You are allowed to bring with you one 2-sided paper sheet of notes. Calculators,
phones, or other smart devices are not allowed.
Please solve all the four problems given below. Show your work - partial credits will be given. Be clear and neat. Use either English, Swedish, or Finnish. You have two and a half hours in total - plan your time usage! Include your name and identity number, and the name of the course in every paper sheet you return - you need not use a separate sheet for each problem. Number the problems clearly.

Note: To give an algorithm or scheme means not only describing it but also proving that it has the claimed properties (correctness, running time, approximation guarantee, etc.).

1. (max 12 points)

Connect the problems and claims below into correct statements, assuming P is not NP. Give your answer as a list of number-letter pairs. Each correct pair yields 2 points, each incorrect pair -2 points. (AA is a shorthand for "approximation algorithm".)
(1) TSP
(2) Metric TSP
(3) Unweighted Set Cover
(4) (Metric) k-Center
(a) admits PTAS
(b) admits no $1.5-\mathrm{AA}$
(c) admits an $c(n)$-AA with $c(n)=O(\log \log n)$
(d) admits an $1.5-\mathrm{AA}$
2. (max 12 points)

Consider the following maximization problem:

$$
\begin{aligned}
\operatorname{Max} & \sum_{i=1}^{n} w_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} a_{i} x_{i} \leq b, \\
x_{i} & \in\{0,1\}, \quad i=1, \ldots, n,
\end{aligned}
$$

where the w_{i}, a_{i}, b, and n are given non-negative integers and $a_{i} \leq b$ for all i. Suppose there exists an algorithm \mathcal{A} that solves the problem in $O\left(n \sum_{i=1}^{n} w_{i}\right)$ time. Using \mathcal{A}, give a fully polynomial-time approximation scheme (FPTAS) for the problem.
3. (max 12 points)

In the maximum k-cut problem, we are given an undirected graph $G=(V, E)$, and nonnegative weights $w_{u v} \geq 0$ for all $(u, v) \in E$. The goal is to partition the vertex set V into k parts V_{1}, \ldots, V_{k} so as to maximize the total weight of all edges whose endpoints are in different parts, that is, maximize $\sum_{(u, v) \in E, u \in V_{i}, v \in V_{j}, i \neq j} w_{u v}$. Give a randomized ($1-1 / k$)-approximation algorithm for the problem.
4. (max 12 points)

Given an undirected graph G, the minimum-degree spanning tree problem is to find a spanning T tree of G so as to minimize the maximum degree of nodes in T. Prove that there can be no α-approximation algorithm for the problem for $\alpha<3 / 2$ unless $\mathrm{P}=\mathrm{NP}$. (Hint: Reduce from the NP-hard Hamiltonian path problem: Decide whether a given undirected graph contains a path that visits every node of the graph exactly once.)

