
582630 Design and Analysis of Algorithms (5 cu)
Lecturer: Dr. Mikko Koivisto, University of Helsinki
Exercises II: dynamic programming, short paths and cycles

Fall 2014

1/1

Exercises II

Note that to give an algorithm means not only to describe the algorithm, but also to analyze
its running time. Labelled algorithms, figures, and chapters refer to the course book.

II-1 Where in the matrix multiplication-based DP algorithm for the all-pairs shortest
paths problem do we need the associativity of matrix multiplication?

II-2 Give an O(n2)-time algorithm to find the maximum length of monotonically in-
creasing subsequences of a given sequence of n numbers. For instance, if given
(3, 1, 2, 5, 2, 6, 8, 6, 7, 3, 5) as input, the algorithm should output 6 (the length of the
subsequence (1, 2, 5, 6, 6, 7)). (Side note: Even an O(n log n)-time algorithm exists.)

II-3 (CLRS 15-3 Bitonic euclidean traveling-salesman problem) The euclidean
traveling-salesman problem is the problem of determining the shortest closed tour that
connects a given set of n points in the plane. Figure 15.11(a) shows the solution to
a 7-point problem. The general problem is NP-complete, and its solution is therefore
believed to require more than polynomial time (see Chapter 34).

J. L. Bentley has suggested that we simplify the problem by restricting our attention
to bitonic tours, that is, tours that start at the leftmost point, go strictly left to right
to the rightmost point, and then go strictly right to left back to the starting point.
Figure 15.11(b) shows the shortest bitonic tour of the same 7 points. In this case, a
polynomial-time algorithm is possible.

Describe an O(n2)-time algorithm for determining an optimal bitonic tour. You may
assume that no two points have the same x-coordinate. (Hint: Scan left to right,
maintaining optimal possibilities for the two parts of the tour.)

II-4 (CLRS 15-4 Printing neatly) Consider the problem of neatly printing a paragraph
on a printer. The input text is a sequence of n words of lengths l1, l2, . . . , ln, measured
in characters. We want to print this paragraph neatly on a number of lines that hold
a maximum of M characters each. Our criterion of “neatness” is as follows. If a given
line contains words i through j, where i < j, and we leave exactly one space between
words, the number of extra space characters at the end of the line is M−j+i−

∑j
k=i lk,

which must be nonnegative so that the words fit on the line. We wish to minimize
the sum, over all lines except the last, of the cubes of the numbers of extra space
characters at the ends of lines. Give a dynamic-programming algorithm to print
a paragraph of n words neatly on a printer. Analyze the running time and space
requirements of your algorithm.

II-5 (CLRS 25.1-9) Modify Faster-All-Pairs-Shortest-Paths so that it can determine
whether the graph contains a negative-weight cycle.


