Exercises I

Note that to give an algorithm means not only to describe the algorithm, but also to analyze its running time.

I-1 Let $T(n)=M$ for $n \leq M$ for some constant $M \geq 1$ independent of n, and $2 T(n)=$ $2 T(n / 2)+3 T(n / 3)+n$ otherwise. Show that $T(n)=\Theta(n \log n)$.

I-2 (CLRS 2.3-7) Describe a $\Theta(n \log n)$-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x.

I-3 (CLRS 2-4 Inversions) Let $A[1 . . n]$ be an array of n distinct numbers. If $i<j$ and $A[i]>A[j]$, then the pair (i, j) is called an inversion of A.
a. List the five inversions of the array $(2,3,8,6,1)$.
b. What array with elements from the set $\{1,2, \ldots, n\}$ has the most inversions? How many does it have?
c. What is the relationship between the running time of insertion sort and the number of inversions in the input array? Justify your answer.
d. Give an algorithm that determines the number of inversions in any permutation of n elements in $\Theta(n \log n)$ worst-case time. (Hint: Modify merge sort.)

I-4 (CLRS 4.2-6) How quickly can you multiply a $k n \times n$ matrix by an $n \times k n$ matrix, using Strassen's algorithms as a subroutine? Answer the same question with the order of input matrices reversed.

I-5 (CLRS 4.2-7) Show how to multiply the complex numbers $a+b i$ and $c+d i$ using only three multiplications of real numbers. The algorithm should take a, b, c, and d as input and produce the real component $a c-b d$ and the imaginary component $a d+b c$ separately.

