = f̂(X) for all X ⊆ N in O(n2n) ring
operations. The inversion operation (6) can be implemented

in a similar fashion. To compute f given f̂ , let initially

f0(S) = f̂(S)

for all S ⊆ N , and then iterate for all j = 1, 2, . . . , n and
S ⊆ N as follows:

fj(S) =

(

fj−1(S) if j /∈ S ,

−fj−1(S \ {j}) + fj−1(S) if j ∈ S .
(8)

Then we have fn(S) = f(S) for all S ⊆ N .

2.3 Ranked Möbius Transform and Inversion
The ranked Möbius transform of f is the function f̂ that

associates with every k = 0, 1, . . . , n and X ⊆ N the ring
element

f̂(k, X) =
X

S ⊆ X

|S| = k

f(S) . (9)

In particular, the classical Möbius transform of f is obtained
in terms of the ranked transform by taking the sum over k,

that is, f̂(X) =
P|X|

k=0 f̂(k, X). For the ranked transform,
inversion is achieved simply by

f(S) = f̂(|S|, S) , (10)

or, in a somewhat more redundant form,

f(S) =
X

X⊆S

(−1)|S\X|f̂(|S|, X) . (11)

This latter expression, rather than the former one, provides
the key to fast evaluation of the subset convolution (3).
Namely, we will “invert” a function that, in general, can-
not be represented via ranked Möbius transform but via a
convolution (over rank) of two such transforms.

To set the stage, it is immediate that the ranked trans-
form (9) can be computed in O(n22n) ring operations by
carrying out the fast transform (7) independently for each
k = 0, 1, . . . , n. Similarly, the ranked inversion (11) can be
computed in O(n22n) ring operations by carrying out the
fast inversion (8) independently for each k = 0, 1, . . . , n.

2.4 Fast Subset Convolution
For two ranked Möbius transforms, f̂ and ĝ, define the

convolution f̂ ⊛ ĝ for all k = 0, 1, . . . , n and X ⊆ N by

(f̂ ⊛ ĝ)(k, X) =
kX

j=0

f̂(j, X)ĝ(k − j, X) . (12)

Note that this convolution operation is over the rank pa-
rameter rather than over the subset parameter.

It now holds that the inversion operation (11) applied to

f̂ ⊛ ĝ gives f ∗ g. Indeed, first observe by (9) and (12) that
for any S ⊆ N we have

X

X⊆S

(−1)|S\X|(f̂ ⊛ ĝ)(|S|, X)

=
X

X⊆S

(−1)|S\X|
|S|
X

j=0

f̂(j, X)ĝ(|S| − j, X)

=
X

X⊆S

(−1)|S\X|
|S|
X

j=0

X

U, V ⊆ X

|U| = j

|V | = |S| − j

f(U)g(V) .

(13)

Because X ranges over all subsets of S, it follows that for any
ordered pair (U, V) of subsets of S satisfying |U |+ |V | = |S|,
the term f(U)g(V) occurs in the sum with sign (−1)|S\X|

exactly once for every X satisfying U ∪ V ⊆ X ⊆ S. No
other terms occur in the sum. Thus, collecting the terms
associated with each pair (U, V) together, the coefficient of
f(U)g(V) is, by the Binomial Theorem,

|S|
X

x=|U∪V |

|S| − |U ∪ V |
x − |U ∪ V |

!

(−1)|S|−x =

(

1 if |U ∪ V | = |S| ,
0 otherwise .

Because |U |+ |V | = |S| and |U ∪ V | = |S| imply U ∪ V = S
and U ∩ V = ∅, it follows that (13) and (4) agree. In other
words,

(f ∗ g)(S) =
X

X⊆S

(−1)|S\X|(f̂ ⊛ ĝ)(|S|, X) . (14)

Given f and g, we can now evaluate f ∗ g in O(n22n)
ring operations by first computing the fast ranked Möbius
transform of f and g, then taking the convolution (12) of

the transforms f̂ and ĝ, and inverting the result using fast
ranked Möbius inversion. This establishes Theorem 1.

2.5 Variants and Extensions
There are two immediate ways to relax the subset con-

volution (4). First, the covering product is defined for all
S ⊆ N by

(f ∗c g)(S) =
X

U, V ⊆ S

U ∪ V = S

f(U)g(V) . (15)

Second, the packing product is defined for all S ⊆ N by

(f ∗p g)(S) =
X

U, V ⊆ S

U ∩ V = ∅

f(U)g(V) . (16)

Given f and g, the covering product (15) can be evaluated
in O(n2n) ring operations by computing the Möbius trans-

forms f̂ and ĝ, taking the elementwise (Hadamard) product

(f̂ ĝ)(X) = f̂(X)ĝ(X) of the transforms, and inverting the
result using fast Möbius inversion. Indeed, observe first that
X

X⊆S

(−1)|S\X|(f̂ ĝ)(X) =
X

X⊆S

(−1)|S\X|
X

U,V ⊆X

f(U)g(V) .

Now, for each ordered pair (U, V) of subsets of S, the coeffi-
cient of the term f(U)g(V) is 1 if U∪V = S and 0 otherwise.
Thus,

(f ∗c g)(S) =
X

X⊆S

(−1)|S\X|(f̂ ĝ)(X) . (17)

Given f and g, the packing product f∗pg can be evaluated
in O(n22n) ring operations by first computing the subset
convolution f ∗ g and then convolving the result with the
vector ~1 with all entries equal to 1. Indeed, based on (4) it
is not difficult to check that

f ∗p g = f ∗ g ∗~1 = f ∗~1 ∗ g = ~1 ∗ f ∗ g.

Besides the immediate extensions (15) and (16), also some-
what more subtle variants are possible. For example, using
(4) and (15), define the intersecting covering product for all
S ⊆ N by

(f ∗ic g)(S) =
X

U, V ⊆ S

U ∪ V = S

U ∩ V 6= ∅

f(U)g(V) . (18)

A fast evaluation algorithm is now immediate from the ob-
servation f ∗ic g = f ∗c g − f ∗ g. Also more precise control
over the allowed intersection cardinalities |U∩V | = ℓ besides
the ℓ = 0 (f ∗ g) and ℓ > 0 (f ∗ic g) cases can be obtained
by modifying (12); however, we will not enter into detailed
discussion. Some further variations are possible by restrict-
ing the domain, e.g., to any hereditary family of subsets of
N ; we omit the details.

3. MODEL OF COMPUTATION AND THE
CHOICE OF RING

Up to this point we have worked with an abstract ring
R, and have considered only the number of ring operations
(addition, subtraction, multiplication) required to carry out
the computations. To arrive at a more accurate analysis of
the required computational effort, we must choose a con-
crete ring R, fix a representation for its elements, and eval-
uate the required effort in a model that parallels the op-
eration of an actual physical computer. In what follows,
the model of computation is the random access machine
with the restriction that arithmetic operations (including
comparison) are considered unit-time only for constant-size
integers. In this model, two b-bit integers can be added,
subtracted, and compared in O(b) time, and multiplied in

O(b log b log log b) = Õ(b) time [21], recently improved to

b log b2O(log∗ b) [9].

3.1 Integer Sum–Product Ring
We prove Theorem 2. We consider the subset convolution;

similar argumentation applies to the other variants in Sec-
tion 2.5. By Theorem 1, we know that the subset convolu-
tion can be computed in O(n22n) ring operations. It is thus
sufficient to notice that any intermediate results, for which
ring operations are performed, are O(n log M)-bit integers.
To see this, note first that the ranked Möbius transform of

an input function can be computed with integers between
−M2n and M2n. Given this we note that the convolution
of ranked transforms can be computed with O(n log M)-bit
integers. Finally, the ranked Möbius inversion is computed
by adding (and subtracting) O(n log M)-bit integers O(2n)
times.

3.2 Integer Max–Sum and Min–Sum
Semirings

We prove Theorem 3. We consider the case of max–
sum semiring; similar argumentation applies to the min–
sum semiring. Without loss of generality we assume that
the range of the input functions is {0, 1, . . . , M}; otherwise,
we may first add M to each value of both input functions,
compute the convolution, and finally subtract 2M to get the
correct output.

Let f and g be the two input functions. Let β = 2n +
1 and M ′ = βM . Define new mappings f ′ and g′ from
the subsets of N to {0, 1, . . . , M ′} by f ′ = βf and g′ =
βg. By Theorem 2 we can compute the subset convolution
f ′ ∗ g′ over the integer sum–product ring in Õ(2n log M ′) =

Õ(2nM) time. It remains to show that we can, for all S ⊆ N ,
efficiently deduce the value of maxT⊆S{f(T)+g(S\T)} given
the value of

P

T⊆S
f ′(T)g′(S \ T).

We observe that, for all S ⊆ N , we have a polynomial
representation

(f ′ ∗ g′)(S) =
X

T⊆S

βf(T)+g(S\T)

= α0(S) + α1(S)β + · · · + α2M (S)β2M ,

where, due to the choice of β, each coefficient αr(S) is
uniquely determined and equals the number of subsets T
of S for which f(T) + g(S \ T) = r. Thus, for each S ⊆ N ,

we can find the largest r for which αr(S) > 0 in Õ(M) time.
This completes the proof.

4. APPLICATIONS

4.1 The Steiner Tree Problem
The Steiner tree problem is a classical NP-hard prob-

lem. Given an undirected graph G = (V, E), a weight
w(e) > 0 for each edge e ∈ E = E(G), and a set of ver-
tices K ⊆ V = V (G), the task is to find a subgraph H of
G that connects the vertices in K and has the minimum
total weight

P

e∈E(H) w(e) among all such subgraphs of G.

Because the edge weights are positive, an optimal subgraph
H is necessarily a tree with leaves in K. In what follows a
Steiner tree always refers to such an optimal subgraph.

To be able to apply Theorem 3, convolution over the min-
sum ring, we assume in what follows that the edge weights
w(e) are integers from {1, 2, . . . , M}. Furthermore, to sim-
plify some expressions, we assume that M is a constant.

4.1.1 Dreyfus–Wagner Recursion
Dreyfus and Wagner [6] discovered a beautiful dynamic

programming algorithm for finding a Steiner tree in Õ(3kn+
2kn2 + nm) time, where n = |V |, m = |E|, and k = |K|.

The key idea in the Dreyfus–Wagner algorithm is that a
Steiner tree H connecting a given subset of vertices Y ⊆
V in G has the following optimal decomposition property,
assuming |Y | ≥ 3. For every q ∈ Y , there exists a vertex
p ∈ V , a nonempty proper subset D ⊂ Y \ {q}, and a

decomposition E(H) = E(H1)∪E(H2)∪E(H3) of the edges
such that (a) H1 is a Steiner tree connecting {p, q} in G,
(b) H2 is a Steiner tree connecting {p} ∪ D in G, and (c)
H3 is a Steiner tree connecting {p} ∪ (Y \ (D ∪ {q})) in G.
(See Dreyfus and Wagner [6] for a proof.) Note that the
decomposition may be degenerate, e.g., we can have p = q,
implying that H1 is empty.

The optimal decomposition property enables the following
Dreyfus–Wagner recursion. For a vertex subset Y ⊆ V ,
denote by W (Y) the total weight of a Steiner tree connecting
Y in G. To set up the base case, observe that for |Y | ≤ 1
the weight W (Y) = 0 and for |Y | = 2 the weight W (Y) can
be determined by a shortest-path computation based on the
edge weights w(e). For |Y | ≥ 3 the optimal decomposition
property implies that we have for all q ∈ Y and X = Y \{q}
the recursion

W ({q} ∪ X) = min
˘
W
`
{p, q}

´
+ gp

`
X
´

: p ∈ V
¯

, (19)

gp(X) = min
˘
W
`
{p} ∪ D

´
+ W

`
{p} ∪ (X \ D)

´
:

∅ ⊂ D ⊂ X} .
(20)

The Steiner tree problem can be solved by computing the
weight W (K) via this recursion. A bottom-up evaluation of
W (K) relying on dynamic programming takes the claimed

Õ(3kn + 2kn2 + nm) time; first all-pairs shortest paths are

computed in Õ(n2 + nm) time (in O(n2 log n + nm) basic
operations) using, e.g., Johnson’s algorithm [14]. Once the
values W ({p} ∪ Y) and gp(Y) for all Y ⊂ K and p ∈ V
have been computed and stored, an actual Steiner tree is
easy to construct by tracing backwards a path of optimal
choices in (19) and (20) [6]; this costs only O(2k+kn) simple

operations, that is, Õ(2k log n + kn) time.

4.1.2 Expediting the Dreyfus–Wagner Recursion
We apply the fast subset convolution over the min–sum

semiring to expedite the evaluation of the Dreyfus–Wagner
recursion in (20). However, we cannot simply replace (20) by
fast subset convolution as each gp(X) is defined in terms of
other values gr(Z), for Z ⊂ X and r ∈ V , which need to be
precomputed. To this end, we carry out the computations
in a level-wise manner.

For each level ℓ = 2, 3, . . . , k−1 in turn, assume the value
W ({q} ∪ X) has been computed and stored for all X ⊂ K
with |X| ≤ ℓ− 1 and q ∈ V \X. To compute gp(X) for each
p ∈ V and X ⊂ K with |X| = ℓ ≥ 2, define the function fp

for all X ⊆ K by

fp(X) =

(

W ({p} ∪ X) if 1 ≤ |X| ≤ ℓ − 1 ,

∞ otherwise .
(21)

Here we let ∞ in (21) denote an integer that is sufficiently
large to exceed the weight of any tree in G; for example,
(n− 1)M + 1 suffices. Applying the subset convolution over
the min–sum semiring, it is now immediate from (20) and
(21) that gp(X) = (fp ∗ fp)(X) holds for all X ⊆ K with
|X| ≤ ℓ. Thus, by Theorem 3, we can compute gp(X) for
all p ∈ V and X ⊂ K with |X| = ℓ using n evaluations
of the subset convolution with integers bounded by nM ,
which leads to Õ(2kn2) total time; note that the Õ notation
hides a factor of k3. In fact, we can do even better and
save a factor of k by replacing the subset convolution with
the covering product over the min–sum semiring. To see
this, observe that because W (Z) ≤ W (Y) holds whenever

Z ⊆ Y ⊆ V , we have that (20) can also be computed as
gp(X) = (fp ∗c fp)(X), that is,

gp(X) = min
˘
W
`
{p} ∪ T

´
+ W

`
{p} ∪ U

´
:

∅ ⊂ T,U ⊂ X, T ∪ U = X} .

Once the values gp(X) have been computed for all p ∈ V
and X ⊂ K with |X| = ℓ, it is easy to compute W ({q}∪X)

for all X ⊂ K and q ∈ V \ X with |X| = ℓ in Õ
``

k

ℓ

´
n2
´

time using (19). Computing the above steps for all levels

ℓ = 2, 3, . . . , k − 1 takes Õ
`
2kn2 + nm

´
total time, includ-

ing the time needed for computing all-pairs shortest paths.
Finally, a Steiner tree can be constructed within the same
time bound (see Section 4.1.1). We have thus established
the following theorem, which we state in a form without the
assumption that M is constant.

Theorem 4. The Steiner tree problem with edge weights

in {1, 2, . . . , M} can be solved in Õ(2kn2M + nm log M)
time.

4.2 A Rooted Tree Model for Signaling
Pathways

Scott, Ideker, Karp, and Sharan [22] consider various
models for signaling pathways in protein interaction net-
works. One of the two more general models they introduce
is based on rooted trees, and leads to the following network
problem. Given an undirected graph G = (V, E), a weight
w(e) for each edge e ∈ E, a vertex subset I ⊆ V , and a posi-
tive integer k, the task is to find for each vertex v ∈ V a tree
of the minimum total weight among all k-vertex subtrees in
G that are rooted at v and in which every leaf belongs to I.

Scott et al. [22] apply the color coding method of Alon,
Yuster, and Zwick [2], which proceeds by carrying out a
sequence of randomized trials. In each trial, every vertex
v is given independently and uniformly at random a color
c(v) ∈ {1, 2, . . . , k}, and the following subtask is solved: for
each vertex v ∈ V and subset S ⊆ {1, 2, . . . , k} that contains
c(v), find a minimum-weight subtree with |S| vertices that
is (a) rooted at v, (b) contains a node of each color in S,
and (c) in which every leaf belongs to I. Scott et al. give
the following recurrence for the associated minimum weight,
denoted by W (v, S):

W (v, S) = min
˘
A(v, S), B(v, S)

¯
,

where

A(v, S) = min
˘
W (u, S \ {c(v)}) + w(u, v) :

c(u) ∈ S \ {c(v)}
¯

,

B(v, S) = min
˘
W (v, T) + W (v, U) :

T ∩ U = {c(v)}, T ∪ U = S
¯

,

with W (v, {c(v)}) = 0 if v ∈ I and W (v, {c(v)}) = ∞ oth-
erwise. A direct evaluation of this recurrence can be carried
out in Õ(3km) time [22], where m = |E|.

Armed with fast subset convolution, we can speed up the
evaluation of the recurrence to Õ(2km) time, assuming that
the edge weights are small integers. Namely, proceeding
simultaneously for all sets S of a given cardinality, the com-
putation of B(v, S) can be reduced to subset convolution
over the integer min–sum semiring; the transformation is
analogous to the one used in Section 4.1.2, so we omit de-
tails.

Scott et al. [22] also consider a different model based on
two-terminal series-parallel graphs. In this case, too, the
original Õ(3kn2) algorithm can be accelerated to an Õ(2kn2)
algorithm by using fast subset convolution.

4.3 Partitioning Problems and Extensions
Consider the generic problem of partitioning an n-element

set N into k disjoint subsets that each satisfy some desired
property specified by an indicator function f on the subsets
of N . Given, N , k, and f as input, the task is to decide
whether there exists a partition {S1, S2, . . . , Sk} of N such
that f(Sc) = 1 for each c = 1, 2, . . . , k. Many classical
graph partitioning problems are of this form. For example,
in graph coloring f(S) = 1 if and only if S is an independent
set in the input graph with the vertices N . Likewise, in
domatic partitioning f is the indicator of dominating sets.

Recently we [3, 16] discovered two different algorithms
that solve the generic partitioning problem using the princi-
ple of inclusion and exclusion in Õ(2n) time, provided that

f(S) can be evaluated for all S ⊆ N in Õ(2n) total time.

Using fast subset convolution we obtain yet another Õ(2n)
algorithm. Indeed, we observe that the number of valid par-
titions of N is given by f∗k(N), where

f∗k = f ∗ f ∗ · · · ∗ f
| {z }

k times

.

Thus, we can count the valid partitions by k−1 subset con-
volutions, or even better, in O(log k) convolutions by using
the doubling trick.

What is more, we can solve considerable extensions of par-
titioning problems within the same runtime bound. For ex-
ample, we can find a maximal k-colorable induced subgraph
(in fact, all such subgraphs) in Õ(2n) time by computing
f∗k(S) for all vertex subsets S ⊆ N . In a similar fashion,
but using the packing product, we can decide whether the
input graph G contains k disjoint cliques each of size at least
ℓ in Õ(2n) time: we check if f∗pk(N) > 0, where f(S) = 1
if S is a clique in G with |S| ≥ ℓ, and f(S) = 0 otherwise.

Fast subset convolution allows us to solve not only flat par-
titioning problems but also hierarchical partitioning prob-
lems in Õ(2n) time. Consider, for example, a branching
process that partitions the ground set N in a tree-structured
manner, as follows. With probability α, a node S ⊆ N is
split uniformly at random into two proper subsets T ⊂ S
and S \ T ⊂ S, which are then further partitioned recur-
sively; with the remaining probability 1 − α, the branching
terminates at S, and S becomes a leaf of the tree. With
each possible leaf L ⊆ N we associate a number f(L), and
by g(N) we denote the expected value of the product of f(L)
over all leafs of the (random) tree. Then g(N) can be solved
through a recursion for S ⊆ N :

g(S) = (1 − α)f(S) + α · 1

2|S| − 2

X

∅⊂T⊂S

g(T)g(S \ T) .

Using fast subset convolution we can compute g(S) for all

S ⊆ N in a total of Õ(2n) arithmetic operations.

4.4 Spanning Problems in Hypergraphs
We conclude this section by illustrating more subtle ap-

plications to two NP-hard hypergraph problems (see Polzin
and Daneshmand [19] and Warme [26]). We begin by recall-
ing the appropriate hypergraph terminology. A hypergraph

is a pair H = (V, E), where V is a finite set and E is a set
consisting of subsets of V . A hypergraph J = (W,F) is
a subhypergraph of H if W ⊆ V and F ⊆ E . A subhy-
pergraph is spanning if V = W . A path in a hypergraph
H is a sequence (x1, E1, x2, E2, . . . , Eℓ, xℓ+1) such that (a)
x1, x2, . . . , xℓ+1 ∈ V are all distinct, (b) E1, E2, . . . , Eℓ ∈ E
are all distinct, and (c) xi, xi+1 ∈ Ei for all i = 1, 2, . . . , ℓ.
A path joins x1 to xℓ+1. A hypergraph is connected if for
all distinct x, y ∈ V there exists a path joining x to y. A
connected hypergraph is a tree if for all distinct x, y ∈ V the
path joining x to y is unique.

The minimum connected spanning subhypergraph (MCSH)
problem asks, given a hypergraph H = (V, E) and a weight
w(E) > 0 for each hyperedge E ∈ E , to produce a con-
nected spanning subhypergraph of H that has the minimum
total weight, or to assert that none exists. The minimum

spanning tree (MSTH) problem is otherwise similar to the
MCSH problem, but in addition it is required that the sub-
hypergraph must be a tree.

Assuming that w(E) ∈ {1, 2, . . . , M} for all E ∈ E , both
the MCSH problem and the MSTH problem can be solved in
time Õ(2nM) using variants of the fast subset convolution
over the min–sum semiring, where n = |V |. Indeed, define
the function f for all E ⊆ V by

f(E) =

(

w(E) if E ∈ E ,

∞ otherwise .

To solve the MCSH problem, we employ the intersecting cov-
ering product (18). Define the kth power of the intersecting
covering product for all k = 2, 3, . . . by

f∗ick = f ∗ic

`
f∗ic(k−1)´, f∗ic1 = f.

Here the order in which the products are evaluated is rele-
vant because the intersecting covering product is not asso-
ciative. Now observe that (a) a MCSH can be constructed
by augmenting a connected subhypergraph of H one hyper-
edge at a time, and (b) at most n − 1 hyperedges occur
in a MCSH of H. Thus, f∗ick(V) < ∞ is the minimum
weight of a connected spanning subhypergraph of H con-
sisting of k hyperedges. By storing the functions f∗ick for
each k = 1, 2, . . . , n − 1, the actual MCSH can be deter-
mined by tracing back the computation one edge at a time.
To solve the MSTH problem, replace the intersecting cover-
ing product (18) with an intersecting covering product that
in addition requires the cardinality of the intersection to be
exactly 1; such a product can be obtained by a minor mod-
ification of (12).

Acknowledgments
This research was supported in part by the Academy of Fin-
land, Grants 117499 (P.K.) and 109101 (M.K.).

5. REFERENCES
[1] M. Aigner, Combinatorial Theory, Springer, Berlin,

1979.

[2] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM

42 (1995) 844–856.

[3] A. Björklund, T. Husfeldt, Inclusion–exclusion
algorithms for counting set partitions, in: Proc. 47th
IEEE Symposium on Foundations of Computer
Science (Berkeley, Oct. 22–24, 2006), IEEE Computer
Society, Los Alamitos, CA, 2006, pp. 575–582.

[4] G.E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi,
R. Schwartz, S. Sridhar, Fixed parameter tractability
of binary near-perfect phylogenetic tree
reconstruction, in: M. Bugliesi, B. Preneel,
V. Sassone, I. Wegener (Eds.), Automata, Languages
and Programming, 33rd International Colloquium
(Venice, July 10–14, 2006), Proceedings, Part I,
Lecture Notes in Computer Science 4051, Springer,
Berlin, 2006, pp. 667–678.

[5] D. Coppersmith, S. Winograd, Matrix multiplication
via arithmetic progressions, J. Symbolic Comput. 9
(1990) 251–280.

[6] S.E. Dreyfus, R.A. Wagner, The Steiner problem in
graphs, Networks 1 (1971/72) 195–207.

[7] B. Fuchs, W. Kern, D. Mölle, S. Richter,
P. Rossmanith, X. Wang, Dynamic programming for
minimum Steiner trees, Theory Comput. Syst., to
appear.

[8] B. Fuchs, W. Kern, X. Wang, Speeding up the
Dreyfus–Wagner algorithm for minimum Steiner
trees, Math. Meth. Oper. Res., to appear.

[9] M. Fürer, Faster integer multiplication, in:
Proc. 39th ACM Symposium on Theory of
Computing (San Diego, June 11–13, 2007), these
proceedings.

[10] Z. Galil, O. Margalit, All pairs shortest paths for
graphs with small integer length edges, J. Comput.

System Sci. 54 (1997) 243–254.

[11] J.L. Ganley, Computing optimal rectilinear Steiner
trees: a survey and experimental evaluation, Discrete

Appl. Math. 90 (1999) 161–171.

[12] M. Garey, D. Johnson, Computers and

Intractability—A Guide to the Theory of

NP-Completeness, W.H. Freeman & Co., San
Francisco, CA, 1979.

[13] J. Guo, R. Niedermeier, S. Wernicke, Parametrized
complexity of vertex cover variants, in: F. Dehne,
A. López-Ortiz, J.-R. Sack (Eds.), Algorithms and
Data Structures, 9th International Workshop
(Waterloo, Canada, Aug. 15–17, 2005), Lecture
Notes in Computer Science 3608, Springer, Berlin,
2005, pp. 36–48.

[14] D.B. Johnson, Efficient algorithms for shortest paths
in sparse networks, J. ACM 24 (1977) 1–13.

[15] R. Kennes, Computational aspects of the Moebius
transform of a graph, IEEE Transactions on

Systems, Man, and Cybernetics 22 (1991) 201–223.

[16] M. Koivisto, An O∗(2n) algorithm for graph coloring
and other partitioning problems via inclusion
exclusion, in: Proc. 47th IEEE Symposium on
Foundations of Computer Science (Berkeley,
Oct. 22–24, 2006), IEEE Computer Society, Los
Alamitos, CA, 2006, pp. 583–590.

[17] D.K. Maslen, D.N. Rockmore, Generalized FFTs—a
survey of some recent results, in: L. Finkelstein,
W.M. Kantor (Eds.), Groups and Computation, II,
American Mathematical Society, Providence, RI,
1997, pp. 183–237.

[18] D. Mölle, S. Richter, P. Rossmanith, A faster
algorithm for the Steiner tree problem, in:
B. Durand, W. Thomas (Eds.), 23rd Symposium on
Theoretical Aspects of Computer Science (Marseille,

Feb. 23–25, 2006), Lecture Notes in Computer
Science 3884, Springer, Berlin, 2006, pp. 561–570.

[19] T. Polzin, S.V. Daneshmand, On Steiner trees and
minimum spanning trees in hypergraphs, Oper. Res.

Lett. 31 (2003) 12–20.

[20] G.-C. Rota, On the foundations of combinatorial
theory. I. Theory of Möbius functions. Z.

Wahrscheinlichkeitstheorie und verw. Gebiete 2
(1964) 340–368.

[21] A. Schönhage, V. Strassen, Schnelle Multiplikation
großer Zahlen, Computing 7 (1971) 281–292.

[22] J. Scott, T. Ideker, R.M. Karp, R. Sharan, Efficient
algorithms for detecting signaling pathways in
protein interaction networks, J. Comput. Biol. 13
(2006) 133–144.

[23] R. Seidel, On the all-pairs-shortest-path problem in
unweighted undirected graphs, J. Comput. System

Sci. 51 (1995) 400–403.

[24] A. Shoshan, U. Zwick, All pairs shortest paths in
undirected graphs with integer weights, in:
Proc. 40th Symposium on Foundations of Computer
Science (New York, Oct. 17–19, 1999), IEEE
Computer Society, Los Alamitos, CA, 1999,
pp. 605–614.

[25] R.P. Stanley, Enumerative Combinatorics, Vol. I,
Cambridge University Press, Cambridge, 1997.

[26] D.M. Warme, Spanning Trees in Hypergraphs with
Applications to Steiner Trees, Ph.D. Thesis,
University of Virginia, 1998.

[27] F. Yates, The Design and Analysis of Factorial

Experiments, Technical Communication No. 35,
Commonwealth Bureau of Soil Science, Harpenden,
UK, 1937.

[28] G. Yuval, An algorithm for finding all shortest paths
using N2.81 infinite-precision multiplications, Inform.

Process. Lett. 4 (1976) 155–156.

