
582691 Randomized Algorithms I

Spring 2013, period III
Jyrki Kivinen

1

Position of the course in the studies

• 4 credits

• advanced course (syventävät opinnot) in algorithms and machine
learning

• prerequisites: basic understanding of probabilities and design and
analysis of algorithms

• covers application of probabilities in designing and analysing algorithms

• continues in Randomized algorithms II which can also be taken
separately

• applications of probability theory figure prominently also on a number
of courses about machine learning

• theory of probability is the topic for many courses in mathematics

• this course is mainly theoretical from a computer science point of view,
fairly application-oriented from maths point of view

2

Passing the course, grading

Maximum score 60 points:
• course exam 48 points
• homework 12 points

Minimum passing score is about 30 points, requirement for best grade
about 50 points.

Homework sessions begin on the second week of lectures. Solutions to
homework problems are turned in in writing before the session. Details and
deadlines will be announced on the course web page.

Each problem is graded from 0 to 3:

1 a reasonable attempt
2 work in the right direction, largely successful
3 seems to be more or less correct.

The homework points will be scaled to course points as follows:
• 0 % of the maximum gives 0 points
• 80 % or more of the maximum gives 12 points
• linear interpolation in between.

3

Material

The course is based on the textbook

M. Mitzenmacher, E. Upfal: Probability and Computing

to which the students are expected to have access. References to the
textbook in these notes are in style [M&U Thm 3.2].

The lecture notes will appear on the course home page but are not intended
to cover the material in full.

Also the homework will be based on problems from the textbook.

4

Why randomization?

Randomness is an important tool in modeling natural and other fenomena.

In design and analysis of algorithms, sources of randomness include

• randomized algorithms: the computations even on the same input may
vary depending on internal randomization of the algorithm (“coin
tosses”)

• the algorithm may act in a random environment (average case analysis,
data communications, . . .)

Theory of probability is a powerful general tool for these situations.

5

Randomizations may allow us to find an algorithm that compared to a
deterministic one is

• faster or more memory efficient or

• easier to implement.

Basic techniques and situations include

• random sampling, Monte Carlo methods

• randomized search, simulated annealing

• fingerprinting technique.

In some situation randomization is compulsory to get any acceptable
solution:

• hiding information from an adversary (cryptography, games)

• distributed systems: load balancing, leader election etc.

Randomization may make the algorithm more robust against unwanted
situations.

• Example: randomized quicksort avoids having any particular worst-case
input.

6

Typical questions

Usually a randomized algorithm has some non-zero probability of giving an
incorrect result.

• if the result is yes/no: what’s the probability of error?

• if the result is a numerical value: what’s the probability of a large error?

Some randomized algorithms (sometimes called Las Vegas algorithms)
always give the correct result, but the run time is random.

• what’s the expected run time?

• what’s the probability of the run time exceeding some boundary?

7

Contents of the course

Main topics for Randomized algorithms I include

1. theory of probability (quick refresher)

2. discrete random variables (quick refresher)

3. moments of a random variable

4. Chernoff bounds

5. balls and bins

6. “the probabilistic method”

Randomized algorithms II continues with

1. Markov chains

2. continuous random variables, Poisson processes

3. Monte Carlo methods

4. (martingales, if there’s time).

8

1. Probability

Let Ω be any set and F ⊆ P(Ω) a collection of subsets of Ω. (We use P(Ω)
to denote the power set of Ω.) A function Pr : F → R is a probability
function (or probability measure) [M&U Def. 1.2] if

1. Pr(E) ≥ 0 for all E ∈ F,

2. Pr(Ω) = 1 and

3. if E1, E2, E3, . . . is a sequence of pairwise disjoint sets (meaning
Ei ∩ Ej = ∅ when i 6= j) such that Ei ∈ F for all i, we have

Pr

(∞⋃
i=1

Ei

)
=

∞∑
i=1

Pr(Ei)

(countable additivity).

9

For the conditions we just set for a probability function Pr to be interesting,
its domain F must have some closure properties.

A collection of subsets F ⊆ P(Ω) is a σ algebra if

1. Ω ∈ F

2. A ∈ F implies A ∈ F, where A = Ω−A

3. if A1, A2, A3, . . . is a sequence such that Ai ∈ F for all i ∈ {1,2,3, . . . },
we have

∞⋃
i=1

Ai ∈ F .

Remark No assumption is made about the union ∪i∈IAi of a family
{Ai | i ∈ I } if the index set I is not countable.

10

We now define a probability space as a triple (Ω,F ,Pr) where

1. the sample space Ω is an arbitrary set

2. F ⊆ P(Ω) is a σ algebra over Ω

3. Pr: F → R is a probability function.

Subsets E ⊆ Ω of the sample space are called events. In particular, the sets
E ∈ F are allowable events.

For any property φ of the elements of the sample space, we write simply
Pr(φ(x)) = Pr({x ∈ Ω | φ(x) }). For example, Pr(g(x) = 3) denotes the
probability Pr({x ∈ Ω | g(x) = 3 }).

11

Example 1.1: For a finite sample space with |Ω| = n ∈ N, we define the
symmetrical (or uniform) probability for Ω as (Ω,P(Ω),Pr) where
Pr(E) = |E|/n kaikilla E ⊆ Ω.

More generally, if a probability space is of the form (Ω,P(Ω),Pr) for a finite
or countably infinite Ω, we say it’s discrete. A discrete probability space can
be specified by just giving all the probabilities Pr({x }) of the individual
elements x ∈ Ω. 2

On this course we’ll mainly deal with discrete spaces. Therefore we often
don’t mention assumptions of the type “if E ∈ F” (which often would
anyway be clear from the context).

Occasionally even in a finite or countable Ω it’s useful to consider other σ
algebras than just P(Ω).

12

Example 1.2: Let Ω = R, and let F be the smallest σ algebra that includes
all the closed intervals [a, b], a, b ∈ R. The elements of this σ algebra are
called Borel sets.

We define the uniform probability over the interval [0,1] by setting for all
0 ≤ a ≤ b ≤ 1 the probability of the interval [a, b] to be the same as its
length: Pr([a, b]) = b− a. The probabilities of other Borel sets follow by the
properties of a probability function.

Remark We have Pr({x }) = 0 for any individual x ∈ R, so the probability of
any countable set is zero, too. However, this implies nothing about
uncountable sets. 2

It might seem nice to pick F = P(R), in other words make any set of real
numbers an allowable event. However, it turns out to be impossible to
define Pr(A) for all A ⊆ R so that all the requirements of a probability
function would be satisfied. Luckily, in practice, we have little need to go
beyond Borel sets.

13

Probability of the union

Straight from the definition, for any two allowable events we have

Pr(E ∪ F) = Pr(E) + Pr(F)− Pr(E ∩ F).

For any countable I and a sequence of allowable events (Ei)i∈I we have

Pr

(⋃
i∈I

Ei

)
≤
∑
i∈I

Pr(Ei)

which is called the union bound [M&U Lemma 1.2]. This is a very useful
but sometimes quite loose inequality.

When |I| = n ∈ N, the exact probability of the union can be obtained as

Pr

(⋃
i∈I

Ei

)
=

n∑
k=1

(−1)k+1
∑

J⊆I,|J |=k

Pr

⋂
j∈J

Ej

which is known as the inclusion-exclusion principle [M&U Lemma 1.3].

14

By taking the sum only up to some limit k < n we get alternating upper and
lower bounds:

For odd ` we have

Pr

(⋃
i∈I

Ei

)
≤
∑̀
k=1

(−1)k+1
∑

J⊆I,|J |=k

Pr

⋂
j∈J

Ej

 .

For even ` we have

Pr

(⋃
i∈I

Ei

)
≥
∑̀
k=1

(−1)k+1
∑

J⊆I,|J |=k

Pr

⋂
j∈J

Ej

(Bonferroni inequalities).

15

Independence

Two events E and F are independent [M&U Def. 1.3] if

Pr(E ∩ F) = Pr(E) Pr(F).

More generally, events E1, . . . , Ek are mutually independent (or just
independent) if for all I ⊆ {1, . . . , k } we have

Pr

(⋂
i∈I

Ei

)
=
∏
i∈I

Pr(Ei).

Events E1, . . . , Ek are pairwise independent if for all i 6= j the events Ei and
Ej are independent.

Remark Pairwise independence does not in general imply mutual
independence for more than two events.

If Pr(F) > 0, we define the conditional probability of E given F as

Pr(E | F) =
Pr(E ∩ F)

Pr(F)
.

Thus, if Pr(F) > 0, then E and F are independent iff Pr(E | F) = Pr(E).

16

Given two probability spaces (Ω1,F1,Pr1) and (Ω2,F2,Pr2), we define their
product space as

(Ω1,F1,Pr1)× (Ω2,F2,Pr2) = (Ω1 ×Ω2,F1 ×F2,Pr1×Pr2)

where F1 ×F2 is the smallest σ algebra that includes all the sets E1 × E2

where Ei ∈ Fi, and (Pr1×Pr2)(E1 × E2) = Pr1(E1)× Pr2(E2) for Ei ∈ Fi.
This means that if we draw a pair (x, y) from Pr1×Pr2, then the events
x ∈ E1 and y ∈ E2 are independent for any E1 ∈ F1 and E2 ∈ F2.

An important special case is the n-fold product of a space with itself
(Ω,F ,Pr)n = (Ωn,Fn,Prn). This represents n independent repetitions of the
random experiment represented by the original space. In this case we often
(inaccurately) simply use Pr to denote Prn.

17

Example 1.3: Suppose we have two procedures F and G that compute
integer-valued functions f and g. We only know that the functions f and g
are polynomials of degree at most d. We wish to find out whether f = g by
just making calls to F and G (which we assume are “black boxes”).

If f = g, then f(x)− g(x) = 0 for all x.

If f 6= g, then f − g is a polynomial of degree at most d which is not
identically zero. Hence f(x)− g(x) holds for at most d values x ∈ N. In
particular, the set {1, . . . , rd } for any r ∈ N includes at least (r − 1)d
elements x for which f(x)− g(x) 6= 0.

18

We take the following basic algorithm as a starting point:

1. Pick a random x ∈ {1, . . . , rd }.

2. If f(x)− g(x) 6= 0, print ”not equal”.

3. Otherwise print ”equal”.

Based on the previous observations,

• if f = g, the algorithm always prints “equal”

• if f 6= g, the algorithm has at least probability (r − 1)d/(rd) = 1− 1/r of
printing “not equal.”

We say the algorithm has one-sided probability of error at most 1/r.

19

Let’s now make k independent trials as follows:

1. Pick mutually independent x1, . . . , xk uniformly from {1, . . . , rd }.

2. If f(xi)− g(xi) 6= 0 for at least one i, print “not equal.”

3. Otherwise print “equal.”

If f = g we again always get “equal.” If f 6= g and we got “equal,” we had
at k independent trials in a row an event with probability at most 1/r. This
can happen with probability at most (1/r)k.

Hence, by increasing the number of iterations we can make the error
probability approach zero at an exponential rate. 2

20

Law of Total Probability [M&U Thm. 1.6]

Let {Ei | i ∈ I } be a finite or countably infinite set of disjoint events such
that ∪i∈IEi = Ω. Directly from definitions we get

Pr(B) =
∑
i∈I

Pr(B ∩ Ei) =
∑
i∈I

Pr(B | Ei) Pr(Ei).

One application for this is the principle of deferred decisions.

Suppose we want to prove a statement of the form Pr(x ∈ B) ≤ ε.

We split x into two suitable components x = (x1, x2). We think of x1 as
being fixed “first” and x2 “only later.”

We then prove that whatever the choice of x1, the probability of choosing
x2 such that (x1, x2) ∈ B holds is at most ε. The desired result follows by
applying the law of total probability with

I = range of x1

Ei = { (x1, x2) | x1 = i } .

21

Example 1.4 [M&U Thm. 1.4]: We are given three n× n matrices A, B
and C. We want to check whether AB = C holds but don’t want to
calculate the whole matrix product AB.

We proceed as in the previous example:

1. Pick a random r ∈ {0,1 }n.

2. If ABr 6= Cr, print “not equal.”

3. Otherwise print “equal.”

Let D = AB − C. We claim that if D is not the zero matrix, then Dr 6= 0
holds with probability at least 1/2.

22

Write D = (dij). We assume that D 6= 0; let dpq 6= 0.

If Dr = 0, we have in particular
n∑

j=1

dpjrj = 0,

from which we can solve

rq = −d−1
pq

∑
j 6=q

dpjrj.

Now imagine that we first picked r′ = (r1, . . . , rq−1, rq+1, . . . , rn), and then
consider choices for the missing component rq. Because the choice of r′

fixes some value v for the expression

−d−1
pq

∑
j 6=q

dpjrj,

the probability of rq = v is at most 1/2 (as rq ∈ {0,1 }).

By the principle of deferred decisions, we see that

Pr(Dr = 0) ≤
1

2
.

2

23

Bayes’ Law [M&U Thm. 1.7]

Again, directly from the defitions we get

Pr(Ej | B) =
Pr(Ej ∩B)

Pr(B)
=

Pr(B | Ej) Pr(Ej)∑
i Pr(B | Ei) Pr(Ei)

where again Ej are assumed disjoint.

A usual interpretation for the formula is based on updating our beliefs when
new data arrive:

• The events Ej are mutually exclusive hypotheses (with the rough
interpretation Ej = “theory number j is true” for some mutually
contradictory competing theories).

• The even B describes some observation, measurement data etc.

• Pr(Ej) is the prior probability that indicates our degree of belief in
hypothesis Ej before we have seen any data.

• Pr(B | Ej) measures how well the hypothesis Ej “explains” data B.

• Pr(Ej|B) is the posterior probability that indicates our degree of belief
in hypothesis Ej after data B were observed.

24

Example 1.5: We are given three coins. Two of them are balanced, while
one of them will give heads with probability 2/3; we don’t know which one.

We assing the coins arbitrary numbers 1, 2 and 3 and toss them once.
Suppose we get the results (1: heads, 2: heads, 3: tails).

What is the probability that coin 1 is the unbalanced one?

The Bayes’ Law gives the answer 2/5. 2

Remark The denominator in Bayes’ Law is the same for all Ej. If we only
wish to compare the posterior probabilities, we can ignore the constant
factor Pr(B) and write

Pr(Ej | B) ∝ Pr(B | Ej) Pr(Ej).

However, in many machine learning applications computing Pr(B) cannot be
avoided and is actually a crucial problem for efficient algorithms.

25

Randomised minimum cut [M&U Section 1.4]

Let G = (V,E) be a connected undirected multigraph. (Unlike in a normal
graph, a multigraph may have multiple edges between two vertices.)

A set of edges C ⊆ E is a cut of the (multi)graph if (V,E − C) is not
connected. Minimum cut (or min cut) is the cut that contains the least
number of edges.

We use an operation called edge contraction. Contracting an edge (u, v)
replaces the vertices u and v with a new vertex. The edge (u, v) (all the
copies, if there were multiple) is removed. The other edges are retained, and
the new vertex replaces u and v when they occur as an endpoint of an egde.

If now C was a cut in the original graph and (u, v) 6∈ C, then C is a cut also
after the contraction. On the other hand, contrations do not introduce any
new cuts.

26

Consider the following algorithm:

1. Pick a random edge (u, v) ∈ E so that each edge has the same
probability of being picked.

2. Contract (u, v).

3. If at least three vertices remain, return to Step 1.

4. Otherwise print the remaining edges. (We assume that the original
edges retain their “identity” even if their end points are contracted.)

Let C be a min cut. We know that if no edge in C is picked for contraction,
then the algorithm gives the right output.

What’s the probability of this desired outcome?

27

Let Ei denote the event that in iteration i the edge picked for contraction is
not in C. Let Fi = ∩ij=1Ei. We need a lower bound for the probability
Pr(Fn−2) where n = |V |.

Let k = |C| be the size of the min cut. Then in particular each vertex has
degree at least k, so the graph has at least kn/2 edges. Therefore,

Pr(E1) =
|E| − |C|
|E|

≥ 1−
k

nk/2
= 1−

2

n
.

More generally, if the first i− 1 iterations have avoided picking from C, then
C is still a min cut. However, the number of vertices has beed reduced, so
we get

Pr(Ei | Fi−1) ≥ 1−
2

n− i+ 1
.

28

We get

Pr(Fn−2) = Pr(En−2 ∩ Fn−3)
= Pr(En−2 | Fn−3) Pr(Fn−3)
= . . .

= Pr(En−2 | Fn−3) Pr(En−3 | Fn−4) . . .Pr(E2 | F1) Pr(F1)

≥
n−2∏
i=1

(
1−

2

n− i+ 1

)
=

(
n− 2

n

)(
n− 3

n− 1

)
. . .

(
3

5

)(
2

4

)(
1

3

)
=

2

n(n− 1)
.

29

The algorithm always outputs a cut, and with probability at least
2/(n(n− 1)) a min cut.

We repeat the algorithm m times and choose the smallest of the m cuts.

The probability that we fail to get a min cut is at most(
1−

2

n(n− 1)

)m
≤ exp

(
−

2m

n(n− 1)

)
where we used the bound 1− x ≤ e−x.

For example choosing m = n(n− 1) lnn makes the error probability at most
1/n2. 2

30

2. Random variables

Consider a probability space (Ω,F ,Pr). A real-valued function X : Ω→ R is
a random variable if { s ∈ Ω | X(s) ≤ a } ∈ F for all a ∈ R.

A random variable is discrete if its range is finite or countably infinite. Later
we’ll also consider continuous random variables, but for now we assume our
random variables to be discrete.

Usually the probability Pr({ s ∈ Ω | X(s) = a }) is denoted simply by
Pr(X = a), and so on. The distribution of the random variable is defined by
giving the values Pr(X = a) for all a ∈ R. The distribution contains all the
information we usually want to know.

31

A sequence (X1, . . . , Xk) of random variables is mutually independent, if for
all I ⊆ {1, . . . , k } and for all x1, . . . , xk ∈ R we have

Pr(∩i∈I(Xi = xi)) =
∏
i∈I

Pr(Xi = xi).

Let V be the range of a random variable X. If the sum
∑

x∈V |x|Pr(X = x)
converges, we define the expectation of X as

E[X] =
∑
x∈V

xPr(X = x).

Otherwise the expectation does not exist, which is often denoted by
E[X] =∞.

32

The expectation is linear [M&U Thm. 2.1]: for all a, b ∈ R and random
variables X,Y we have

E[aX + bY] = aE[X] + bE[Y].

Linearity does not automatically extend to infinite sums. Whether the
equality

E

[∞∑
i=1

Xi

]
=

∞∑
i=1

E [Xi]

holds is non-trivial. One sufficient condition is that all the expectations
E[|Xi|] are defined and

∑∞
i=1 E[|Xi|] converges.

If additionally X and Y are independent, we have

E[XY] = E[X]E[Y].

33

Jensen’s Inequality [M&U luku 2.1.2]

From definitions we can easily see

E[X2] ≥ (E[X])2.

(In general this is a strict inequality as X is not independent of itself.) This
is a special case of Jensen’s inequality.

A function f : [a, b]→ R is convex if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for all a ≤ x1, x2 ≤ b and 0 ≤ λ ≤ 1.

A sufficient condition for convexity is that f is twice differentiable and f ′′(x)
is non-negative.

Theorem 2.1 [M&U Jensen]: If f is convex then

E[f(X)] ≥ f(E[X])

for all random variables X. 2

The special case at the top of the page is obtained by f(x) = x2.

34

Jensen in a picture

x1 x2

f(EX)

f(x1)

f(x2)

Ef(X)

EX

Recall that f is convex if
for all x1 and x2 and 0 ≤
α ≤ 1 we have

f(αx1 + (1− α)x2)
≤ αf(x1) + (1− α)f(x2).

A sufficient condition is
that f ′′(x) ≥ 0 for all x.

35

Binomial distribution [M&U Section 2.2]

A random variable Y has Bernoulli distribution with parameter p if

Pr(Y = 1) = p and Pr(Y = 0) = 1− p.
Then clearly E[Y] = p.

A random variable X has binomial distribution with parameters n and p if X
is the sum of n independent random variables each of which has Bernoulli
distribution with parameter p. We denote this by X ∼ Bin(n, p). By linearity
of expectation we have

E[X] = np.

The distribution can be written as

Pr(X = j) =
(n
j

)
pj(1− p)n−j, j = 0, . . . , n.

36

Conditional expectation [M&U Section 2.3]

When Y and Z are random variables, the range of Y is V , and z ∈ R, we
write.

E[Y | Z = z] =
∑
y∈V

yPr(Y = y | Z = z).

Example 2.2: Let X1 and X2 be the results of two independent throws of a
six-sided die, and X = X1 +X2. Then E[X | X1 = 3] = 61

2
and

E[X1 | X = 4] = 1 ·
1

3
+ 2 ·

1

3
+ 3 ·

1

3
= 2.

2

For all X and Y we have

E[X] =
∑
y∈V

E[X | Y = y] Pr(Y = y)

assuming the expectations are defined.

37

The conditional expectation E[Y | Z] is a random variable defined as
follows:

Let Y and Z be random variables over sample space Ω (that is, functions
Ω→ R). Now E[Y | Z] : Ω→ R is the random variable for which

E[Y | Z](ω) = E[Y | Z = Z(ω)]

for all ω ∈ Ω.

Example 2.3: Let again X = X1 +X2 where X1 and X2 are independent
die rolls. Now

E[X | X1] = X1 + 3
1

2
.

2

Conditional expectation follows the basic rules of normal expectations:
E[X1 +X2 | Z] = E[X1 | Z] + E[X2 | Z] etc. Additionally, we have

E[Y] = E[E[Y | Z]].

38

Example 2.4: Branching processes [M&U pp. 28–29].

Consider a situations where a process executes a certain procedure. This
can in turn create more similar processes.

Let’s assume that the number of new processes a process creates during its
life time has distribution Bin(n, p). If we start with one process, how many
do we get in expectation?

Let Yi be the number of processes in “generation” i. Thus, Y0 = 1 and
Y1 ∼ Bin(n, p). Fix now some i and denote by Zk the number of children of
process number k in generation i. Therefore Zk ∼ Bin(n, p).

39

Consider the conditional expectations:

E[Yi | Yi−1 = yi−1] = E

[
yi−1∑
k=1

Zk | Yi−1 = yi−1

]

= E

[
yi−1∑
k=1

Zk

]
= yi−1np

since Zk and Yi−1 are independent. Therefore E[Yi | Yi−1] = npYi−1, so

E[Yi] = E[E[Yi | Yi−1]] = E[npYi−1] = npE[Yi−1].

As Y0 = 1, induction yields E[Yi] = (np)i. The expected total number of
processes is

E

∑
i≥0

Yi

 =
∑
i≥0

(np)i

which is finite if and only if np < 1. 2

40

Geometric distribution [M&U Section 2.4]

A random variable X has a geometric distribution with parameter p, denoted
by X ∼ Geom(p), if

Pr(X = n) = (1− p)n−1p, n = 1,2,

That is, X is the number of trials needed to get the first success in a
sequence of independent trials each with probability p of success.

The geometric distribution is memoryless:

Pr(X = n+ k | X > k) = Pr(X = n).

The expectation of a geometric random variable is

E[X] =
1

p
.

We show this in two different ways.

41

Method 1: Use the equation

E[X] =
∞∑
i=1

Pr(X ≥ i),

that holds for any X that gets only non-negative integer values.

For X ∼ Geom(p) we get

Pr(X ≥ i) =
∞∑
n=i

(1− p)n−1p = (1− p)i−1.

Therefore

E[X] =
∞∑
i=1

(1− p)i−1 =
1

p
.

42

Method 2: We use the memoryless property. Let X = min { i | Yi = 1 },
where Yi, i = 1,2, . . . are independent Bernoulli(p) random variables.

By a well-known basic property,

E[X] = E[X | Y1 = 0] Pr(Y1 = 0) + E[X | Y1 = 1] Pr(Y1 = 1).

Now Pr(Y1 = 1) = p, and X = 1 whenever Y1 = 1. On the other hand,
Y1 = 0 means the same as X > 1. By the memoryless property,

Pr(X = n+ 1 | X > 1) = Pr(X = n)

which by writing Z = X + 1 becomes

Pr(X = m | X > 1) = Pr(X = m− 1) = Pr(Z = m), m ≥ 2.

Therefore E[X | X > 1] = E[Z] = E[X] + 1. We have

E[X] = (1− p)(E[X] + 1) + p,

from which we can solve E[X] = 1/p. 2

43

Example 2.5: Coupon collector’s problem [M&U Section 2.4.1]

A cereal box always contains one coupon. There are n different coupons.
How many boxes of cereals do we need to buy to collect the whole set?

Let X be the random variable denoting the number of boxes needed for a
full set. Let Xi be the number of boxes we bought while we already had
exactly i− 1 different coupons. Therefore

X =
n∑
i=1

Xi.

When i− 1 coupons have been found, the probability that the next box
contains a new one is pi = (n− i+ 1)/n. Therefore, Xi ∼ Geom(pi).

44

We get

E[X] =
n∑
i=1

E[Xi]

=
n∑
i=1

1

pi

=
n∑
i=1

n

n− i+ 1

= n

n∑
j=1

1

j

= nH(n),

where H(n) =
∑n

i=1(1/i). Since it is known [M&U Lemma 2.10] that

lnn ≤ H(n) ≤ lnn+ 1,

we get

E[X] = n lnn+ Θ(n).

45

Example 2.6: Quicksort [M&U Section 2.5]

Consider a randomized version of the algorithm:

Quicksort(S[1..n])
If n ≤ 1, then return S.
Pick a random i ∈ {1, . . . , n }. Let x = S[i].
Partition S into two sublists:

L contains elements less than x
H contains elements greater than x.

Return [Quicksort(L), x,Quicksort(H)].

The element x is called the pivot.

Worst case: The pivot is always the smallest or largest element of the list.
We need n(n− 1)/2 = Θ(n2) comparisons.

46

Average case: Let X be the number of comparisons made by Quicksort.

Let the elements of S in ascending order be y1, . . . , yn. Write Xij = 1 if
during the procedure the elements yi and yj are compared, otherwise
Xij = 0. Since no pair of elements is compared twice, we have

X =
n−1∑
i=1

n∑
j=i+1

Xij.

Fix some i < j. By studying the algorithm we can see that Xij = 1 holds if
and only if either yi or yj is the first pivot picked from the set
Y ij = { yi, yi+1, . . . , yj−1, yj }. Since all pivots are equally likely, we get

E[Xij] = Pr(Xij = 1) =
2

j − i+ 1
.

47

We can now calculate

E[X] =
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=
n−1∑
i=1

n−i+1∑
k=2

2

k

=
n∑

k=2

n+1−k∑
i=1

2

k

=
n∑

k=2

(n+ 1− k)
2

k

= (n+ 1)
n∑

k=2

2

k
− 2(n− 1)

= (2n+ 2)H(n)− 4n.

Therefore, the expected number of comparisons is E[X] = 2n lnn+ Θ(n).

48

For comparison, consider a simplified deterministic Quicksort where the
pivot is always the first element of the list: x = S[1].

If now the input is originally in random order, with all permutations equally
likely, the expected number of comparisons is again 2n lnn+ Θ(n). This can
be seen with a similar argument as above. Now yi and yj will be compared if
either one of them is in the input before other elements of Y ij.

Remark In this second version the expectations is over inputs, not over any
randomness in the algorithm (since there is none). Whether the underlying
assumption about the distribution of the inputs is correct is often debatable.
Of course in theory we could make sure by randomly permuting the input
before sorting. 2

49

3. Moments and deviations

The expectation by itself does not give a very good picture of the
distribution of a random varible. The next step is typically to calculate the
variance.

Variance and other quantities describing the “width” of the distribution are
also useful for proving “tail bounds” (upper bounds for the probability of
getting very large or very small values). Often in computer science (and
also in statistics) these may be topics of primary interest.

50

The first technique for estimating tails is based on Markov’s Inequality
[M&U Thm. 3.1]: if X is a non-negative random variable, then

Pr(X ≥ a) ≤
E[X]

a
.

Proof:

E[X] =
∑
x

xPr(X = x)

=
∑
x<a

xPr(X = x) +
∑
x≥a

xPr(X = x)

≥ 0 + a
∑
x≥a

Pr(X = x)

where summations are over the range of X. 2

51

Example 3.1: We toss a symmetrical coin n times. We want an upper
bound for the probability of getting at least 3n/4 heads.

If X is the number of heads, then X ≥ 0 and E[X] = n/2. Therefore,

Pr(X ≥ 3n/4) ≤
n/2

3n/4
=

2

3
.

This is a very crude estimate that did not even try to take into account any
information about the shape of the distribution. Indeed, because of
symmetry it’s clear that the probability in question cannot be larger than
1/2. 2

52

Moments and variance [M&U Section 3.2]

The kth moment of a random variable X is E[Xk].

The variance of X is

Var[X] = E[(X − E[X])2]

and standard deviation

σ[X] =
√
Var[X].

The covariance of X and Y is

Cov(X,Y) = E[(X − E[X])(Y − E[Y])].

From definitions and the linearity of expectation we get

Var[X] = E[X2]− (E[X])2

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X,Y].

53

If X and Y are independent, we have

E[XY] = E[X]E[Y]
Cov(X,Y) = 0

Var[X + Y] = Var[X] + Var[Y]

By induction, this can be generalized for sums and products of more than
two random variables.

Example 3.2: If Xi ∼ Bernoulli(p), a direct calculation gives

Var[Xi] = p(1− p).

Therefore, if X is the sum of n independent Bernoulli(p) random variables,
that is X ∼ Bin(n, p), we have

Var[X] = np(1− p).

2

54

Chebyshev’s inequality [M&U Section 3.3]

Theorem 3.3 [M&U Thm 3.6]: For any a > 0 we have

Pr(|X − E[X]| ≥ a) ≤
Var[X]

a2
.

Proof: Write the probability in question as

Pr(|X − E[X]| ≥ a) = Pr((X − E[X])2 ≥ a2).

Applying Markov’s Inequality to the non-negative random variable
Y = (X − E[X])2 gives us

Pr(Y ≥ a2) ≤
E[Y]

a2
=

Var[X]

a2
.

2

55

Example 3.4: Consider the same question we already analysed using
Markov’s Inequality: What is the probability of getting at least 3n/4 heads
when a symmetric coin is tosses n times?

Since X is binomially distributed, we have E[X] = n/2 and
Var[X] = n1

2
(1− 1

2
) = n/4. Therefore,

Pr(
∣∣∣X − n

2

∣∣∣ ≥ n

4
) ≤

Var[X]

(n/4)2
=

4

n
.

By symmetry,

Pr(
∣∣∣X − n

2

∣∣∣ ≥ n

4
) = 2 Pr(X −

n

2
≥
n

4
),

so

Pr(X ≥
3n

4
) ≤

2

n
.

2

Actually even this is extremely loose for large n. We get much better
estimates by using Chernoff bounds that will be introduced soon.

56

Example 3.5: Coupon Collector’s Problem (Example 2.5 continued)

We obtained nH(n) as the expectation of the number X of cereal boxes we
need to buy. Markov’s Inequality then yields

Pr(X ≥ 2nH(n)) ≤
1

2
.

To apply Chebyshev, we also need the variance Var[X]. Remember
X =

∑n
i=1Xi where Xi ∼ Geom(pi) and pi = (n− i+ 1)/n. The variance of

X ∼ Geom(p) is known [M&U Lemma 3.8] to be

Var[X] =
1− p
p2

.

The random variables Xi are mutually independent, so

Var[X] =
n∑
i=1

Var[Xi].

57

By estimating Var[Xi] ≤ 1/p2
i we get

n∑
i=1

Var[Xi] ≤
n∑
i=1

(
n

n− i+ 1

)2

≤ n2
∞∑
i=1

1

i2
=
π2n2

6
.

Therefore, Chebyshev’s Inequality gives us

Pr(|X − nH(n)| ≥ nH(n)) ≤
π2n2/6

(nH(n))2
= O

(
1

(logn)2

)
.

This is not a very tight bound, either. The probability that the first
n(c+ lnn) fail to contain a given specific coupon is(

1−
1

n

)n(c+lnn)

≤ exp(−(c+ lnn)).

Therefore, the probability that some coupon has failed to appear in the first
n(c+ lnn) boxes is by union bound at most n exp(−(c+ lnn)) = e−c.
Substituting c = lnn yields

Pr(X ≥ 2n lnn) ≤
1

n
.

2

58

Randomized algorithm for the median [M&U Section 3.4]

Let S be a set of numbers for which we want to determine the median. For
simplicity we consider the case where n = |S| is odd, so the median is the
element at position dn/2e in the ordering of the elements of S.

The median can easily be determined in time O(n logn) by sorting. There is
also a (somewhat complicated) deterministic algorithm that runs in time
O(n). We give here a simple randomized algorithm with running time O(n).

The idea is to use randomization to pick a lower bound d and upper bound
u such that with high probability,

1. the median is between d and u and

2. there are not too many elements of S between d and u.

59

Ignoring for the moment how exactly we choose d and u, the algorithm is
then

1. Choose d and u.

2. Create the set C = {x ∈ S | d ≤ x ≤ u } and calculate
`d = |{x ∈ S | x < d }| and `u = |{x ∈ S | u < x }|.

3. If `d > n/2 or `u > n/2, then fail.

4. If |C| > 4n3/4, then fail.

5. Otherwise sort C and return its element number bn/2c − `d + 1.

60

If d and u are chosen in time O(n), then clearly the whole algorithm runs in
time O(n).

If the algorithm does not fail, it gives the right answer. By repeating until it
succeeds we therefore get a Las Vegas algorithm that always gives the right
answer but may sometimes run for a long time.

The interesting part of the analysis is to determine d and u such that the
failure probability is small.

(From now on we ignore rounding.)

61

We propose choosing d and u as follows:

1. Choose a (multi)set R ⊆ S by choosing independently n3/4 elements
uniformly (with replacement) from S.

2. Sort R.

3. Now d is the element number 1
2
n3/4 − n1/2 and u the element number

1
2
n3/4 + n1/2 in the ordering of R.

62

Intuitively, the median of R, that is the element number 1
2
n3/4, is also an

estimate for the median of whole S. The first “fail” branch is the case
where this estimate is badly off.

Between d and u there are 2n1/2 elements of R.

Therefore, if sampling has been uniform, then between d and u there are
2n1/2(n/n3/4) = 2n3/4 elements of S. The second “fail” branch is the case
where the sample is not sufficiently uniform.

The numbers n3/4, n1/2 etc. come from known bounds for sampling
accuracy. (In other words, they have been chosen so that the following
proof goes through.)

63

We’ll now derive an upper bound for the failure probability. Let m be the
actual median of S, and k = |R| = n3/4. Consider the following three events:

E1 : |{ r ∈ R | r ≤ m }| <
k

2
− n1/2

E2 : |{ r ∈ R | r ≥ m }| <
k

2
− n1/2

E3 : |C| > 4k.

The event E3 obviously represents the second “fail” case.

The events E1 and E2 correspond to m < d ja m > u. Hence, together they
cover the first “fail” case.

64

To estimate Pr(E1) write Y1 = |{ r ∈ R | r ≤ m }|. Thus, Y1 =
∑k

i=1Xi where

Xi =

{
1 if sample point number i is less than or equal to m
0 otherwise.

There are (n− 1)/2 + 1 elements in S that are less than or equal to m.
Therefore, Y1 ∼ Bin(k, p) where p = 1/2 + 1/(2n). Hence, E[Y1] ≥ k/2, and

Var[Y1] = k

(
1

2
+

1

2n

)(
1

2
−

1

2n

)
<
k

4
.

We apply Chebyshev’s Inequality:

Pr(E1) ≤ Pr(|Y1 − E[Y1]| > n1/2) ≤
Var[Y1]

n
≤

1

4
n−1/4.

65

Similarly we see that

Pr(E2) ≤
1

4
n−1/4.

For the event E3 we consider two subevents:

E3,1 : |{ c ∈ C | c > m }| ≥ 2k
E3,2 : |{ c ∈ C | c < m }| ≥ 2k.

If |C| > 4k, then at least one of these has occurred. The subevents are
symmetrical, so let’s consider E3,1. Now the position of u in S is at least
n/2 + 2k. Hence, u and any larger elements in R are among the n/2− 2k
largest elements of S. By definition of u, there are k/2− n1/2 such elements.

66

Define

Xi =

{
1 if smaple point number i is among the n/2− 2k largest elements in S
0 otherwise

and X =
∑k

i=1Xi. Again, X has binomial distribution,

E[X] =
k

2
− 2n1/2

and

Var[X] = k

(
1

2
− 2n−1/4

)(
1

2
+ 2n−1/4

)
<
k

4
.

Therefore,

Pr(E3,1) ≤ Pr(|X − E[X]| ≥ n1/2) ≤
Var[X]

n
<

1

4
n−1/4.

Altogether, the probability of failure is at most

Pr(E1) + Pr(E2) + Pr(E3,1) + Pr(E3,1) < n−1/4.

2

67

4. Chernoff bounds

”Chernoff bounds” is a general name for several inequalities that estimate
how tightly the value of a random variable is concentrated around its
expectation.

Basic example: If X ∼ Bin(n, p), then for all 0 < δ ≤ 1 we have

Pr

(
X − np
np

≥ δ
)
≤ exp

(
−

1

3
npδ2

)
.

For example, this implies that with probability 1/2 we have

X ≤ np+
√

3np ln 2.

This bounds can be made (a) more general and (b) tighter.

In this section we review some bounds of this variety, including their proofs
and applications.

68

Moment Generating Function [M&U Section 4.1]

The moment generating function of a random variable X is defined as

MX(t) = E[etX],

assuming this expectation is finite.

By differentiating the moment generating function n times in the origin we
get the nth moment.

Theorem 4.1: If MX(t) is defined in some neighbourhood t ∈ (−δ, δ) of 0,
we have

E[Xn] = M (n)
X (0)

for all n = 1,2,

Proof: We defined

MX(t) =
∑
x

Pr(X = x) exp(tx).

Under the given assumptions, we can differentiate termwise:

M (n)
X (t) =

∑
x

Pr(X = x)xn exp(tx).

Substituting t = 0 gives the result. 2

69

Example 4.2: When X ∼ Geom(p), we have

E[etX] =
∞∑
k=1

(1− p)k−1petk

=
p

1− p

∞∑
k=1

((1− p)et)k

=
p

1− p

(
1

1− (1− p)et
− 1

)
from which we get the derivatives

M ′X(t) =
pet

(1− (1− p)et)2

M ′′X(t) =
2p(1− p)e2t

(1− (1− p)et)3
+

pet

(1− (1− p)et)2
.

By substituting t = 0 we get the familiar results E[X] = 1/p and
E[X2] = (2− p)/p2. 2

70

It can be proved (but we will not do so on this course) that giving the
moment generating function (or alternatively giving all the moments)
specifies the distribution uniquely.

Theorem 4.3: If X and Y are random variables such that for some δ > 0
we have MX(t) = MY (t) for all −δ < t < δ, the X and Y have the same
distribution. 2

This can be used for example to determine the distribution of the product
of two independent random variables together with the following.

Theorem 4.4: If X and Y are independent, we have

MX+Y (t) = MX(t)MY (t).

Proof: Now also etX and etY are independent, so

E[et(X+Y)] = E[etXetY] = E[etX]E[etY].

2

71

Deriving Chernoff bounds [M&U Section 4.2.1]

The basic technique is to apply Markov’s Inequality to the random variable
etX for a suitable t ∈ R. Thus,

Pr(X ≥ a) = Pr(etX ≥ eta) ≤
E[etX]

eta

for any t > 0, so in particular

Pr(X ≥ a) ≤ min
t>0

E[etX]

eta
.

For a negative t the direction of the inequality changes, so

Pr(X ≤ a) ≤ min
t<0

E[etX]

eta
.

To make use of this observation, we need an estimate for the moment
generating function E[etX] and a good choice for t.

Often we introduce bounds that are a bit loose to make the formulas more
intelligible.

72

In the most widely used variant we take X =
∑n

i=1Xi where
Xi ∼ Bernoulli(pi) are independent. We call the random variables Xi Poisson
trials. If the distributions are identical, with pi = p for all i, we call them
Bernoulli trials.

Write µ = E[X] =
∑n

i=1 pi. We estimate the probabilities Pr(X ≥ (1 + δ)µ)
and Pr(X ≤ (1− δ)µ).

First let us consider the moment generating functions for the individual trials

MXi
(t) = pie

t·1 + (1− pi)et·0 = 1 + pi(et − 1) ≤ exp(pi(et − 1))

where we applied the inequality 1 + z ≤ ez. This implies

MX(t) =
n∏
i=1

MXi
(t) ≤ exp

(
n∑
i=1

pi(et − 1)

)
= exp

(
(et − 1)µ

)
.

We now derive bounds for the probability that X gets very large or very
small values.

73

We first prove a bound that’s (fairly) tight but somewhat difficult to use.
From this we can derive variants that are easier to use but less tight.

Theorem 4.5 [M&U Thm 4.4.1]: For all δ > 0 we have

Pr(X ≥ (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ
.

Proof: As noted above, for t > 0 Markov’s Inequality yields

Pr(X ≥ (1 + δ)µ) = Pr(etX ≥ et(1+δ)µ) ≤
E[etX]

exp(t(1 + δ)µ)
.

We choose t = ln(1 + δ), which gives us

E[etX] ≤ exp((et − 1)µ) = eδµ

and

exp(t(1 + δ)µ) = (1 + δ)(1+δ)µ.

2

74

The following simplification is often useful:

Theorem 4.6 [M&U Thm 4.4.2]: For 0 < δ ≤ 1 we have

Pr(X ≥ (1 + δ)µ) ≤ exp(−µδ2/3).

Proof: It is sufficient to show

eδ

(1 + δ)1+δ
≤ e−δ

2/3

or equivalently (by taking log of both sides) f(δ) ≤ 0 where

f(δ) = δ − (1 + δ) ln(1 + δ) +
1

3
δ2.

75

Take now derivatives:

f(δ) = δ − (1 + δ) ln(1 + δ) +
1

3
δ2

f ′(δ) = − ln(1 + δ) +
2

3
δ

f ′′(δ) = −
1

1 + δ
+

2

3
.

Thus, f ′′(δ) < 0 for 0 ≤ δ < 1/2, so f ′(δ) is decreasing. On the other hand,
f ′′(δ) > 0 for 1/2 < δ < 1, so f ′(δ) is increasing.

Since f ′(0) = 0 and f ′(1) = 2/3− ln 2 ≈ 2/3− 0,69 < 0, we get f ′(δ) ≤ 0 for
all 0 ≤ δ ≤ 1.

Since f(0) = 0, we get f(δ) ≤ 0 for all 0 < δ < 1. 2

76

Another simplification is the following:

Theorem 4.7 [M&U Thm 4.4.3]: For R ≥ 6µ we have

Pr(X ≥ R) ≤ 2−R.

Proof: Write R = (1 + δ)µ, so δ = R/µ− 1 ≥ 5. We get(
eδ

(1 + δ)1+δ

)µ
≤

(
e

1 + δ

)(1+δ)µ

≤
(e

6

)R
≤ 2−R.

2

77

Next consider the probability that X is very small.

Theorem 4.8 [M&U Thm 4.5.1]: For all 0 < δ < 1 we have

Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ
.

Proof: As earlier, for all t < 0 we have

Pr(X ≤ (1− δ)µ) ≤
E[etX]

et(1−δ)µ ≤
exp((et − 1)µ)

exp(t(1− δ)µ)
.

Substituting t = ln(1− δ) gives the desired bound. 2

78

We can simplify this as earlier.

Theorem 4.9 [M&U Thm 4.5.2]: For all 0 < δ < 1 we have

Pr(X ≤ (1− δ)µ) ≤ exp(−µδ2/2).

Proof: similar to the case for ”(1 + δ)”; details omitted. 2

We can use the union bound to get a combined bound.

Corollary 4.10 [M&U Cor 4.6]: For all 0 < δ < 1 we have

Pr(|X − µ| ≤ δµ) ≤ 2 exp(−µδ2/3).

2

79

Coin flips [M&U Section 4.2.2]

We flip a fair coin n times. Thus, µ = n/2. What kind of a bound can we
have with probability 2/n (that is, the probability of violation gets
vanishingly small for large n)?

We want exp(−(n/2)δ2/3) = 1/n, so we take δ =
√

(6 lnn)/n. By plugging
this into the bound we get

Pr

(∣∣∣X − n

2

∣∣∣ ≥ 1

2

√
6n lnn

)
≤

2

n
.

Therefore, with a very high probability the deviations are at most
O(
√
n logn).

Compare this with the earlier Chebyshev bound

Pr
(∣∣∣X − n

2

∣∣∣ ≥ n

4

)
≤

4

n
.

By using Chernoff to estimate the same probability we get

Pr
(∣∣∣X − n

2

∣∣∣ ≥ n

4

)
≤ 2e−n/24

which is exponentially tighter.

80

Application: parameter estimation [M&U Section 4.2.3]

We pick repeated independent samples from a fixed distribution that is
known to be Bernoulli(p) for some unknown p. We wish to estimate p based
on the sample.

Let X =
∑n

i=1Xi be the result of n trials and p̃ = X/n. Clearly
E[p̃] = µ/n = p. What about error probabilities?

We call an interval [p̃− δ, p̃+ δ] a (1−γ) confidence interval for parameter p if

Pr(p ∈ [p̃− δ, p̃+ δ]) ≥ 1− γ.
Interpretation: After seeing a trial sequence with relative frequency p̃ of
ones, we have “confidence” 1− γ for the true parameter value p belonging
to the interval [p̃− δ, p̃+ δ]. If p is not in the interval, then we have just
observed a very unlikely deviation (probability less than γ).

Notice The parameter p is a constant, it does not have any disribution
(unless we assign a prior to it which is a quite different way of thinking
about this).

81

If p 6∈ [p̃− δ, p̃+ δ], then one of the following events has occurred:

p < p̃− δ: therefore, X = np̃ > n(p+ δ) = µ(1 + δ/p).

p > p̃+ δ: therefore, X = np̃ < n(p− δ) = µ(1− δ/p).

Chernoff bounds give us

Pr(p 6∈ [p̃− δ, p̃+ δ]) ≤ e−µ(δ/p)2/2 + e−µ(δ/p)2/3 = e−nδ
2/(2p) + e−nδ

2/(3p).

Since p is not known, we use the conservative upper bound p ≤ 1. Based on
that we can choose

γ = e−nδ
2/2 + e−nδ

2/3

(or conversely solve δ from here if γ has been chosen).

82

Bounds for some special cases [M&U Section 4.3]

Consider the case where Xi is has two symmetrical values.

Theorem 4.11 [M&U Thm 4.7]: If Pr(Xi = 1) = Pr(Xi = −1) = 1/2,
then for all a > 0 we have

Pr(X ≥ a) ≤ exp

(
−
a2

2n

)
.

Proof: For all t > 0 we have

E[etXi] =
1

2
et +

1

2
e−t.

We apply

et =
∞∑
j=0

tj

j!
.

83

This yields

E[etXi] =
1

2

(
1 + t+

t2

2
+
t3

3!
+
t4

4!
+ . . .

)
+

1

2

(
1− t+

t2

2
−
t3

3!
+
t4

4!
− . . .

)
= 1 +

t2

2
+
t4

4!
+ . . .

=
∞∑
j=0

t2j

(2j)!

≤
∞∑
j=0

1

j!

(
t2

2

)j
= exp

(
t2

2

)
.

84

Therefore,

E[etX] =
n∏
i=1

E[etXi] ≤ exp

(
t2n

2

)
,

so

Pr(X ≥ a) ≤
E[etX]

eta
≤ exp

(
t2n

2
− ta

)
.

Choosing t = a/n gives the desired result

Pr(X ≥ a) ≤ exp

(
−
a2

2n

)
.

2

Corollary 4.12: If Pr(Xi = 1) = Pr(Xi = −1) = 1/2, then for all a > 0 we
have

Pr(|X| ≥ a) ≤ 2 exp

(
−
a2

2n

)
.

2

85

Corollary 4.13 [M&U Cor 4.8]: Let Yi be mutually independent with
Pr(Yi = 1) = Pr(Yi = 0) = 1/2. Write Y =

∑n
i=1 Yi and µ = E[Y] = n/2.

Now for all a > 0 we have

Pr(Y ≥ µ+ a) ≤ exp

(
−

2a2

n

)
and for all δ > 0 we have

Pr(Y ≥ (1 + δ)µ) ≤ exp

(
−
δ2µ

2

)
.

Proof: Let Xi be as before and Yi = 1
2
(Xi + 1). In particular, Y = 1

2
X + µ.

86

From the previous theorem we get

Pr(Y ≥ µ+ a) = Pr(X ≥ 2a) ≤ exp

(
−

4a2

2n

)
.

For the second part, choose a = δµ, so

Pr(Y ≥ (1 + δ)µ) = Pr(X ≥ 2δµ) ≤ exp

(
−

4δ2µ2

2n

)
= exp

(
−
δ2µ

2

)
.

2

Similarly we can prove

Corollary 4.14 [M&U Cor 4.9]: Let Yi be mutually independent and
Pr(Yi = 1) = Pr(Yi = 0) = 1/2. Write Y =

∑n
i=1 Yi and µ = E[Y] = n/2.

Now for all 0 < a < µ we have

Pr(Y ≤ µ− a) ≤ exp

(
−

2a2

n

)
and for all δ > 0 we have

Pr(Y ≤ (1− δ)µ) ≤ exp

(
−
δ2µ

2

)
.

2

87

Application: set balancing [M&U Section 4.4]

Suppose we have a set of m people and n properties. We wish to partition
the people into two sets A and A such that for i = 1, . . . , n we have

|{ p ∈ A | p has property i }| ≈
∣∣{ p ∈ A | p has property i

}∣∣ .
Let’s define an array A = (aij) ∈ {0,1 }n×m where aij = 1 if person j has
property i.

We represent a partition (A,A) as a vector b ∈ {−1,1 }m where bj = 1 if
person j is in the set A.

With these notations, we thus wish to minimise the quantity

‖Ab‖∞ = max
i
|ci|

where ci =
∑

j aijbj.

88

How good a result do we get by choosing b at random so that each bj is 1
with probability 1/2 independently of each other?

We claim that

Pr(‖Ab‖∞ ≥
√

4m lnn) ≤
2

n
.

We prove this by showing for each individual row i ∈ {1, . . . , n } that the
event |ci| ≥

√
4m lnn has probability at most 2/n2.

Write k =
∑

j aij. If k ≤
√

4m lnn, the claim clearly holds.

Otherwise aijbj get values 1 and −1 symmetrically and independently for
those j for which aij 6= 0. Therefore,

Pr

∣∣∣∣∣∣
∑
j

aijbj

∣∣∣∣∣∣ > √4m lnn

 ≤ 2 exp

(
−

4m lnn

2k

)
≤

2

n2

since k ≤ m. 2

89

Example: packet routing [M&U Section 4.5]

Consider a graph of N nodes, some of which may be connected with an
edge. We assume the edges to be directed, but the particular topologies we
consider are symmetrical: there’s an edge (v, v′) if and only if there’s an
edge (v′, v).

The task is to transmit a set of packets through the network. Each packet
has a start node and a destination node (address). The route of a packet is
a path in the graph from the start node to the destination.

During one time step,

• each packet may travel at most one edge

• at most one packet may travel along any single edge.

We assume sufficient buffer memory in the nodes so packets can wait for an
edge to become available.

90

To determine how the network works, we must fix

• how to choose the route of a packet when the start node and address
are known

• if several packets wish to use the same edge, how are they priorized
(queueing).

For the results we are going to present, the queueing strategy is not
important, as long as we never let an edge sit idle if there are packets for it.

Possible congestion in the network of course depends on between which
nodes the packets are addressed. Here we consider permutation routing:
each node has exactly one packet starting from it, and one addressed to it.

91

Routing in hypercube [M&U Section 4.5.1]

The routing problem is interesting mainly in sparse graphs (number of edges
much less than N(N − 1)). As an example we consider the hypercube
topology. In an n-dimensional hypercube, or n-cube, there are N = 2n

nodes, and we identify the nodes with elements of the set {0,1 }n. In a
hypercube, the nodes (a1, . . . , an) and (b1, . . . , bn) are connected if there is
exactly one index i such that ai 6= bi.

Thus, there are N log2N edges in the hypercube, and the diameter (longest
distance between two nodes) is log2N .

92

The starting point for routing in an n-cube is the bit-fixing algorithm.

Consider a packet starting from node a = (a1, . . . , an) with destination
b = (b1, . . . , bn). For i = 1, . . . , n+ 1, define

vi = (b1, . . . , bi−1, ai, . . . , an).

The packet is now routed via the nodes a = v1, v2, . . . , vn+1 = b. (The actual
path is obtained by removing from this the repetitions that occur when
ai = bi.)

Hence, we “fix” the address of the packet bit by bit, from left to right.

The bit fixing algorithm has good average case performance when the
addresses are picked at random. However, it can be shown that in some
cases it leads to congestion and takes Ω(N1/2) steps to deliver all the
packets.

93

To avoid the worst case of bit-fixing we consider randomized two-phase
routing:

Phase I: Pick for each packet a random node as an intermediate point.
Route the packets to their intermediate points by bit-fixing.

Phase II: Route the packets from the intermediate points to their actual
destinations.

We will show that with probability 1−O(N−1) this two-phase routing
delivers all packets in time O(logN). Since log2N is the diameter of the
graph, this is optimal (up to a constant factor).

94

How we handle queues will clearly have on effect on when a given packet
crosses a given edge on its route.

To simplify the analysis, let T (M) be the time packet M takes to reach its
destination. Each of these T (M) steps is consumed by one of the following
actions:

1. packet M crosses an edge on its route, or

2. packet M is in queue as some other packet crosses an edge M would
need.

Let X(e) be the number of packets that have edge e on their route. Based
on the above, we can make

Observation: If the route of packet M consists of edges e1, . . . , em, then

T (M) ≤
m∑
i=1

X(ei).

95

The preceding observation allows us to ignore the queue behaviour and
concentrate on the paths. For a path P consisting of edges e1, . . . , em, define

T (P) =
m∑
i=1

X(ei).

Based on our observation, the time taken by the routing is always upper
bounded by maxP∈R T (P) where R is the set of all the paths used in routing.

This applies to any routing scenario. In particular, let T1 and X1 be the
quantities T and X when we consider only Phase I of our algorithm. We will
show that with a high probability we have T1(P) ≤ 30n for all possible paths
P .

96

Fix now some paths P = (v0, . . . , vm) which is a possible route in bit-fixing.

We want a high-probability upper bound for T1(P) =
∑m

i=1X1(ei). As the
random variables X1(ei) are not independent, we cannot directly apply
Chernoff bounds.

To resolve the problem, we first estimate the probability that at least 6n
different packets cross at least one edge that belongs to P .

After this we show that with high probability no individual packet will use
too many edges on P .

97

Let vi−1 be the ith node on path P , and j the bit on which vi−1 and vi differ.
We say a packet k is active in node vi−1, if

1. packet k is routed through vi−1 and

2. when packet k reaches vi−1, its jth bit has not been fixed yet, but bits
1, . . . , j − 1 either have been fixed or were correct to start with.

Notice that we do not require that the packet actually goes from vi−1 to vi.
However, depending on bit j of the address, it has the potential of doing
that.

For k = 1, . . . , N , let Hk = 1 if packet k is active in at least one node on P ,
and Hk = 0 otherwise. Let H =

∑N
k=1Hk.

Notice that random variables Hk are mutually independent.

98

Let

vi−1 = (b1, . . . , bj−1, aj, aj+1, . . . , an)
vi = (b1, . . . , bj−1, bj, aj+1, . . . , an).

By condition 2, a packet that is active in vi−1 started in a node of form
(∗, . . . , ∗, aj, . . . , an) where ∗ can be 0 or 1. Therefore, there are 2j−1 possible
start nodes.

By condition 1, if a packet is active in vi−1, its destination must be of form
(b1, . . . , bj−1, ∗, . . . , ∗). Therefore, if we consider some fixed node among the
possible start nodes, the packet starting from the node will become active
with probability 2−j+1.

Therefore, the expected number of active packets in vi−1 is 1, so

E[H] ≤ m · 1 ≤ n.

99

Since the random variables Hk are mutually independent, we may apply
Chernoff bounds (Theorem 4.7 [M&U Thm 4.4.3]):

Pr(H ≥ 6n) ≤ 2−6n.

We choose B = {H ≥ 6n } in the estimate

Pr(A) = Pr(A | B) Pr(B) + Pr(A | B) Pr(B)
≤ Pr(B) + Pr(A | B).

Therefore,

Pr(T1(P)) ≥ 30n) ≤ 2−6n + Pr(T1(P) ≥ 30n | H < 6n).

We will next estimate the latter conditional probability.

100

Assume that packet k is active in vi−1.

For k to actually cross the edge (vi−1, vi), we require its jth address bit to
be bj. This has probability 1/2.

However, we also require that the packet does not need to fix any earlier
bits 1, . . . , j − 1. Thus, the actual probability for a packet that is active in
vi−1 to cross the edge (vi−1, vi) is at most 1/2.

More generally, if the packet is on path P in node vl−1, l > i, then the
probability that it next goes to vl is at most 1/2.

On the other hand, if the packet enters vl−1 but does not go to vl in the next
step, it won’t ever return to path P . This is because in this case one of the
address bits 1, . . . , l of the packet must differ from the corresponding bit of
the destination node of path P . As these earlier bits won’t be touched again
by the bit-fixing algorithm, the route of the packet remains separate from P .

101

Assume that there are a total of h active packets for the nodes of P . What
is the probability that together they make a total of at least 30n steps along
path P?

Consider as an individual trial a situation where a given active packet is in
some given node on P . With probability at most 1/2 we get success,
meaning that the packet proceeds along an edge on P . At least with
probability 1/2 we get failure, so the packet leaves path P and never returns.
When a failure occurs, we move to considering the next active packet.

Hence, each success contributes one transition along P , but each failure
removes one packet from consideration. To get 30n transitions, the first
30n+ h trials may have at most h failures.

102

The desired conditional probability

Pr(T1(P) ≥ 30n | H ≤ 6n)

is therefore the probability that in the repeated trials we get at most 6n
failures in 36n iterations.

Since each success probability is at most 1/2, we easily see that

Pr(T1(P) ≥ 30n | H ≤ 6n) ≤ Pr(Z ≤ 6n),

where Z ∼ Bin(36n,1/2). By applying the Chernoff bound of Theorem 4.9
[M&U Thm 4.5.2] we get

Pr(T1(P) ≥ 30n | H ≤ 6n) ≤ Pr(Z ≤ (1− 2/3)18n)
≤ exp(−18n(2/3)2/2) = e−4n ≤ 2−3n−1.

Hence,

Pr(T1(P)) ≥ 30n) ≤ 2−6n + Pr(T1(P) ≥ 30n | H < 6n) ≤ 2−3n.

103

Since there are N2 = 22n possible paths, the probability for having
T1(P) ≥ 30n for at least one path P is at most 22n2−3n = 2−n. Therefore, if
Phase II is not started until Phase I is finished, the time for Phase I is
O(logN) with probability 1−O(N−1).

The analysis for Phase II is exactly the same. The only difference that the
packets actually go along the paths in reverse direction.

Finally, we remark that Phase II can be started even before Phase I finishes.
The preceding analysis can easily be extended to show that with probability
1−O(N−1) no path has its edges used more than a total of 60n times.

104

Routing in butterfly network [M&U Section 4.5.2]

Butterfly
network. In
the wrapped
version we
merge the
first and last
node on each
row.

row 000

row 001

row 010

row 011

row 100

row 101

row 110

row 111

level 0 level 1 level 2 level 3

105

The butterfly network has N = n2n nodes for some n. The address of a
node has form (x, r), where 0 ≤ x ≤ 2n − 1 is the row and 0 ≤ r ≤ n− 1 the
column.

In the wrapped butterfly network, nodes (x, r) and (y, s) are connected if
s = (r + 1) modn and

1. x = y (“direct” edge) or

2. x and y differ in in the (s+ 1)th bit position (“flip” edge).

The butterfly network becomes a hypercube if we collapse each row into
one “supernode.”

Unlike the hypercube, the butterfly network has constant degree and O(N)
edges. Hence, if we can get similar routing times as in hypercube, this is in
some sense more efficient.

106

Again we take bit-fixing as the starting point. We use it only to “fix” the
row part of the address; getting then to the right column is obvious.

1. Let the start and destination nodes be (x, r) and (y, r), where
x = (a1, . . . , an) and y = (b1, . . . , bn).

2. Repeat for i = 0, . . . , n:

(a) j := ((r + i) modn) + 1

(b) If aj = bj, move to level jmodn along the direct edge, otherwise
along the flip edge.

107

The randomized version has three phases. A packet from start node (x, r)
to destination (y, s) is routed as follows:

Phase I: pick a random w ∈ {0, . . . ,2n − 1 } and route to (w, r) by
bit-fixing

Phase II: route to (w, s) via direct edges

Phase III: route to (y, s) by bit-fixing.

We will show that with high probability this solves a permutation routing
problem in O(n) steps.

108

Unlike in hypercube, we need to take care with the queue priorities. The
rules are as follows:

1. If a packet is in Phase i and has during this phase traversed t edges, it
has priority (i− 1)n+ t.

2. If more than one packet wants to use an edge, the lowest priority wins.
In case of ties, the packet that arrived first is sent first.

Since the paths in each phase have at most n edges, this means in particular
that later phases do not delay the earlier ones. Therefore, we may assume
that the phases are executed separately and then add the time requirements.

109

Consider Phase II first.

Let Xw be the number of packets whose intermediate point is picked from
row w. Then Xw ∼ Bin(n2n,2−n), and Theorem 4.5 [M&U Thm 4.4.1] yields

Pr(Xw ≥ 4n) ≤
(

e3

44

)n
≤ 3−2n.

There are 2n such rows w. The probability that at least one of them gets
over 4n packets is at most 2n3−2n = O(N−1).

110

Since Phase II uses only direct edges, all nodes can send packets at least as
fast as they arrive. Therefore the queue length does not increase in any
node.

In Phase II all packets follow the same paths. This implies that if packet k
arrives at node v with priority i, then packets that arrive later cannot pass it
in the queue.

Therefore, the total queueing time of a packet is the sum of the queue
lengths that nodes have when the packet arrives. Since the queue lengths
don’t increase, this is at most the same as the total length when Phase II
starts, namely Xw.

Therefore, with probability 1−O(N−1) no packet spends more time than 4n
in queue, so the total time is at most 5n.

111

For an edge e = (v1, v2), let P (e) be the three-edge set including e and the
two incoming edges of v1.

To analyse Phase I, we say that a sequence of edges e1, . . . , en is a possible
delay sequence if for all i we have ei ∈ P (ei+1). In other words, it’s a
directed path that may also include “pauses” ei+1 = ei.

A possible delay sequence is a delay sequence if among the edges in P (ei+1),
the edge ei is among the last ones along which a packet is transmitted with
priority at most i.

112

Consider now an execution of Phase I and there a delay sequence (e1, . . . , en).

Let ti be the number of packets that traverse the edge ei with priority i. Let
Ti be the time at which ei delivers the last packet with priority at most i. In
particular, Phase I for edge en ends at time Tn.

The definitions imply that at time Ti, the edge ei+1 has already

• transmitted all packets with priority i and

• taken into its queue all packets it will transmit with priority i+ 1.

Thus,

Ti+1 ≤ Ti + ti+1,

and because T1 = t1, we get by induction

Tn ≤
n∑
i=1

ti.

113

Suppose now the time taken by Phase I is T , and in particular e is one of
the edges that transmitted its last packet at time T .

We can recursively define a delay sequence that ends in e:

• en = e and

• ei−1 is the edge in P (ei) that last transmitted a packet with priority at
most i− 1.

Based on the previous slide,
n∑
i=1

ti ≥ T.

Thus, if we have an upper bound for
∑n

i=1 ti for all delay sequences, this is
also an upper bound for time taken by Phase I.

114

Given a possible delay sequence e1, . . . , en, let ti be the number of packets
that traverse edge ei with priority i, and T =

∑n
i=1 ti.

Based on the above, if T ≤ 40n for all (e1, . . . , en), then Phase I takes at
most 40n steps. We show that this holds with high probability.

Consider first some fixed (e1, . . . , en) that is a possible delay sequence. The
packets traversing ei = (v, v′) with priority i have started from nodes at
exactly distance i from v. There are 2i such nodes. When a packet in
Phase I starts towards the intermediate point from one of these nodes, it
will go through ei with probability 2−i−1. Therefore,

E[ti] = 2i2−i−1 =
1

2
ja E[T] =

n

2
.

115

For j = 1, . . . , N , let Hj = 1 if the packet that started from node j
contributes to the sum T at least once. Otherwise Hj = 0.

The random variables Hj are mutually independent,

H =
N∑
j=1

Hj ≤ T and E[H] ≤ E[T] =
n

2
.

The Chernoff bound of Theorem 4.7 [M&U Thm 4.4.3] yields

Pr(H ≥ 5n) ≤ 2−5n.

Consider now how much larger T can be compared to H. In other words,
how many times can a single packet be counted.

116

Let u be a packet that gets counted in term ti. We consider two cases:

• ei+1 = ei: Because the movement of packet j with priority i+ 1 takes
place in the next column, j is not counted in ti+i. Similarly we see that
it won’t be counted in any of the terms tj, j > i.

• ei+1 6= ei: The probability that u also traverses ei+1 is at most 1/2. If u
does not traverse ei+1, it won’t enter this path later, either.

Therefore, when u has been counted for the first time, getting counted for
additional times requires success in a trial with probability 1/2.

117

The rest goes as with the hypercube.

For 5n packets entering the path to produce a total of at least 40n edge
traversals, we need at most 5n failures in 40n attempts, when failure
probability is at least 1/2. Chernoff bounds give

Pr(T ≥ 40n | H ≤ 5n) ≤ exp(−20n(3/4)2/2) ≤ 2−5n.

We conclude that

Pr(T ≥ 40n) ≤ Pr(T ≥ 40n | H ≤ 5n) + Pr(H ≥ 5n) ≤ 2−5n+1.

This holds for a fixed possible delay sequence. There are at most
2N3n−1 ≤ n2n3n possible delay sequences. Hence, the probability that some
delay sequence has T ≥ 40n is at most

n2n3n2−5n+1 = O(N−1).

118

Therefore, with probability 1−O(N−1) all delay sequences in Phase I have
T ≤ 40n, impying that the whole phase takes no longer than 40n steps.

Phase III is completely symmetrical with Phase I, and as we noted, our
priority rule guarantees that the later phases won’t interfer with the ealier
ones.

Since also Phase II goes in time O(n) with probability 1−O(N−1), so does
the whole algorithm. 2

119

5. Balls and Bins

We consider placing m balls independently of each other into n bins where
each bin has the same probability. In particular, we are interested in the
limit where n→∞ such that the ratio m/n is constant.

Questions:

• How many balls end up in a given bin?

• What is the largest number of balls in a bin?

Applications: data structures (hashing), load balancing.

We simplify calculations by using Poisson approximation.

120

Birthday Paradox [M&U Section 5.1]

In a group of 30 people, what’s the probability that at least two persons
have the same birthday? Thus, we consider m = 30 and n = 365.
(Obviously in reality this problem does not satisfy the distribution
assumptions of the balls and bins model.)

If k − 1 birthdays have already been chosen, the probability that the kth one
does match any of these is 1− (k − 1)/365. Therefore, the probability of
getting 30 different birthdays is(

1−
1

365

)(
1−

2

365

)(
1−

3

365

)
. . .

(
1−

29

365

)
≈ 0.2937.

Hence, there’s about a 70% probability of at least one match.

121

More generally, with m people and n possible birthdays, the probability of
different birthdays is(

1−
1

n

)(
1−

2

n

)(
1−

3

n

)
. . .

(
1−

m− 1

n

)
=

m−1∏
j=1

(
1−

j

n

)
.

Since limn→∞(1− x/n)n = e−x, we can approximate

1−
j

n
≈ e−j/n

which makes the above approximately

m−1∏
j=1

e−j/n = exp

−m−1∑
j=1

j

n

 = exp

(
−
m(m− 1)

2n

)
≈ exp

(
−
m2

2n

)
.

For example, if we ask how many people are needed to have at least a
probability 1/2 that the birthdays are not all different, we get the equation

m2

2n
= ln 2

giving m =
√

2n ln 2. For example for n = 365 this approximation gives
m = 22.49, which is reasonably close.

122

We can make this more precise by replacing the approximations by suitable
upper and lower bounds. Next we see one fairly crude estimate.

Let Ej be the event that person j does not share birthdays with any of the
persons 1, . . . , j − 1. The probability that k persons do not all have different
birthdays is

Pr(E1 ∪ . . . ∪ Ek) ≤
k∑

j=1

Pr(Ej) ≤
k∑

j=1

j − 1

n
=
k(k − 1)

2n
.

For k ≤
√
n this is at most 1/2, so b

√
nc people have different birthdays with

probability at least 1/2.

123

On the other hand, assume we have at least 2d
√
ne people. If all their

birthdays are different, then both of the following events have occurred:

1. persons 1, . . . , d
√
ne have different birthdays and

2. persons d
√
ne+ 1, . . . ,2d

√
ne have different birthdays from any of

persons 1, . . . , d
√
ne.

On the condition that the first event occurred, the probability that the
second one occurs is(

1−
d
√
ne
n

)d√ne
≤
(

1−
1
√
n

)√n
<

1

e
.

Hence, the probability for all the birthdays being different is at most
1/e ≈ 0.368.

124

Maximum load [M&U Section 5.2.1]

Consider now the maximum load, that is, the largest number of balls in any
bin.

Based on the previous, having m = Ω(
√
n) balls is sufficient for the

maximum load to be probably at least 2.

We derive an upper bound for the special case m = n: with high probability
no bin gets more than 3 lnn/ ln lnn balls.

The bound O(lnn/ ln lnn) is actually tight, but the constant 3 is not the
best possible.

125

The probability for bin 1 receiving at least M balls is at most(n
M

)(1

n

)M
.

We use the bounds (n
M

)(1

n

)M
≤

1

M !
≤
(e

M

)M
.

The first part follows directly from the definition of the binomial coefficient,
the second part from the fact that

MM

M !
≤
∞∑
i=0

M i

i!
= eM .

126

Assume M ≥ 3 lnn/ ln lnn. The probability that at least one bin receives
more than M balls is upper bounded by

n
(e

M

)M
≤ n

(
e ln lnn

3 lnn

)3 lnn/ ln lnn

≤ n

(
ln lnn

lnn

)3 lnn/ ln lnn

= exp(lnn) exp(ln ln lnn− ln lnn)3 lnn/ ln lnn

= exp(−2 lnn+ 3(lnn)(ln ln lnn)/ ln lnn)

≤
1

n

for large n. (2)

127

Bucket Sort [M&U Section 5.2.2]

We have to sort n = 2m elements that are drawn uniformly from{
0, . . . ,2k − 1

}
, where k ≥ m.

Algorithm:

1. Create n buckets (for example, linked lists). Element a ∈
{

0, . . . ,2k − 1
}

goes into bucket j, where j is obtained by considering the binary
representation of a and taking only the first m bits.

2. Sort each bucket (for example, by insertion sort).

Let Xj be the number of elements that go to bucket j. This random
variable depends on the random input. The algorithm itself is deterministic.

128

The time complexity of the algorithm is at most

an+ b

n∑
j=1

X2
j

for some constants a, b. The random variables Xj have identical
distributions, so the expectation of this is

an+ bnE[X2
1].

Since the distribution of X1 is Bin(n,1/n), we know that

E[X2
1] = Var[X1] + E[X1]2 = n ·

1

n

(
1−

1

n

)
+ 1 = 2−

1

n
< 2.

Hence, the average running time is at most

an+ 2bn = O(n).

129

Poisson distribution [M&U Section 5.3]

We will here use the Poisson distribution mainly as a tool for making
calculations easier. Nevertheless, let us briefly consider its basic application.

Consider a service that has a very large number of customers that are
independent and identical (from the service’s point of view). There is some
fixed probability that during a fixed time period we are interested in, a given
customer will need service. This probability is the same for all customers.

Let X be the number of service requests during the time period. If the
expected number of requests per time unit is µ, then X is a discrete Poisson
random variable with parameter µ. We denote this by X ∼ Poisson(µ), and

Pr(X = j) =
e−µµj

j!
.

The expectation is E[X] = µ (as desired).

130

From balls and bins point of view, balls are customers and there is a number
of services, each represented by a bin. For example, ball a going into bin b
might mean that process a needs to access memory location b during the
time interval under consideration. Let us see how this is connected to the
Poisson distribution.

Consider first the bins that remain empty. The probability for a given bin to
remain empty is (

1−
1

n

)m
≈ e−m/n.

If X is the number of empty bins, then

E[X] = n

(
1−

1

n

)m
≈ ne−m/n.

More generally, the probability that the bin receives exactly r balls is(m
r

)(1

n

)r(
1−

1

n

)m−r
=

1

r!
·
m(m− 1) . . . (m− r + 1)

nr

(
1−

1

n

)m−r
.

131

For r � m we can estimate

m(m− 1) . . . (m− r + 1) ≈ mr.

For large m and n, we have (1− 1/n)m ≈ e−m/n. Therefore,(m
r

)(1

n

)r(
1−

1

n

)m−r
≈

1

r!
·
mr

nr
· e−m/n =

e−µµr

r!

where µ = m/n. Hence, when m and n are large and r small in comparison,
the probability for getting r balls into a given bin is roughly as in
Poisson(m/n) distribution.

We can also see that the expected number m/n of balls in a bin is the same
as the expectation of the approximating Poisson distribution.

132

We now make this more precise and general.

Theorem 5.1: Let Xn ∼ Bin(n, pn) where limn→∞ npn = λ is a constant. For
any fixed k we have

lim
n→∞

Pr(Xn = k) =
e−λλk

k!
.

Thus, rare events can be approximately modelled by a Poisson distribution.

Proof: To simplify notation, write p = pn and keep in mind that p is a
function of n. We want to estimate the quantity

Pr(Xn = k) =
(n
k

)
pk(1− p)n−k.

We use bounds that hold for |x| ≤ 1 and can be obtained by simple calculus:

e−x(1− x2) ≤ 1− x ≤ e−x.

133

We start with the upper bound:

Pr(Xn = k) ≤
nk

k!
· pk ·

(1− p)n

(1− p)k

≤
(np)k

k!
·

e−pn

1− pk

where we used 1− p ≤ e−p and (1− p)k ≥ 1− pk.

Similarly, using 1− p ≥ e−p(1− p2) gives a lower bound:

Pr(Xn = k) ≥
(n− k + 1)k

k!
· pk(1− p)n

≥
((n− k + 1)p)k

k!
(e−p(1− p2))n

≥
e−pn((n− k + 1)p)k

k!
(1− np2).

134

Therefore,

e−pn((n− k + 1)p)k

k!
(1− np2) ≤ Pr(Xn = k) ≤

e−pn(np)k

k!

1

1− pk
.

Consider now the limit n→∞, keeping in mind that np→ λ and therefore
p→ 0. The limit for the lower bound is

lim
n→∞

e−pn((n− k + 1)p)k

k!
(1− np2) =

e−λλk

k!

and for the upper bound

lim
n→∞

e−pn(np)k

k!

1

1− pk
=

e−λλk

k!
.

Since Pr(Xn = k) is between these two bounds, the claim follows. 2

135

Consider now the moment generating function for Poisson distribution.

Lemma 5.2 [M&U Lemma 5.3]: When X ∼ Poisson(µ), we have

MX(t) = exp(µ(et − 1)).

Proof:

E[etX] =
∞∑
k=0

e−µµk

k!
etk = e−µ

∞∑
k=0

(µet)k

k!
= e−µ exp(µet).

2

Corollary 5.3: When X ∼ Poisson(µ), we have E[X] = µ and Var[X] = µ. 2

Corollary 5.4: When X ∼ Poisson(µ) and Y ∼ Poisson(λ) are independent,
we have X + Y ∼ Poisson(µ+ λ).

Proof: MX+Y (t) = MX(t)MY (t) = exp((µ+ λ)(et − 1)). 2

136

We can use this to obtain Chernoff-type bounds.

Theorem 5.5 [M&U Thm 5.4]: Let X ∼ Poisson(µ). Then

1. for x > µ we have
Pr(X ≥ x) ≤

e−µ(eµ)x

xx

2. for x < µ we have
Pr(X ≤ x) ≤

e−µ(eµ)x

xx
.

We can write this in a more familiar form

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
Pr(X ≤ (1− δ)µ) ≤

(
e−δ

(1− δ)1−δ

)µ
.

137

Proof: As we did earlier, notice that for positive t we have

Pr(X ≥ x) = Pr(etX ≥ etx) ≤
E[etX]

etx
.

Therefore,

Pr(X ≥ x) ≤ exp(µ(et − 1)− tx).

The desired bound follows by choosing t = ln(x/µ).

The case Pr(X ≤ x) is similar. 2

138

Poisson approximation [M&U Section 5.4]

Fix the number of bins n. Let X(m)
i be the number of balls received by bin i

when there are m balls. On the other hand, let Y (m)
i , i = 1, . . . , n be

independent random variables with Poisson(m/n) distribution.

We wish to simplify our analyses by approximating the X variables by the Y
variables. We have already observed that for large n and m, each individual
X(m)
i has approximately the same distribution as Y (m)

i . This is not enough,

because X(m)
i are not mutually independent.

We are going to show that events that are rare in the Poisson model (that

is, when considering (Y (m)
i)i) are rare also in the exact model (that is, when

considerings (X(m)
i)i). This is usually the direction we are interested in.

Example: We saw earlier that the event maxiX
(m)
i > 3 lnn/ ln lnn is “rare”

for m = n. We will soon see how to analyse this in the Poisson model.

139

Fundamentally the dependencies among (X(m)
i)i are caused by the fact that

always
n∑
i=1

X(m)
i = m.

This of course is not true for (Y (m)
i)i. In some sense, this is the only

difference between the exact and Poisson models.

Theorem 5.6 [M&U Thm 5.6]: The distribution of the random variables

(Y (m)
1 , . . . , Y (m)

n) subject to the condition
∑n

i=1 Y
(m)
i = k is the same as the

distribution of the random variables (X(k)
1 , . . . , X(k)

n).

Proof: Pick arbitrary k ∈ N and (k1, . . . , kn) ∈ Nn. We want to show

Pr((X(k)
1 , . . . , X(k)

n) = (k1, . . . , kn))

= Pr

(
(Y (m)

1 , . . . , Y (m)
n) = (k1, . . . , kn) |

n∑
i=1

Y (m)
i = k

)
.

It is sufficient to consider the case k =
∑n

i=1 ki. Otherwise both sides are
clearly zero.

140

The number of ways to partition k balls into n classes so that class i
contains ki balls is (k

k1 . . . kn

)
=

k!

k1! . . . kn!
.

After a partitioning has been fixed, the probability that for all i, all balls
assigned to class i actually go into bin i is (1/n)k.

Therefore,

Pr((X(k)
1 , . . . , X(k)

n) = (k1, . . . , kn)) =
k!

(k1)! . . . (kn)!nk
.

141

The random variables Y (m)
i are independent and Poisson(m/n) distributed.

Therefore, their sum has distribution Poisson(m) (Corollary 5.4). Hence,

Pr

(
(Y (m)

1 , . . . , Y (m)
n) = (k1, . . . , kn) |

n∑
i=1

Y (m)
i = k

)

=

∏n
i=1 Pr(Y (m)

i = ki)

Pr(
∑n

i=1 Y
(m)
i = k)

=

∏n
i=1 e−m/n(m/n)ki/ki!

e−mmk/k!

=
k!

(k1)! . . . (kn)!nk
.

2

142

Since we have a reasonably large probability of getting
∑

i Y
(m)
i = m, we

obtain

Theorem 5.7: Let f : Nn → [0,∞) be arbitrary. Then

E[f(X(m)
1 , . . . , X(m)

n)] ≤ e
√
mE[f(Y (m)

1 , . . . , Y (m)
n)].

Before the proof we note an important implication:

Corollary 5.8: If the probability of an even in the Poisson model is at most
p, then its probability in the exact model is at most e

√
mp.

Proof: Choose the indicator function of the event as f . 2

In particular, if we want to upper bound some probability in the exact model
as O(1/mr), it’s sufficient to show a upper bound O(1/mr+1/2) in the
Poisson approximation.

143

Proof of Theorem 5.7: We start from the estimate

E[f(Y (m)
1 , . . . , Y (m)

n)] =
∞∑
k=0

E[f(Y (m)
1 , . . . , Y (m)

n) |
n∑
i=1

Y (m)
i = k] Pr(

n∑
i=1

Y (m)
i = k)

≥ E[f(Y (m)
1 , . . . , Y (m)

n) |
n∑
i=1

Y (m)
i = m] Pr(

n∑
i=1

Y (m)
i = m).

By using Theorem 5.6 and the fact that
∑n

i=1 Y
(m)
i ∼ Poisson(m) we get

E[f(Y (m)
1 , . . . , Y (m)

n)] ≥ E[f(X(m)
1 , . . . , X(m)

n)]
e−mmm

m!
.

The claim follows using the estimate

m! ≤ e
√
m
(m

e

)m
which will be proved next. 2

144

Lemma 5.9:

n! ≤ e
√
n
(n

e

)n
.

Proof: First we write

lnn! =
n∑
i=1

ln i.

Since ln is concave, for i ≥ 2 we have∫ i

i−1
lnx dx ≥

1

2
(ln(i− 1) + ln i) .

Therefore, ∫ n

1
lnx dx ≥

n∑
i=2

1

2
(ln(i− 1) + ln i) =

n∑
i=1

ln i−
1

2
lnn

implying (because
∫

lnx dx = x lnx− x)

n lnn− n+ 1 ≥ lnn!−
1

2
lnn.

The claim follows by taking exponentials. 2

145

In a common special case we get a tighter bound.

Theorem 5.10: Let f be non-negative and such that E[f(X(m)
1 , . . . , X(m)

n)]
is monotone in m. Then

E[f(X(m)
1 , . . . , X(m)

n)] ≤ 2E[f(Y (m)
1 , . . . , Y (m)

n)].

Proof: Omitted. 2

Corollary 5.11: Consider an event, the probability of which is monotone in
m. If the probability of the event is at most p in the Poisson model, then its
probability is at most 2p in the exact model. 2

Example: The probability of the event

max
i
X(m)
i ≥ r

is clearly increasing and the probability of the event

max
i
X(m)
i ≤ r

decreasing as function of m. Thus, we can apply the above bound. 2

146

As an example, consider the maximum load problem.

Let m = n and M = lnn/ ln lnn. We saw earlier that the probability of at
least one bin receiving more than 3M balls is O(1/n). We show that on the
other hand, with probability 1−O(1/n) some bin receives at least M balls.

Thus, the parameter in the Poisson model is m/n = 1, and

Pr(Y (m)
i ≥M) ≥ Pr(Y (m)

i = M) =
1

eM !
.

Since Y (m)
i are mutually independent,

Pr(Y (m)
i < M for all i) ≤

(
1−

1

eM !

)n
≤ exp

(
−

n

eM !

)
.

If now exp(−n/(eM !)) = O(n−2), the claim follows.

147

Thus, it suffices to show exp(−n/(eM !)) ≤ n−2. Write this as M ! ≤ n/2e lnn,
and further as

lnM ! ≤ lnn− ln lnn− ln(2e).

By Lemma 5.9,

M ! ≤ e
√
M

(
M

e

)M
≤M

(
M

e

)M
.

Therefore, for large n and using ln lnn = o(lnn/ ln lnn)) we get

lnM ! ≤ M lnM −M + lnM

=
lnn

ln lnn
(ln lnn− ln ln lnn)−

lnn

ln lnn
+ (ln lnn− ln ln lnn)

≤ lnn−
lnn

ln lnn
≤ lnn− ln lnn− ln(2e)

as desired. (2)

148

Example: more coupon collecting

Think about coupon collecting in the balls and bins framework. Cereal
boxes are balls and different coupons are bins. We ask how many balls are
needed to get at least one ball in every bin.

We saw earlier that

• the expected number of balls is n lnn+ Θ(n)

• probability that n lnn+ cn balls is not enough is at most e−c.

We can now get a much more accurate estimate.

Theorem 5.12: Let X be the number of balls required to have at least one
ball in every bin. For any constant c we have

lim
n→∞

Pr(X > n lnn+ cn) = 1− exp(−e−c).

By considering for example c = −4 and c = 4 we see that
Pr(|X − n lnn| ≤ 4n) ≈ 0.98 (for large n).

149

Proof: Consider first the Poisson model. Choose m = n lnn+ cn, so the
parameter for each Poisson random variable will be m/n = lnn+ c. The
probability of a given bin remaing empty is

e−m/n
(m/n)0

0!
= e− lnn−c =

e−c

n
.

Since the bins in the Poisson model are independent, the probability that all
are non-empty is (

1−
e−c

n

)n
→ exp(−e−c)

kun n→∞.

Thus, the claimed result holds in the Poisson model. Since we want a more
accurate bound than in previous examples, conversion to the exact model
takes a bit more work.

150

Let E be the event (still in the Poisson model) that no bin is empty, and X
the number of balls we used. (Thus, X ∼ Poisson(m).) We just observed
that

lim
n→∞

Pr(E) = exp(−e−c).

To get the desired bound in the exact model, to apply Theorem 5.6 we need

lim
n→∞

Pr(E | X = m) = exp(−e−c).

Therefore, it remains to show that

Pr(E) = Pr(E | X = m) + o(1)

where o(1)→ 0 when n→∞.

151

Let A be the event

|X −m| ≤
√

2m lnm.

Remember that m = E[X], so in some sense A consists of “usual” cases.

We will derive two estimates:

Pr(A) = o(1)
Pr(E | A) = Pr(E | X = m) + o(1)

These will imply the desired result:

Pr(E) = Pr(E | A) Pr(A) + Pr(E | A) Pr(A)
= Pr(E | A)(1− o(1)) + o(1)
= Pr(E | X = m) + o(1).

152

Because X ∼ Poisson(m), we can estimate the probability of A using a
Chernoff bound (Theorem 5.5)

Pr(X ≥ x) ≤ exp(x−m− x ln(x/m)).

We choose x = m+
√

2m lnm and estimate ln(1 + z) ≥ z − z2/2 (for z ≥ 0):

Pr(X ≥ m+
√

2m lnm)

≤ exp
(√

2m lnm− (m+
√

2m lnm) ln
(

1 +
√

(2 lnm)/m
))

≤ exp
(√

2m lnm−
(
m+

√
2m lnm

)(√
(2 lnm)/m− (lnm)/m

))
= exp

(
− lnm+

√
2m lnm(lnm)/m

)
= o(1).

Similarly we see that Pr(X ≤ m−
√

2m lnm) = o(1), so

Pr(A) = Pr(X ≥ m+
√

2m lnm) + Pr(X ≤ m−
√

2m lnm) = o(1).

153

We still need to show that

Pr(E | A) = Pr(E | X = m) + o(1)

where again A is the event

m−
√

2m lnm ≤ X ≤ m+
√

2m lnm.

Write

a = Pr(E | X = m−
√

2m lnm)

b = Pr(E | X = m+
√

2m lnm).

Clearly Pr(E | X = k) is increasing in k, so

a ≤ Pr(E | A) ≤ b and a ≤ Pr(E | X = m) ≤ b.
Therefore

|Pr(E | X = m)− Pr(E | A)| ≤ b− a.
We will show that b− a = o(1).

154

The difference

b− a = Pr(E | X = m+
√

2m lnm)− Pr(E | X = m−
√

2m lnm)

is the probability that the first m−
√

2m lnm balls leave at least one bin
empty, but the next 2

√
2m lnm fill all the gaps.

The probability of hitting a given empty bin at least once with 2
√

2m lnm
balls is at most 2

√
2m lnm/n = o(1). The probability of hitting all the empty

bins is certainly no larger than this. 2

155

Set membership problems and hashing [M&U Section 5.5]

We consider accessing a set S ⊆ U where the universe U is very large
compared to available memory space. We want to be able efficiently decide
whether an element x ∈ U given as input belongs to S. We do not here
consider updating S.

Let S = { s1, . . . , sm }. Known solution methods include

binary search: assumes U is ordered, time complexity Θ(logm)
hashing with overflow chains: for a “good” hash function, time

complexity O(1) on the average .

Finding good hash functions is not trivial. Even for a good hash function if
the storage area has size m, the longest overflow chain, and therefore the
worst-case time complexity, is O(logm/ log logm) with high probability (pp.
147–148).

Having constant time complexity (with high probability) would of course be
very desirable, but the memory requirement is also important. Here we
consider trading off between memory and time requirements.

156

We consider approximate randomized algorithms that can with a small
probability give false positives, meaning the algorithm answers yes even
though x 6∈ S.

Consider a hash function f : U → {0, . . . , n− 1 } where n is the size of the
hash table. The simplest solution is to forget about overlow chains and just
store in each bin of the hash table a single bit which tells whether the set
contains at least one elements hashing to that address. Then false positives
may be caused by collisions, when x 6∈ S but f(x) = f(y) for some y ∈ S.

We call f(x) the fingerprint of x. Thus, collisions may happen when two
elements have the same fingerprint.

157

For any given f we can always find a case where it performs poorly, so we
analyse choosing f randomly.

Assume for simplicity that the function f : U → {0, . . . , n− 1 } is chosen at
random so that for each x ∈ U independently of the other ones, f(x) is
chosen uniformly from {0, . . . , n− 1 }.

This assumption as such is not reasonable in practice. Just to represent a
random f would take |U | logn bits. We omit here the question

• what are realistic assumptions about a random hash function

• how can the assumptions be satisfied in an efficient manner.

(See for example universal hashing).

158

In the fingerprinting solution we thus store the fingerprints of all the
elements of S. If n = 2b, this takes mb bits.

If x 6∈ S, then our assumptions give f(x) = f(si) with probability 1/n for all i
independently of each other. Therefore, the probability of a false positive is

1−
(

1−
1

2b

)m
≥ 1− exp

(
−
m

2b

)
.

To make this less than a given value c, we require

b ≥ log2
m

ln(1/(1− c))
= Ω(logm)

bits per fingerprint. On the other hand, by choosing for example
b = 2 log2m we get an upper bound for false positives

1−
(

1−
1

m2

)m
≤

1

m
.

159

Bloom filter [M&U luku 5.5.3]

We now pick k mutually independent hash functions h1, . . . , hk that are as
above functions U → {0, . . . , n− 1 }. We use a single n bit array A[0 . . . n] as
storage area.

When s is inserted to S, we set to one all the bits A[hi(s)], i = 1, . . . , k.

Accordingly, the query “x ∈ S?” is answered “yes” if A[hi(x)] = 1 for all
i = 1, . . . , k.

Clearly there are no false negatives (if x ∈ S the answer is always “yes”).

To get a false positive we must have set all the i bits A[hi(x)] to one
because of the elements in S. We analyse the probability of this.

160

The case k = 1 is our original hash table solution. Increasing k has two
opposite effects:

• more checks for each query tends to decrease the probability of false a
positive

• more ones in the array tend to increase the probability of false a
positive.

When storing m elements, the probability of a given bit to remain zero is(
1−

1

n

)km
≈ exp

(
−
km

n

)
.

Consider first for simplicity the case of exactly pn zeros in the array, where
p = exp(−km/n). The probability of a false positive is then

(1− p)k = (1− exp(−km/n))k .

We consider this as a function of k.

161

Write

f(k) = (1− exp(−km/n))k

and

g(k) = ln f(k) = k ln (1− exp(−km/n)) .

Taking derivatives gives

g′(k) = ln (1− exp(−km/n)) + k ·
m

n
·

exp(−km/n)

1− exp(−km/n)

= ln(1− p)− (ln p)
p

1− p
.

From this we see easily that g(k) and hence f(k) get their smallest values
for p = 1/2, that is, k = (ln 2) · (n/m).

Possible interpretation: For p = 1/2 the content of the array has maximum
entropy, meaning the information content is maximised.

162

By plugging in k = (ln 2) · (n/m) we get

f(k) =

(
1

2

)k
= exp

(
−(ln 2)2 n

m

)
≈ 0,6185n/m.

Therefore, for a constant error probability f(k) = c it is enough to have a
constant number

n

m
=

ln(1/c)

(ln 2)2

of bits per element to be inserted.

163

Now go back to the assumption about the number of bits set to one. The
expected proportion of one-bits is

p′ =

(
1−

1

n

)km
,

and we have a usual balls and bins situation.

Thus, even though the bits are not independent, we can apply the Poisson
approximation (Corollary 5.8, [M&U Cor 5.9]) and there the Chernoff bound
(Corollary 4.10, [M&U Cor 4.6]). Denoting by X the number of one-bits, we
get

Pr(
∣∣X − np′∣∣ ≥ εn) ≤ 2e

√
n exp(−nε2/(3p′)).

With high probability, the assumption about the number of one-bits is
therefore approximately correct.

164

Symmetry breaking by hashing [M&U Section 5.5.4]

Suppose we have n customers who want to use some resource. Give the
customers identifiers s1, . . . , sn. We serve the customers in the order of the
values h(si) of a random hash function h.

Consider again hash values with b bits. The probability that given two
customers get the same hash value is (1/2)b. Since there are n(n− 1)/2
pairs of customers, the probability that at least one pair shares the same
value is at most

n(n− 1)

2b+1
.

For b ≥ 3 log2 n, the probability of collision is at most 1/n.

165

Random graphs [M&U Section 5.6]

We consider two different models for choosing a random undirected graph
G = (V,E) where |V | = n.

Gn,p For each pair of vertices (u, v) independently of each other we set
(u, v) ∈ E with probability p. Since there are n(n− 1)/2 pairs of vertices,
the probability of getting a given graph that has m edges is

pm(1− p)n(n−1)/2−m.

Gn,N All graphs that have N edges have the same probability, and this
probability is (n(n− 1)/2

N

)−1

.

The relationship between Gn,p and Gn,N where N = pn(n− 1)/2 is similar to
the the relationship between a Poisson approximation and the exact balls
and bins model.

166

When considering random graphs as inputs for computational problems, we
can often find threshold values. We’ll get back to this later.

Example If p� n−2/3, then with a very high probability Gn,p includes a
clique of 4 vertices. If p� n−2/3, then with very high probability Gn,p does
not include a clique of 4 vertices. 2

This entails that for inappropriate parameter choices, random graphs are
often uninteresting as inputs for graph algorithms. For example, if p is very
large, clique finding problems may become trivial because the graph is full of
large cliques.

On the other hand, if the parameters have been chosen near the threshold
values, random graphs may be interesting difficult test cases for algorithms.

167

Hamiltonian cycles in random graphs [M&U Section 5.6.2]

We consider an algorithm that gradually builds up a path starting from a
vertex. The basic operations for building a path P are

Extension: When P = (v1, . . . , vk) and (vk, u) ∈ E where u 6∈ { v1, . . . , vk }, let

P := (v1, . . . , vk, u).

Rotation: When P = (v1, . . . , vk) and (vk, u) ∈ E where u = vi ∈ { v1, . . . , vk },
let

P := (v1, . . . , vi−1, vi, vk, vk−1, . . . , vi+2, vi+1).

If a rotation found a Hamiltonian cycle (k = n and u = v1), the search is
over.

Otherwise if we are in a dead end, the algorithm gives a negative answer.

168

The first version works as follows:

Initialize P as an empty path and pick any vertex v1 as the head.
Repeat until a Hamiltonian cycle is found or the head runs out of neighbors:

Write P = (v1, . . . , vk), where vk is the head.
Let (vk, u) be the first egde in the adjacency list of vk.
Remove (vk, u) from the adjacency lists of vk and u.
If u 6∈ { v1, . . . , vk }, make an extension.

The new head is u.
If u = vi ∈ { v1, . . . , vk }, make a rotation

(and if a Hamiltonian cycle was found, return it).
The new head is vi+1.

If no Hamiltonian cycle was found, return “no”.

This however is very difficult to analyse because of dependencies that arise
between the adjacency lists of different vertices.

169

For the final version of the algorithm we change the data structure for
representing the graph.

• The adjacency list of v is split into parts used-edges(v) ja
unused-edges(v). Initially used-edges(v) is empty and unused-edges(v)
contains all the edges incident to v.

• Edge (v, u) may be in the adjacency list of v, even if (u, v) is not in the
adjacency list of u.

A rotation is allowed also for a used edge. We also include an operation
that reverses the orientation of the path.

The purpose of all this is that combined with a random input graph, at any
given time each vertex v ∈ V has the same probability of becoming the
head, regardless of previous events.

170

Additionally, we assume that the input graph is created as follows:

• For all v each edge (u, v) is in the adjacency list of v with probability q
independent of the other choices.

• The order of edges in adjacency lists is random.

Again, remember that edges (u, v) and (v, u) are treated independently.

We will later consider how this relates to the model Gn,p.

171

We get the final version of the algorithm.

Initialize P as empty path and pick an arbitrary vertex v1 as head.
Repeat until a Hamiltonian cycle is found

or all the neighbors of the head are used:
Write P = (v1, . . . , vk) where vk is the head.
Choose one of the following with probabilities

1/n, |used-edges(vk)| /n and 1− 1/n− |used-edges(vk)| /n, respectively:
(i) Reverse the path. The new head is v1.
(ii) Choose a random (vk, u) from used-edges(vk).

If u ∈ { v1, . . . , vk−2 }, make a rotation. Otherwise do nothing.
(iii) Pick the first edge (vk, u) from unused-edges(vk).

If u 6∈ { v1, . . . , vk }, extend. Otherwise, make a rotation.
Update used-edges and unused-edges.

If no Hamiltonian cycle was found, return “no”.

172

Let Vt be the vertex that is the head after t steps.

Lemma 5.13: If unused-edges(Vt) has at least one edge, then every v ∈ V
has the same probability 1/n of becoming the next head Vt+1.

Proof: Let P = (v1, . . . , vk) be the path after t steps.

The vertex v1 can become the head only by reversing the path, which has
probability 1/n.

If (vk, vi) is in the list used-edges(vk), then vi+1 becomes the head with
probability

|used-edges(vk)|
n

·
1

|used-edges(vk)|
=

1

n
.

173

If (vk, u) is not in the list used-edges(vk), then by the principle of deferred
decisions, the probability for it being the first edge in unused-edges(vk) is

1

n− |used-edges(vk)| − 1
.

This is because we assume there to be at least one edge left, and by the
construction any edge has the same probability of being in the adjacency list
and there in any given position. Hence, in this case the probability for
having Vt+1 = vk is(

1−
1

n
−
|used-edges(vk)|

n

)
·

1

n− |used-edges(vk)| − 1
=

1

n
.

The case where u 6∈ { v1, . . . , vk } is similar. Notice that in this case (vk, u)
cannot be a used edge. 2

174

We observe that this is a variant of the coupon collecting problem. In each
step there is a probability 1/n for including a new vertex into to path, and
the algorithm finished when all the vertices are there.

Theorem 5.14: Assume that initially each edge (u, v) appears in
unused-edges(u) independently with probability q ≥ 20 lnn/n. With
probability 1−O(1/n) the algorithm finds a Hamiltonian cycle in O(n logn)
iterations.

Notice From this clearly follows that with high probability graphs generates
as here do have a Hamiltonian cycle.

Proof: We divide failures into two classes.

E1: 3n lnn iterations were executed without running out of
unused edges at head, but a cycle was not found

E2: some head during the first 3n lnn iterations
run out of unused edges.

175

Consider the event E1. By Lemma 5.13, we may assume that at each
iteration, each vertex will become the new head with probability 1/n.

The probability that at least one vertex never becomes the head during the
first 2n lnn iterations is at most

n

(
1−

1

n

)2n lnn

≤ ne−2 lnn =
1

n
.

When all vertices have been at the head at least once, and therefore are
included in the path, each iteration has probability 1/n of closing the cycle.
Hence, the probability that n lnn iterations pass without this happening is(

1−
1

n

)n lnn

≤ e−n lnn =
1

n
.

Therefore Pr(E1) ≤ 2/n.

176

The event E2 is further divided into two subevents.

E2a: during the first 3n lnn iterations, at least 9 lnn edges were removed
from at least one unused-edges list

E2b: in some unused-edges list there originally were at most 10 lnn edges.

To analyse event E2a fix a vertex v. Let X be the number of times v
becomes the head during the first 3n lnn iterations. Now
X ∼ Bin(3n lnn,1/n), so (Theorem 4.5; [M&U Thm 4.4.1])

Pr(X ≥ 9 lnn) ≤
(

e2

27

)3 lnn

≤
1

n2
.

Since unused-edges(v) may lose at most one edge each time v is the head,
this is also an upper bound for having more than 9 lnn edges removed.

By using the union bound for n vertices v we get Pr(E2a) ≤ 1/n.

177

For the event E2b, let Y be the original number of edges in the unused-edges
list of some fixed vertex. Because

E[Y] = (n− 1)q ≥
20(n− 1) lnn

n
≥ 19 lnn

for large n, the Chernoffin bound of Theorem 4.9 [M&U Thm 4.5.2] yields

Pr(Y ≤ 10 lnn) ≤ exp(−19(lnn)(9/19)2/2) ≤
1

n2
.

Again the union bound gives Pr(E2b) ≤ 1/n.

Hence the probability of failure is at most

Pr(E1) + Pr(E2a) + Pr(E2b) ≤
4

n
.

2

178

Corollary 5.15: A random graph in model Gn,p where p ≥ (40 lnn)/n can be
represented in such a way that with probability 1−O(1/n) our algorithm
finds a Hamiltonian cycle in O(n lnn) iterations.

Proof: We need to show how the edges of Gn,p are divided into
unused-edges lists. Let q be such that p = 2q − q2.

For any edge (u, v) that was chosen for Gn,p we do the following:

• With probability q(1− q)/(2q − q2) insert (u, v) into unused-edges(u),
but not (v, u) into unused-edges(v).

• With probability q(1− q)/(2q − q2) insert (v, u) into unused-edges(v),
but not (u, v) into unused-edges(u).

• With probability q2/(2q − q2) insert both (v, u) into unused-edges(v) and
(u, v) into unused-edges(u).

179

The probability for a given (u, v) to be included in unused-edges(u) is

p

(
q(1− q)
2q − q2

+
q2

2q − q2

)
= q

as we wanted. Additionally, for any (u, v) the probability of having the egde
both in unused-edges(u) and unused-edges(v) is

p ·
q2

2q − q2
= q2

so the edges are independent. 2

180

6. Probabilistic method

We want to prove the existence of a combinatorial object (such as graph)
that satisfies some non-trivial conditions. We do this by proving that a
random object chosen with a suitable distribution has a strictly positive
probability of satisfying the condition.

This also gives a randomized algorithm for constructing such objects.
Sometimes they can be efficiently derandomized.

181

The counting argument [M&U Section 6.1]

We start with graphs coloring. Let Kn be the complete n-vertex graph (all
n(n− 1)/2 possible edges are there).

Theorem 6.1: If
(
n
k

)
2−k(k−1)/2+1 < 1, then the edges of Kn can be colored

with two colors so that there is no monochromatic k-clique (that is, any
subgraph isomorphic to Kk contains edges of two different colors).

The condition of the theorem is implied for example by n ≤ 2k/2 and k ≥ 3.
Then (n

k

)
2−k(k−1)/2+1 ≤

nk

k!
2−k(k−1)/2+1

≤
2k/2+1

k!
< 1.

182

Proof: Color the edges of Kn with two colors so that each edge gets either
color with probability 1/2 independently of the others.

We fix an arbitrary numbering on the k-cliques of Kn. (There are
(
n
k

)
of

them). Let Ai be the event that clique number i is monochromatic. For this
to happen, after arbitrarily coloring the first edge in the clique, the
remaining k(k − 1)/2− 1 edges must get the matching color. Therefore

Pr(Ai) = 2−k(k−1)/2+1.

Since the number of k-cliques is
(
n
k

)
, we get

Pr(∪iAi) ≤
(n
k

)
2−k(k−1)/2+1.

The condition in the statement of the theorem has been picked so that the
right-hand side is strictly less than 1. 2

183

Consider now algorithms for constructing a coloring with no monochromatic
k-cliques.

By comparing the comment made after the theorem to the proof, we see
that for n ≤ 2k/2 and k ≥ 3 a random coloring has the desired property with
probability at least 1− 2k/2+1/k!. For example, k = 20 and n = 1000 give
success probability at least

1−
220/2+1

20!
≥ 1− 8,5 · 10−16.

This directly gives a Monte Carlo algorithm for the problem.

To get a Las Vegas algoritmi, we’d also need to check that the solution
actually is correct. For constant k this can be done by exhaustive search in
time

(
n
k

)
= O(nk). In the general case it is not clear how to do this efficiently.

184

The expectation argument [M&U Section 6.2]

This method is based on the following simple observation.

Theorem 6.2: If E[X] = µ, then Pr(X ≥ µ) > 0 and Pr(X ≤ µ) > 0.

Proof: If Pr(X ≥ µ) = 0, then

E[X] =
∑
x

xPr(X = x) =
∑
x<µ

xPr(X = x)<
∑
x<µ

µPr(X = x) = µ.

The case X ≤ µ is similar. 2

In particular, if X is a random variable Ω→ R and µ = E[X], then for some
ω+ ∈ Ω and ω− ∈ Ω we have X(ω−) ≤ µ and X(ω+) ≥ µ.

185

As an example we consider finding large cuts in a graph.

A cut in an edge-weighted graph is a partition of its vertices into two
subsets A and B, and the value of the cut is the total weight of all edges
between A and B.

Finding the maximum cut (i.e. cut with maximum value) is NP-hard. Here
we give a simple lower bound for the value of the maximum cut when all the
edges have weight 1.

Theorem 6.3: If a graph G = (V,E) has m edges each with weight 1, the
value of the maximum cut is at least m/2.

186

Proof: Assign each vertex independently of the others into A or B. Let
C(A,B) be the value of the cut (A,B) (which is a random variable).

Write E = { e1, . . . , em } and define

Xi =

{
1 if ei is between A and B
0 otherwise.

When one end point of the edge has been assigned, the probability for the
other end to be assigned to the other part is

E[Xi] = Pr(Xi = 1) =
1

2
.

Therefore

E[C(A,B)] = E

[
m∑
i=1

Xi

]
=
m

2
,

so at least one cut (A,B) must have C(A,B) ≥ m/2. 2

187

Consider now the obvious Las Vegas -algorithm to find a cut with value at
least m/2.

Repeat until success:
1. Assign sets A and B randomly.
2. If there are at least m/2 edges between A and B

then print (A,B)
else failed.

The test on line 2 takes time O(m). Next we estimate the probability of
success

p = Pr
(
C(A,B) ≥

m

2

)
.

188

Always C(A,B) ≤ m, so

m

2
= E[C(A,B)]

=
∑

i≤m/2−1

iPr(C(A,B) = i) +
∑
i≥m/2

iPr(C(A,B) = i)

≤ (1− p)
(m

2
− 1

)
+ pm.

Therefore

p ≥
1

m/2 + 1
.

The expected number of iteration to get a valid solution is at most
m/2 + 1, so we have a polynomial time Las Vegas algorithm.

We will soon return to the question of a deterministic algorithm for the
problem.

189

As the second example we consider maximum satisfiability (MAXSAT).

The input is a set of clauses, which are disjunctions of literals. A literal is a
boolean variable or a negated boolean variable. We write clauses like for
example x1 ∨ x3 ∨ x8.

In the boolean satisfiability problem (SAT) the task is to decide whether
there is a value assignment for the variables that satisfies all the clauses.
This is known to be NP-complete.

In maximum satisfiability we try to find a value assignment that satisfies as
many clauses as possible, but not necessarily all of them. Clearly an exact
solution is NP-hard.

190

We start with a lower bound for the number of satisfied clauses.

Theorem 6.4: Let a MAXSAT instance consist of m clauses, with clause
number i having ki literals. Write k = mini ki. There is a variable assignment
that satisfies at least

m∑
i=1

(1− 2−ki) ≥ m(1− 2−k)

clauses.

Proof: Assign the variables at random. Clause i remains unsatisfied with
probability at most (1/2)ki. Therefore, the expected number of satisfied
clauses is at least

m∑
i=1

(1− 2−ki).

In particular, there is at least one assignment for which this value is reached.
2

191

Method of conditional expectations [M&U Section 6.3]

This is a way of derandomising algorithms. Consider the maximum cut
problem we saw recently.

Fix an ordering for the vertices and number them accordingly:
V = { v1, . . . , vn }. We make assign the vertices into A or B in this order.
The notation E[C(A,B) | x1, . . . , xk] stands for the expected value of the cut,
when the vertices v1, . . . , vk have been assigned, but vertices vk+1, . . . , vn
remain to be assigned randomly. Here xi is either “vi ∈ A” or “vi ∈ B”.

We saw earlier that E[C(A,B)] ≥ m/2. By symmetry, E[C(A,B) | x1] ≥ m/2
regardless of whether we assigned v1 to A or B.

We will now show that for any given assignments x1, . . . , xk we can choose
vk+1 ∈ A or vk+1 ∈ B to guarantee

E[C(A,B) | x1, . . . , xk, xk+1] ≥ E[C(A,B) | x1, . . . , xk].

By induction we get

E[C(A,B) | x1, . . . , xn] ≥ m/2.

Because here all the vertices are assigned, the desired result follows.

192

By the definition of E[C(A,B) | ·],

E[C(A,B) | x1, . . . , xk] =
1

2
E[C(A,B) | x1, . . . , xk, vk+1 ∈ A]

+
1

2
E[C(A,B) | x1, . . . , xk, vk+1 ∈ B].

Therefore,

max
X∈{A,B }

E[C(A,B) | x1, . . . , xk, vk+1 ∈ X] ≥ E[C(A,B) | x1, . . . , xk].

If we pick X = A or X = B depending on which makes
E[C(A,B) | x1, . . . , xk, vk+1 ∈ X] larger, we get the desired result.

193

The conditional expectation E[C(A,B) | x1, . . . , xk, vk+1 ∈ X] can be
determined by adding the contributions of individual edges:

• If both end points of an edge are in { v1, . . . , vk+1 }, they have been
assigned and we know whether the edge contributes 0 or 1.

• Otherwise at least one edge is in the set { vk+2, . . . , vn } and unassigned.
The edge will be in the cut with probability 1/2, which is also its
contribution to the expectation.

Based on this, we can calculate E[C(A,B) | x1, . . . , xk, vk+1 ∈ X] in linear time
both for X = A and X = B, and assign vk+1 based on that.

194

Looking into this more closely we see that the only edges that do not have
the same contribution in E[C(A,B) | x1, . . . , xk, vk+1 ∈ A] and
E[C(A,B) | x1, . . . , xk, vk+1 ∈ B] are those whose one end point is vk+1 and
the other one is in { v1, . . . , vk }.

We get a greedy algorithm:

1. Initialize A := ∅ and B := ∅.
1. Arbitrarily assign A := A ∪ { v1 } or B := B ∪ { v1 }.
2. Repeat for k = 1, . . . , n− 1:

(a) Let NA = {u ∈ A | (vk, u) ∈ E } and NB = {u ∈ B | (vk, u) ∈ E }.
(b) If |NA| ≤ |NB| then A := A ∪ { vk+1 }

else B := B ∪ { vk+1 }.

Based on the above, this gives a cut with value at least m/2.

195

Sample and modify [M&U Section 6.4]

In this technique we first choose a structure at random and then modify it
to get the desired properties.

Consider as a first example independent sets. In a graph G = (V,E), we say
that a set of vertices U ⊆ V is independent if there are no edges between its
vertices, that is, (U ×U)∩E = ∅. Finding the maximum independent set is a
known NP-hard problem.

Theorem 6.5: If a graph has n vertices and m edges, it has an independent
set with at least n2/4m vertices.

196

Proof: Let d = 2m/n be the average degree of vertices. We make the
following two randomized steps:

1. For each vertex independently, remove the vertex and its incident edges
with probability 1− 1/d.

2. For each remaining edge independently, remove the edge and one of its
end points.

Thus, we first take a random sample of the graph and then modify it.

If there is an edge between vertices u and v, then at least one of the
vertices is removed at latest in Step 2. Therefore, after the two steps we
are left with a set of vertices that constitutes an independent set.

197

Let X be the number of vertices remaining after Step 1. Therefore,
E[X] = n/d.

Let Y be the number of edges left after Step 1. The edge is left, if both its
end points are. Therefore,

E[Y] = m

(
1

d

)2

=
nd

2

1

d2
=

n

2d
.

After Step 2 we have at least X − Y vertices left, and

E[X − Y] =
n

d
−

n

2d
=

n

2d
=

n2

4m
.

2

198

As a second example, consider the girth of a graph, that is the length of the
shortest cycle. We show that even a fairly dense graph can have a fairly
large girth.

Theorem 6.6: For k ≥ 3 and n sufficiently large, there exists a graph with
n vertices, at least 1

4
n1+1/k edges, and girth at least k.

Proof: First choose a random graph in model Gn,p with p = n1/k−1. After
that remove an arbitrary edge from every cycle of length at most k− 1. The
girth of the remaining graph is thus at least k.

199

For the number X of edges originally chosen into the random graph we have

E[X] = p
(n

2

)
=

1

2

(
1−

1

n

)
n1/k+1.

Let Y be the number of cycles of length at most k − 1. A given cycle of
length i has probability pi of being present, and there are

(
n
i

)
(i− 1)!/2 such

cycles. Therefore,

E[Y] =
k−1∑
i=3

(n
i

)(i− 1)!

2
pi ≤

k−1∑
i=3

nipi =
k−1∑
i=3

ni/k < kn(k−1)/k.

We are left with at least X − Y edges, and for large n

E[X − Y] ≥
1

2

(
1−

1

n

)
n1/k+1 − kn(k−1)/k ≥

1

4
n1/k+1.

2

200

The second moment method [M&U Section 6.5]

From Chebyshev’s Inequality we obtain

Theorem 6.7: If all possible values of X are non-negative integers, then

Pr(X = 0) ≤
Var[X]

(E[X])2
.

Proof:

Pr(X = 0) ≤ Pr(|X − E[X]| ≥ E[X]) ≤
Var[X]

(E[X])2
.

2

We use this to analyse threshold values. In a random graph Gn,p, the
probabilities of certain events transition very quicly from 0 to 1 when p
crosses some threshold value (which is a function of n).

201

Theorem 6.8: Let G = Gn,p, where p = f(n). Let A be the event that G
contains a 4-clique.

• If f(n) = o(n−2/3) (that is, limn→∞ pn2/3 = 0), then Pr(A) = o(1).

• If f(n) = ω(n−2/3) (that is, limn→∞ pn2/3 =∞), then Pr(A) = 1− o(1).

Proof: Let C1, . . . , CM be all the four-vertex sets in G, where M =
(
n
4

)
. For

i = 1, . . . ,M , define

Xi =

{
1 if Ci is a clique
0 otherwise,

and X =
∑M

i=1Xi. Since Pr(Xi = 1) = p6, we have

E[X] =
(n

4

)
p6 = Θ(n4p6) = Θ((pn2/3)6).

202

In the case f = o(n−2/3) we thus have E[X] = o(1). As X only gets
non-negative integer values, E[X] ≥ Pr(X ≥ 1). Therefore,

Pr(X ≥ 1) ≤ E[X] = o(1).

In the case f = ω(n−2/3) we similarly get limn→∞E[X] =∞. To apply
Theorem 6.7 we still need to show that

Var[X]

(E[X])2
= o(1).

203

We start with an auxiliary result: for any Y =
∑

i Yi we have

Var[Y] = E[Y 2]− (E[Y])2

= E

∑
i

Y 2
i + 2

∑
i<j

YiYj

−∑
i

(E[Yi])
2 − 2

∑
i<j

E[Yi]E[Yj]

=
∑
i

Var[Yi] + 2
∑
i<j

Cov(Yi, Yj).

In particular, if Yi is 0-1 valued, we get

Var[Yi] = E[Y 2
i]− (E[Yi])

2 = E[Yi]− (E[Yi])
2 ≤ E[Yi].

Hence,

Var[Y] ≤ E[Y] + 2
∑
i<j

Cov(Yi, Yj).

204

To apply this to X, we need the covariances Cov(Xi, Xj).

If Ci ∩ Cj = ∅, then Xi and Xj are independent and Cov(Xi, Xj) = 0. This is
true also if |Ci ∩ Cj| = 1.

If |Ci ∩ Cj| = 2, the corresponding cliques share one egde, so the total
number of distinct edges is 6 + 6− 1. Then

Cov(Xi, Xj) = E[XiXj]− E[Xi]E[Xj] ≤ E[XiXj] = p11.

There are (n
2

)(n− 2

2

)(n− 4

2

)
= Θ(n6)

such pairs (i, j). If |Ci ∩ Cj| = 3, the corresponding cliques share three edges
and

Cov(Xi, Xj) ≤ E[XiXj] = p9.

There are

n(n− 1)
(n− 2

3

)
= Θ(n5).

such pairs (i, j).

205

Altogether, for p = ω(n−2/3) we get

Var[X] ≤ E[X] +
∑
i 6=j

Cov(Xi, Xj)

= Θ(n4p6) + Θ(n6p11) + Θ(n5p9)
= o(n8p12),

since, for example,

n4p6

n8p12
= n−4p−6 = o(n−4(n−2/3)−6) = o(1).

Because

(E[X])2 =
((n

4

)
p6
)2

= Θ(n8p12),

we get

Var[X] = o((E[X])2)

as desired. 2

206

The Conditional Expectation Inequality [M&U Section 6.6]

If X is the sum of 0-1 valued random variables, as in the previous example,
the following bound may be easier to apply.

Theorem 6.9: Let X =
∑

iXi, where each Xi is 0-1 valued. Then

Pr(X > 0) ≥
∑
i

Pr(Xi = 1)

E[X | Xi = 1]
.

Notice There is no independence assumption on the Xi.

Proof: Define Y = 1/X if X > 0, and Y = 0 if X = 0. Thus,
Pr(X > 0) = E[XY].

207

We can estimate this as

E[XY] =
∑
i

E[XiY]

=
∑
i

(E[XiY | Xi = 1] Pr(Xi = 1) + E[XiY | Xi = 0] Pr(Xi = 0))

=
∑
i

E[1/X | Xi = 1] Pr(Xi = 1)

≥
∑
i

Pr(Xi = 1)

E[X | Xi = 1]
,

where the last step is from Jensen’s Inequality. 2

208

As an example we give an alternative proof for the case p = ω(n−2/3) in
Theorem 6.8

Let the random variables Xi, i = 1, . . . ,M , again be the indicator variables of
the cliques, so Pr(Xj = 1) = p6. We have

E[X | Xj = 1] =
M∑
i=1

E[Xi | Xj = 1] =
M∑
i=1

Pr(Xi = 1 | Xj = 1).

For a given j there are
(
n−4

4

)
indices i such that |Ci ∩ Cj| = 0, and 4

(
n−4

3

)
indices i such that |Ci ∩ Cj| = 1. For all these we have

Pr(Xi = 1 | Xj = 1) = Pr(Xi = 1) = p6.

Altogether there are
(4

2

)(
n−4

2

)
= 6

(
n−4

2

)
indices i such that |Ci ∩ Cj| = 2 and

Pr(Xi = 1 | Xj = 1) = p5.

In total,
(4

3

)(
n−4

1

)
= 4(n− 4) indices i have |Ci ∩ Cj| = 3 and

Pr(Xi = 1 | Xj = 1) = p3.

209

By including the case i = j we obtain

E[X | Xj = 1] =
M∑
i=1

E[Xi | Xj = 1]

=
(n− 4

4

)
p6 + 4

(n− 4

3

)
p6 + 6

(n− 4

2

)
p5 + 4(n− 4)p3 + 1.

When p = ω(n−2/3), the term
(
n−4

4

)
p6 dominates, so

E[X | Xj = 1] ∼
(n− 4

4

)
p6 ∼

1

4!
n4p6.

Since M =
(
n
4

)
∼ n4/4!, we get

M∑
j=1

Pr(Xj = 1)

E[X | Xj = 1]
∼

Mp6(
n−4

4

)
p6

= 1.

2

210

Lovász Local Lemma [M&U Section 6.7]

We consider a set of undesired events E1, . . . , En. We want to show that if
each of them individually has low probability, then also the intersection of
their complements, that is the set of desired events, is non-empty.

If the Ei are mutually independent, there is no problem. Then also the
complements are mutually independent, and

Pr

(
n⋂
i=1

Ei

)
=

n∏
i=1

Pr(Ei) > 0

assuming Pr(Ei) > 0 for all i.

In the following we weaken the independence assumption to allow “local”
dependencies. We say that an event A is mutually independent of
E1, . . . , En, if for all I ⊆ {1, . . . , n } we have

Pr

(
A |

⋂
i∈I

Ei

)
= Pr(A).

211

Consider any events E1, . . . , En. A dependency graph for these events is a
graph G = (V,E) such that V = {1, . . . , n } and for all i the event Ei is
mutually independent of {Ej | (i, j) 6∈ E }.

In particular, a dependency graph always contains the edge (i, i) for all i.

Example 6.10 [M&U Section 6.7.2]: Let φ = φ1 ∧ . . . ∧ φm be a CNF
formula where each φi is a clause. Assign mutually independent random
values to the variables in the formula. Let Ei be the event “clause φi is
satisfied.” Define a graph G = (V,E) where V = {1, . . . ,m } and (i, j) ∈ E if
φi and φj have at least one common variable. Now G is a dependency graph
for the Ei. 2

212

Theorem 6.11 (Lovász Local Lemma [M&U Thm 6.11]): Let
E1, . . . , En be a set of events satisfying the following conditions:

1. Pr(Ei) ≤ p, where p is a constant

2. the degree of the dependency graph of the Ei is at most d and

3. 4dp ≤ 1.

Then

Pr

(
n⋂
i=1

Ei

)
> 0.

Note 1: This is just a special case of the original lemma (so-called
symmetrical case).

Note 2: Compare with the union bound. If Pr(Ei) ≤ p for all i and np < 1,
then Pr

(
∩ni=1Ei

)
> 0.

Note 3: Since d ≥ 1, condition 3 implies p ≤ 1/4.

213

Example 6.12: Consider satisfiability of Boolean CNF formulas as earlier.
We assume that φ is a k-CNF formula, meaning that each clause φi has
exactly k literals. Then

Pr(φi = 0) =

(
1

2

)k
.

Assume futher that no variable appears in more than T clauses, where
T = 2k/4k. Then in the dependency graph, the number of edges related to
one clause is at most

d = kT = 2k−2.

By choosing p = 2−k, we get 4pd ≤ 1, and the assumptions of the local
lemma hold. Therefore,

Pr
(⋂

Ei

)
> 0,

so there exists a value assignment that satisfies all the clauses. 2

214

Proof of the local lemma: We do an induction over a parameter s to
show that if |S| ≤ s, then for all k 6∈ S we have

Pr

Ek | ⋂
j∈S

Ej

 ≤ 2p.

This yields the desired result:

Pr

(
n⋂
i=1

Ei

)
=

n∏
i=1

Pr

Ei | i−1⋂
j=1

Ej

=

n∏
i=1

1− Pr

Ei | i−1⋂
j=1

Ej

≥

n∏
i=1

(1− 2p)

> 0.

215

The base case s = 0 is directly in the assumptions. Assume now that the
claim holds for |S| < s. We first show

Pr

⋂
j∈S

Ej

 > 0,

which is required for the conditional probability to be defined.

If s = 1, we get directly Pr(Ej) = 1− Pr(Ej) ≥ 1− p > 0. If s > 1, we may
assume S = {1, . . . , s }, and as on previous page,

Pr

(
s⋂

i=1

Ei

)
=

s∏
i=1

Pr

Ei | i−1⋂
j=1

Ej

=

s∏
i=1

1− Pr

Ei | i−1⋂
j=1

Ej

ind.ass.
≥

s∏
i=1

(1− 2p)

> 0.

216

Let the dependency graph be (V,E). Fix Ek and S, and define
S1 = { j ∈ S | (k, j) ∈ E } and S2 = { j ∈ S | (k, j) 6∈ E }.

If S1 = ∅, then Ek is mutually independent of {Ej | j ∈ S }, and the claim
holds. Consider then the case |S2| < s. Write

FX =
⋂
j∈X

Ej,

for X ∈ {S, S1, S2 }. In particular, FS = FS1
∩ FS2

. We apply the basic property
of conditional expectation

Pr(A | B ∩ C) =
Pr(A ∩B | C)

Pr(B | C)
,

which yields

Pr(Ek | FS) =
Pr(Ek ∩ FS1

| FS2
)

Pr(FS1
| FS2

)
.

We estimate separately the numerator and the denominator.

217

We estimate the numerator simply by

Pr(Ek ∩ FS1
| FS2

) ≤ Pr(Ek | FS2
) = Pr(Ek) ≤ p,

since Ek is mutually independent of {Ej | j ∈ S2 }

For the denominator notice first that |S2| < s, so we can apply the inductive
assumption:

Pr(Ei | FS2
) = Pr

Ei | ⋂
j∈S2

Ej

 ≤ 2p.

218

Therefore,

Pr(FS1
| FS2

) = Pr

(⋂
i∈S1

Ei | FS2

)
≥ 1−

∑
i∈S1

Pr (Ei | FS2)

≥ 1−
∑
i∈S1

2p

≥ 1− 2dp

≥
1

2
.

We get

Pr(Ek | FS) =
Pr(Ek ∩ FS1

| FS2
)

Pr(FS1
| FS2

)
≤

p

1/2
= 2p

which was the claim of the induction. 2

219

Disjoint paths [M&U Section 6.7.1]

Assume that n pairs of users want to simultaneously communicate over a
network. We consider finding for each pair their own communication path
that does not share edges with others.

Let Fi be the set of edges that pair i could use if there were no other users.

Theorem 6.13: Let m and k be such that 8nk/m ≤ 1. If

1. |Fi| ≥ m for all i and

2. for all i 6= j and any path P ′ ∈ Fi there are at most k paths P ′′ ∈ Fj such
that P ′ and P ′′ have at least one common edge

then it’s possible to choose one path from each set Fi such that none of the
chosen paths have common edges.

220

Proof: It is sufficient to consider the case |Fi| = m for all i. Choose a
random path from each Fi. Let Ei,j be the event that the paths chosen from
Fi and Fj have at least one common edge.

Whichever path P ′ we choose from Fi, there are m ways of choosing P ′′

from Fj and at most k of them have a common edge with P ′.

Therefore, if we choose p = k/m we have

Pr(Ei,j) ≤ p.
Since Ei,j is mutually independent of {Es,t | { s, t } ∩ { i, j } = ∅ }, the
dependency graph has degree d < 2n. Hence,

4dp <
8nk

m
≤ 1.

The local lemma now gives

Pr

⋂
i 6=j

Ei,j

 > 0

from which the claim follows. 2

221

The general version of local lemma [M&U Section 6.9]

For completeness, we give without proof the general version of Lovász local
lemma.

Theorem 6.14: Let G = (V,E) be a dependency graph for events
{E1, . . . , En }. Assume we have values 0 ≤ xi ≤ 1, i = 1, . . . , n, such that

Pr(Ei) ≤ xi
∏

(i,j)∈E

(1− xj) for all i.

Then

Pr

(
n⋂
i=1

Ei

)
≥

n∏
i=1

(1− xi).

We omit the proof, which can be found in the textbook. Here we just show
how this general version can be used to derive the symmetric case we
considered earlier.

222

Assume that the conditions for the symmetric version of the local lemma
(Theorem 6.11 [M&U Thm 6.11]) are satisfied:

1. Pr(Ei) ≤ p

2. the degree of the dependency graph is at most d and

3. ep(d+ 1) ≤ 1.

(Condition 3 is a bit weaker than in Theorem 6.11, so we get a slightly
stronger result.)

We want to prove

Pr

(
n⋂
i=1

Ei

)
> 0.

223

We claim that choosing xi = 1/(d+ 1) for all i satisfies the conditions of the
general lemma. With this choice we get

xi
∏

(i,j)∈E

(1− xj) ≥
1

d+ 1

(
1−

1

d+ 1

)d
since there are at most d indices j such that (i, j) ∈ E. Denote the quantity
on the right-hand side by q.

To apply the general version of the lemma, we want to show q ≥ Pr(Ei).
Our assumptions ep(d+ 1) ≤ 1 and Pr(Ei) ≤ p imply Pr(Ei) ≤ e−1(d+ 1)−1.
Therefore it is sufficient to show q(d+ 1) ≥ e−1.

224

We apply the inequality

e−x
(

1−
x2

k

)
≤
(

1−
x

k

)k
.

Using this in the bound from previous page gives

q(d+ 1) ≥
(

1−
1

d+ 1

)d
=

d+ 1

d

(
1−

1

d+ 1

)d+1

≥
d+ 1

d
e−1

(
1−

1

d+ 1

)
= e−1

as desired.

The conditions of the general version of the lemma are satisfied, so we can
conlude that

Pr

(
n⋂
i=1

Ei

)
> 0.

225

7. Brief summary

Randomization is a general tool that can be applied to very different
problems. In this course we covered some basic mathematical tools for
analysing randomness. They are useful also for analysing deterministic
algorithms in random environments.

Usually we start by finding out what happens in expectation. Linearity of
expectation is a powerful tool.

To find out the probability of getting a result far away from the expectation,
we use results such as Chernoff bounds, often together with the union
bound.

Many of these tools, including Jensen’s inequality, are also very important in
machine learning.

226

About the exam

The exam cover the whole material of the course. Possible types of
question include

• similar to what you’ve seen as homework

• exactly what you’ve seen as homework

• explain some concept from the course material

• prove a known theorem from the course material.

You don’t need to memorize complicated formulas. If you need to use any,
they will be provided. However, remember that you may be asked to prove
for example Chernoff bounds.

227

What next?

In Randomized algorithms II, we start with Markov chains, which in some
sense are randomized state machines.

They can be used for modelling various processes. In particular, they often
have a stationary distribution that may be easy to analyse.

This leads also to the Markov Chain Monte Carlo method: to sample from a
complicated distribution (say, pick a random independent set in a graph),
construct a Markov Chain with the desired distribution as its stationary
distribution. Analysing such sampling methods can be quite difficult.

We also consider Poisson processes, which can be used to model waiting
times between certain types of random events.

228

