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Position of the course in the studies

• 4 credits

• advanced course (syventävät opinnot) in algorithms and machine
learning

• prerequisites: basic understanding of probabilities and design and
analysis of algorithms

• covers application of probabilities in designing and analysing algorithms

• continuation from Randomized algorithms I which however is not a
prerequisite

• applications of probability theory figure prominently also on a number
of courses about machine learning

• theory of probability is the topic for many courses in mathematics

• this course is mainly theoretical from a computer science point of view,
fairly application-oriented from maths point of view
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Passing the course, grading

Maximum score 60 points:
• course exam 48 points
• homework 12 points

Minimum passing score is about 30 points, requirement for best grade
about 50 points.

Homework sessions begin on the second week of lectures. Solutions to
homework problems are turned in in writing before the session. Details and
deadlines will be announced on the course web page.

Each problem is graded from 0 to 3:

1 a reasonable attempt
2 work in the right direction, largely successful
3 seems to be more or less correct.

The homework points will be scaled to course points as follows:
• 0 % of the maximum gives 0 points
• 80 % or more of the maximum gives 12 points
• linear interpolation in between.
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Material

The course is based on the textbook

M. Mitzenmacher, E. Upfal: Probability and Computing

to which the students are expected to have access. We will cover
Chapters 7, 8 and 10, and possibly parts of 11 and 12.

(Chapters 1–6 were covered in Randomized Algorithms I. The topic of
Chapter 10, which we skip, is covered in the course Information-Theoretic
Modeling.)

References to the textbook in these notes are in style [M&U Thm 3.2].

The lecture notes will appear on the course home page but are not intended
to cover the material in full.

Also the homework will be based on problems from the textbook.
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Contents of the course

Main topics covered in the preceding course Randomized algorithms I
included

1. theory of probability (quick refresher)

2. discrete random variables (quick refresher)

3. moments of a random variable

4. Chernoff bounds

5. balls and bins

6. “the probabilistic method”

Here in Randomized algorithms II we will continue with

1. Markov chains

2. continuous random variables, Poisson processes

3. Monte Carlo methods

4. (martingales, if there’s time).
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1. Markov Chains
Markov chains are stochastic processes with various uses:

1. many random phenomena, such as queueing, are naturally modelled as
Markov chains

2. some basic techniques of randomized algorithms, such as randomized
local search and simulated annealing, can be analysed using Markov
chains

3. Markov chains can be used to generate random samples from
complicated distributions.

In modelling tasks mentioned in part 1, we are often mainly interested in the
stationary distribution towards which the process converges.

In parts 2 and 3 we also need to consider how long a “burn-in” we need to
get reasonably close to the stationary distibution.

Generalizations such as partially observed Markov decision processes
(POMDPs) are important in reinforcement learning.
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Fundamental concepts [M&U Section 7.1]

A stochastic process is a sequence of random variables X = (X(t))t∈T .
Often we denote X(t) by Xt. Often t is interpreted to be a point of time.
The value of Xt is then called the state of the process at time t.

If for all t the range of the random variable Xt is countable, then X is a
discrete space process. If T is countable, then X is a discrete time process.

A discrete time process (Xt) is a Markov chain if

Pr(Xt = at | X0 = a0, . . . , Xt−1 = at−1) = Pr(Xt = at | Xt−1 = at−1)

for all t and (ai). That is, to predict the next state of the process, knowing
the full history of the process gives no extra information compared to just
knowing the present state. This does not mean that Xt would be
independent of X0, . . . , Xt−2. (It is conditionally independent given Xt−1).

If additionally the transition probabilities are same at all times, that is,

Pr(Xt = a | Xt−1 = b) = Pr(Xt′ = a | Xt′−1 = b)

for all t, t′, a, b, the chain is homogenous. Here we always assume our chains
to be homogenous.
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For simplicity, we assume that the state space of a discrete space chain is
{0, . . . , n } for some n, or N if it is infinite. We will later consider continuous
time chains, but for now we assume that time is discrete and T = N.

The chain can be defined by giving the distribution of the initial state X0
and the transition matrix P where

Pi,j = Pr(Xt = j | Xt−1 = i).

This implies that each row of the transition matrix sums to 1.

It may be useful to visualize the chain as a directed graph where edge (i, j)
has weight Pi,j. Edges with weight zero can be left out of the picture.

Example 1.1: A three-state Markov chain as a graph and a matrix:

1 2

3

0,9

0,3

0,5

0,1

0,6

0,1

0,5

P =

(
0 9/10 1/10

3/10 1/10 6/10
1/2 1/2 0

)
A complete description
should also include the
initial distribution, but we
are usually interested in
properties that do not
depend on the initial
distribution.
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We write

Pm
i,j = Pr(Xt+m = j | Xt = i).

That is,

Pm
i,j =

∑
k

Pi,kP
m−1
k,j

from which induction yields

Pm
i,j = (Pm)i,j

where Pm is the m-fold matrix product of P with itself.

Defining a vector p(t) as pi(t) = Pr(Xt = i) we then get

p(t+m) = p(t)Pm.
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Example: 2-SAT [M&U Section 7.1.1]

We consider a randomized algorithm for satisfiability of Boolean 2-CNF
formulas (conjunctions of clauses where each clause has exactly two
literals). The problem is well known to be solvable in deterministic
polynomial time, whereas k-SAT for k ≥ 3 is NP-complete.

Let n be the number of variables. Hence, there can be O(n2) clauses. We
consider the following algorithm, where the parameter m regulates the
success probility.

1. Assign random values to the variables.
2. Repeat 2mn2 times or until the formula is satisfied:

(a) Choose a random clause that is not satisfied.
(b) Choose randomly one literal from the clause

and change its value (thus satisfying the clause).
3. If the formula is satisfied, return the value assignment.

Otherwise return “not satisfiable.”

One iteration in part 2 can clearly be done in polynomial time. We now
consider the number of iterations needed to find a satisfying assignment.
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Assume that the formula is satisfiable, and S is a satisfying assignment for
the variables. Let Ai be the assignment of the algorithm after iteration i,
and let Xi be the number of variables on which S and Ai agree.

Hence, a sufficient condition for the algorithm giving a correct answer at
iteration i is that Xi = n. To simplify notation, in this case we also define
Xj = n for j > i.

Clearly Pr(Xi+1 = 1 | Xi = 0) = 1. Since S satisfied the clause chosen in
2(a) in iteration i, but Ai does not, the swap in 2(b) has probability at least
1/2 of changing one variable to the value that agrees with S. For i ≤ j < n
we have therefore

Pr(Xi+1 = j + 1 | Xi = j) ≥ 1/2
Pr(Xi+1 = j − 1 | Xi = j) ≤ 1/2.

The random variables Xi do not constitute a Markov chain, because Xi+1

depends on which particular clauses are unsatisfied, and this in turn depends
on all preceding choices, not just the number Xi.
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We define a Markov chain (Yt) where Y0 = X0 and

Pr(Yi+1 = 1 | Yi = 0) = 1
Pr(Yi+1 = j + 1 | Yi = j) = 1/2 if j ≥ 1
Pr(Yi+1 = j − 1 | Yi = j) = 1/2 if j ≥ 1.

Intuitively it seems clear that Xi grows at least as fast as Yi. To make this
more precise, consider defining Yi = Xi −Ri, where

• We initialize R0 = 0.

• If Ri = Xi ≥ 1, then Ri+1 = Xi+1 − 1.

• Otherwise if Xi = n, then Ri+1 = Ri + 1 with probability 1/2 and
Ri+1 = Ri − 1 with probability 1/2.

• Otherwise if Xi ≥ 1 and both literals of the clause chosen in iteration
i+ 1 get different values in assignments Ai ja S, then Ri+1 = Ri with
probability 1/2 and Ri+1 = Ri + 2 with probability 1/2.

• Otherwise Ri+1 = Ri.

The rules for updating Ri are chosen such that Yi = Xi −Ri is a Markov
chain with the desired transition probabilities. Additionally, if Yi ≥ n, then
Xi = n and a solution has been found.
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We want to know whether Xi = n holds for some i ≤ 2mn2. A sufficient
condition for this is Yi ≥ n for some i ≤ 2mn2.

Fix some 0 ≤ j ≤ n and time t. The value t must be large enough that Yt
may have value j; otherwise the precise value is unimportant. Let Zj be the
number of iterations for the algorithm to terminate starting from time t
with Yt = j, and hj = E[Zj]. Then

hj = E[min { i | Yt+i ≥ n } | Yt = j].

Clearly hn = 0. On the other hand, h0 = h1 + 1, because starting from
Yt = 0 we always get Yt+1 = 1. For all 1 ≤ j < n we have

E[Zj] = E
[

1
2
(1 + Zj−1) + 1

2
(1 + Zj+1)

]
.

By linearity of expectation, this implies

hj = 1
2
hj−1 + 1

2
hj+1 + 1.
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We have a system of n+ 1 linear equations:

hn = 0
hj = 1

2
hj−1 + 1

2
hj+1 + 1, 1 ≤ j ≤ n− 1

h0 = h1 + 1.

Write ∆j = hj − hj−1, so we get

∆j = ∆j+1 + 2, 1 ≤ j ≤ n− 1

and ∆1 = −1. Therefore,

∆j = 1− 2j.

Thus

0 = hn = h0 +
n∑

j=1

∆j = h0 + n− 2
n(n+ 1)

2
= h0 − n2,

so h0 = n2. Clearly hj ≤ n2 for all j ≥ 0.
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We have proved the following.

Lemma 1.2 [M&U Lemma 7.1]: If a 2-CNF formula is satisfiable, then
the algorithm given above makes in expectation at most n2 iterations before
finding a satisfying assignment. 2

This implies the actual result.

Theorem 1.3 [M&U Thm 7.2]: If a 2-CNF formula is not satisfiable, the
algorithm always give the correct answer. If the formula is satisfiable, the
algorithm produces a satisfying assignment with probability at least 1− 2−m.

Proof: The claim for non-satisfied formulas clearly holds, so consider a
satisfiable formula.

We split the 2mn2 iterations of the algorithm into blocks of 2n2 iterations.
For a given block i, let Z be the number of iteration from the start of the
block until a solution is found. By the preceding lemma and Markov’s
inequality, the probability for failing to find a solution within block i is at
most

Pr(Z ≥ 2n2) ≤
E[Z]

2n2
=

1

2
.

The probability that no block includes a solution is at most (1/2)m. 2
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Example: 3-SAT [M&U Section 7.1.2]

Unlike 2-SAT, we know that 3-SAT is NP-complete, so we don’t expect to
find an efficient randomized algorithm. However, we can use the ideas from
our 2-SAT algorithm to get something that is much better than brute force.

We start with a straightforward attempt.

1. Assign all variables arbitrarily.
2. Repeat m times or until the formula is satisfied:

(a) Choose a random unsatisfied clause.
(b) Choose a random literal from the clause

and change its value (making the clause satisfied).
3. If the formula is satisfied, return the assignment.

Otherwise return “not satisfiable.”
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We analyse as previously. Let S be a satisfying assignment, Ai the
assignment of the algorithm after iteration i, and Xi the number of variables
that are assigned the same value in S and Ai.

Since Ai does not satisfy any of the literals in the clause chosen in 2(a), but
S satisfies at least one, we have

Pr(Xi+1 = j + 1 | Xi = j) ≥ 1/3
Pr(Xi+1 = j − 1 | Xi = j) ≤ 2/3.

Again we estimate Xi by a Markov chain:

Pr(Yi+1 = 1 | Yi = 0) = 1
Pr(Yi+1 = j + 1 | Yi = j) = 1/3 if j ≥ 1
Pr(Yi+1 = j − 1 | Yi = j) = 2/3 if j ≥ 1.

Unfortunately we can see that Y is more likely to decrease than to increase.
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Nevertheless, we can get some kind of an estimate. Again, let hj be the
expected number of iterations to find a satisfying assignment, if initially
there are j variables whose assignment agrees with S. As previously, we get

hn = 0
hj = 2

3
hj−1 + 1

3
hj+1 + 1, 1 ≤ j ≤ n− 1

h0 = h1 + 1.

Again it is useful to substitute ∆j = hj − hj−1, giving the recursion

∆j+1 = 2∆j − 3

with the solution, taking into account also the boundary conditions,

∆j = 3− 2j+1.

Hence, for all j we have

0 = hn = hj +
n∑

i=j+1

∆i = hj − 2n+2 − 2j+2 + 3(n− j),

so

hj = 2n+2 − 2j+2 − 3(n− j).
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This straightforward analysis gives an estimate O(2n) for the number of
iterations. This of course is not interesting, as we could as well search all
the assignments deterministically by brute force.

We make two observations that help improve the algorithm.

1. If the initial assignment is not quite arbitrary, but uniformly random,
then the initial number of matching variables is distributed as
Bin(n,1/2). Hence, with some small but non-zero probability we get an
initial value j that is clearly larger than n/2.

2. Iterating for too long descreases the probability of finding a good
assignment.

Therefore, we change the strategy so that we have more and shorter
iteration rounds.
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We get the modified algorithm.

1. Repeat m times or until the formula is satisfied:
(a) Assign the variables uniformly at random.
(b) Repeat 3n times or until the formula is satisfied:

(i) Choose a random unsatisfied clause.
(ii) Choose a random literal in the clause

and change its value (making the clause satisfied).
2. If the formula is satisfied, return the assignment.

Otherwise return “not satisfiable.”
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Suppose that at some iteration there are j variables whose assigned value is
different from S. Let qj be the probability that in at most 3n iterations the
algorithm finds S. Now

qj ≥
(3j

j

)(2

3

)j (1

3

)2j

.

We get this by considering the case where Yi increases exactly 2j times and
decreases exactly j times during 3j ≤ 3n iterations.

We estimate the binomial coefficient by using a simple form of Stirling’s
formule: for all m > 0 we have

√
2πm

(m
e

)m
≤ m! ≤ 2

√
2πm

(m
e

)m
.
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When j > 0, we get(3j

j

)
=

(3j)!

j!(2j)!

≥
1

4
√

2π

√
3j

j · 2j

(
3j

e

)3j ( e

2j

)2j (e

j

)j
=

1

8

√
3

πj

(
27

4

)j
=

c
√
j

(
27

4

)j
where c = (1/8)

√
3/π.

Hence, for j > 0 we get

qj ≥
c
√
j

(
27

4

)j (2

3

)j (1

3

)2j

≥
c

2j
√
j
.

Furthermore, q0 = 1.
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Now the probability that a random initial assignment A leads to S (or
another satisfying assignment) in 3n iterations is at least

q ≥
n∑

j=0

qj Pr(assignment A differs in exactly j variables)

≥
1

2n
+

n∑
j=1

(n
j

)(1

2

)n
c

2j
√
j

≥
c
√
n

(
1

2

)n n∑
j=0

(n
j

)(1

2

)j
1n−j

=
c
√
n

(
1

2

)n (
1 + 1

2

)n
=

c
√
n

(
3

4

)n
.

Therefore, the number of initial assignments A we need to try is upper
bounded by Geom(q). Hence, in expectation we try 1/q initial assignment,
and for each initialization we iterate at most 3n steps, so in expectation we
make O(n3/2(4/3)n) iteration steps.
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Classification of states [M&U Section 7.2]

State j is accessible from state i, if P n
i,j > 0 for some n ≥ 0. If i and j are

accessible from each other, they communicate, which we denote by i↔ j.

Hence, ↔ is the equivalence relation where the equivalence classes are the
strongly connected components of the graph representation of the chain. If
there is only one equivalence class, i.e., the graph is strongly connected, the
chain is irreducible.

Let rti,j be the probability that if the process starts from state i, it will at
time t enter state j for the first time:

rti,j = Pr(Xt = j and Xn 6= j for n < t | X0 = i).

State i is recurrent, if
∑

t≥1 r
t
i,i = 1. Then with probability 1, the state will

be repeated infinitely often, assuming it’s entered at all.

If
∑

t≥1 r
t
i,i < 1, the state is transient. Then with probability 1 it occurs only

a finite number of times, and the number of occurences has geometric
distribution.

A Markov chain is recurrent, if its every state is.
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Let

hi,j =
∑
t≥1

trti,j

be the expected transition time from state i to state j.

If i is recurrent and hi,i is finite, we say that i is positive recurrent.

If i is recurrent but hi,i =∞, we say that i is null recurrent.

Example 1.4: Consider a Markov chain with an infinite number of states
1,2,3, . . .. Let.

Pi,i+1 =
i

i+ 1

Pi,1 =
1

i+ 1
.

25



Starting from state 1, the probability of avoiding returning to state 1 within
the first t steps is

t∏
j=1

j

j + 1
=

1

t+ 1
.

Hence, the probability of never returning to state 1 is limt→∞ 1/(t+ 1) = 0,
so state 1 is recurrent. However,

rt1,1 =
1

t(t+ 1)
,

so

h1,1 =
∑
t≥1

trt1,1 =
∑
t≥1

1

t+ 1
=∞

and state 1 is null recurrent. 2
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More generally, it turns out the null recurrent states exist only in chains with
an infinite number of states.

Lemma 1.5 [M&U Lemma 7.5]: In a finite Markov chain there is at least
one recurrent state, and all recurrent states are positive recurrent.

(Proof is left as an exercise. 2)

State j is periodic if there is some integer ∆ > 1 such that
Pr(Xt+s = j | Xt = j) = 0 when s is not divisible by ∆. A chain is periodic, if
it contains at least one periodic state. A state or chain that is not periodic
is aperiodic.

A state is ergodic if it is aperiodic and positive recurrent. A chain is
ergodic, if all of its states are.

Corollary 1.6 [M&U Corollary 7.6]: A finite, irreducible and aperiodic
Markov chain is ergodic. 2
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Example: Gambler’s Ruin [M&U Section 7.2.1]

Consider playing repeatedly the following fair zero-sum game between two
players. With probability 1/2 player A gives one euro to player B, and with
probability 1/2 player B gives one euro to player A.

Let Wt be the amount that player A has won in the first t rounds. If player
A has lost money, this value is negative. We assume that player A has `1

euros available, and player B has `2 euros.

If one player runs out of money, he has lost and the game is stopped. If, for
example, player A loses in t rounds, we define Wt = −`1 for Wt ≥ t.

We model this as a Markov chain (W t) with a finite state space
{−`1, . . . , `2 }, initial state state 0, and transition probabilities

Pi,i+1 = 1/2, −`1 < i < `2

Pi,i−1 = 1/2, −`1 < i < `2

P−`1,−`1
= 1

P`2,`2
= 1.

What is the probability q for the event that player A wins?
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Clearly states −`1 and `2 are recurrent and the other states transient. The
probability of the chain ending up in state `2 is

q = lim
t→∞

P t
0,`2
,

and the probability of ending up in state −`1 is 1− q.

Each round is fair, meaning that the expected change of the wealth of
player A is zero. Therefore, at any time t we have

0 = E[W t] =
`2∑

i=−`1

iP t
0,i.

Since limt P t
0,i = 0 for all −`1 < i < `2, we get

lim
t→∞

E[W t] = `2q − `1(1− q) = 0,

from which we can solve

q =
`1

`1 + `2
.
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Another way to solve this is to denote by qj the probability that A reaches
wealth `2 before reaching wealth −`1, if initially his wealth is j. Clearly
q−`1

= 0, q`2
= 1 and

qj =
qj−1

2
+
qj+1

2
, −`1 < j < `2.

By writing the recurrence as ∆j = ∆j+1, where ∆j = qj − qj−1, we easily see
that

qj =
`1 + j

`1 + `2
.
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Stationary distribution [M&U Section 7.3]

A vector π is a probability vector, if πi ≥ 0 for all i, and
∑

i πi = 1. A
probability vector π is a stationary distribution of a Markov chain with
transition matrix P, if

πP = π.

The following is a fundamental result about finite Markov chains.

Theorem 1.7 [M&U Thm 7.7]: If a finite Markov chain with transition
matrix P is irreducible and ergodic, the following conditions hold:

1. The chain has a unique stationary distribution π.

2. For all j and i the limit limt→∞ P t
j,i exists and is the same for all j.

3. πi = limt→∞ P t
j,i = 1/hi,i.

Intuitively, under the given conditions the effect of the initial state vanishes
as time goes by.
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Aperiodicity is not a necessary condition for the existence of a stationary
distribution. For example, in a two-state chain with transition probabilities
P1,2 = P2,1 = 1, the stationary distribution is (1/2,1/2). However, there is
no convergence to this distribution. Depending on the initial state, we get
either states (1,2,1,2,1,2, . . .) or states (2,1,2,1,2,1, . . .).

In a finite chain there is always at least one recurrent state, and if the chain
enters the component containing this state, it will never leave. Thus, the
chain will always end up in the distribution corresponding to the stationary
distribution of one of the components. However, if there are several
components with recurrent states, again we do not converge to any fixed
stationary distribution. The initial transient phase decides in which
component we end up, and each component has its own stationary
distribution.

32



The textbook proves Theorem 1.7 assuming the following lemma.

Lemma 1.8: If the chain is irreducible and ergodic, then for all i the limit
limt→∞ P t

i,i exists and

lim
t→∞

P t
i,i =

1

hi,i
.

We omit the proof. See for example Chung: Markov Chains with Stationary
Transition Probabilities.

Intuitively it is not surprising that if the limit limt→∞ P t
i,i exists, its value can

only be 1/hi,i, because the state i must on the average appear once every
hi,i steps. To prove the existence of the limit, we need ergodicity and
irreducibility.
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Proof of Theorem 1.7: We first show that for all i and j we have

lim
t→∞

P t
j,i = lim

t→∞
P t
i,i =

1

hi,i
.

Recall that rtj,i is the probability of entering state i for the first time at time
t having started from j. Since the chain is irreducible and all the states are
recurrent, the probability of never entering i after having started from j is 0,
so

∞∑
t=1

rtj,i = 1.

Let ε > 0, and let t1 be such that

t1∑
t=1

rtj,i ≥ 1− ε.
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For i 6= j we can write

P t
j,i =

t∑
k=1

rkj,iP
t−k
i,i .

When t ≥ t1, we get

t1∑
k=1

rkj,iP
t−k
i,i ≤

t∑
k=1

rkj,iP
t−k
i,i = P t

j,i.

By Lemma 1.8 we can now take the limit

lim
t→∞

P t
j,i ≥ lim

t→∞

t1∑
k=1

rkj,iP
t−k
i,i

=
t1∑
k=1

rkj,i lim
t→∞

P t−k
i,i

= lim
t→∞

P t
i,i

t1∑
k=1

rkj,i

≥ (1− ε) lim
t→∞

P t
i,i.
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Similarly,

P t
j,i =

t∑
k=1

rkj,iP
t−k
i,i ≤

t1∑
k=1

rkj,iP
t−k
i,i +

∑
k>t1

rkj,i ≤
t1∑
k=1

rkj,iP
t−k
i,i + ε,

which implies

lim
t→∞

P t
j,i ≤ lim

t→∞

(
t1∑
k=1

rkj,iP
t−k
i,i + ε

)

=
t1∑
k=1

rkj,i lim
t→∞

P t−k
i,i + ε

≤ lim
t→∞

P t
i,i + ε.

In the limit ε→ 0 we now get

lim
t→∞

P t
j,i = lim

t→∞
P t
i,i,

and by Lemma 1.8 this limit is 1/hi,i.
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Define now πi = 1/hi,i. We are going to show that this defines a stationary
distribution. For a finite state set {0, . . . , n }, we get for any j

n∑
i=0

πi =
n∑
i=0

lim
t→∞

P t
j,i = lim

t→∞

n∑
i=0

P t
j,i = lim

t→∞
1 = 1,

so π is a probability vector.

The stationarity then follows:

πi = lim
t→∞

P t+1
j,i = lim

t→∞

n∑
k=0

P t
j,kPk,i =

n∑
k=0

lim
t→∞

P t
j,kPk,i =

n∑
k=0

πkPk,i.
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Finally, we check the uniqueness. Let φ be a stationary distribution, so

φ = φPt

for all t. In particular,

φi = lim
t→∞

n∑
k=0

φkP
t
k,i =

n∑
k=0

φk lim
t→∞

P t
k,i =

n∑
k=0

φkπi = πi,

because
∑

k φk = 1. 2
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We can find the stationary distribution by solving the system of equations
π = πP under the constraint

∑
i πi = 1.

The following result is often helpful.

Theorem 1.9 [M&U Thm 7.9]: Let S be a set of states in a finite Markov
chain with a stationary distribution. Then in the stationary distribution, the
probability of leaving set S is the same as of entering set S.

Proof: Let π be the stationary distribution. Then∑
i∈S

n∑
j=0

πjPj,i =
∑
i∈S

πi =
∑
i∈S

πi

n∑
j=0

Pi,j.

Eliminating terms that appear on both sides yields∑
i∈S

∑
j 6∈S

πjPj,i =
∑
i∈S

∑
j 6∈S

πiPi,j.

2
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Example 1.10: Consider Markov chain with transition probabilities

P =

(
1− p p
q 1− q

)
.

By applying the previous result about the stationary distribution (πo, π1) to
S = {0 } we get

π0p = π1q.

Since π0 + π1 = 1, we get π0 = q/(p+ q) ja π1 = p/(p+ q).
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In some cases, the next theorem gives an easy way of calculating the
stationary distribution.

Theorem 1.11 [M&U Thm 7.10]: If
∑

i πi = 1 and

πiPi,j = πjPj,i (∗)

for all i, j, then π is the stationary distribution.

Proof:
n∑
i=0

πiPi,j =
n∑
i=0

πjPj,i = πj

n∑
i=0

Pj,i = πj.

2

The condition (∗) is not a necessary condition for the stationary
distribution. If it holds, the chain is said to be time reversible.

Notice that the condition involves n(n− 1)/2 equations for n unknowns.
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We state without proof how this generalises to infinite chains.

Theorem 1.12 [M&U Thm 7.11]: If a Markov chain with transition matrix
P is irreducible and aperiodic, then exactly one of the following holds.

1. The chain is ergodic with a unique stationary distribution π that
satisfies πi = limt→∞ P t

j,i > 0 for all i, j.

2. No state in the chain is positive recurrent, limt→∞ P t
j,i = 0 for all i, j, and

the chain has no stationary distribution.

2

Theorems 1.9 and 1.11 hold also for infinite chains.
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Example: simple queue [M&U Section 7.3.1]

A queue can hold up to n customers. At each time step, exactly one of the
following takes place:

• If the queue currently has less than n customers, with probability λ a
new customer will join the queue.

• If the queue currently has at least one customer, with probability µ the
first customer is served and leaves the queue.

• Otherwise there is no change.

The queue length Xt is a Markov chain with

Pi,i+1 = λ, i < n

Pi,i−1 = µ, i > 0

Pi,i =

 1− λ for i = 0
1− λ− µ for 0 < i < n

1− µ for i = n.
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To find out the stationary distribution, we have the system of equations

π0 = (1− λ)π0 + µπ1

πi = λπi−1 + (1− λ− µ)πi + µπi+1, 0 < i < n

πn = λπn−1 + (1− µ)πn.

The first equation gives π1 = (λ/µ)π0. By substituting this into the second
one we get π2 = (λ/µ)π1. From this, we guess

πi = π0

(
λ

µ

)i
,

which is easily verified by induction. The normalization constraint
∑

i πi = 1
then gives us

πi =
1

Z

(
λ

µ

)i
,

where Z =
∑n

i=0(λ/µ)i.

44



Another method is to consider a partitioning to two sets, S = {0, . . . , i } and
{ i+ 1, . . . , n }. We know that πiPi,i+1 = πi+1Pi+1,i, implying πiλ = πi+1µ.
Again, by induction we get πi = π0(λ/µ)i.

If the queue length is not bounded, we have

π0 = (1− λ)π0 + µπ1

πi = λπi−1 + (1− λ− µ)πi + µπi+1, i ≥ 1,

and as previously we get πi = π0(λ/µ)i. The normalization condition is now

π0

∞∑
i=0

(
λ

µ

)i
= 1.

For λ < µ we get the stationary distribution

πi =

(
λ

µ

)i(
1−

λ

µ

)
.

For λ ≥ µ, the series diverges and there is no stationary distribution.
Intuitively, customers enter faster than they leave and the queue length
tends towards infinity. It is possible to show that in the case λ > µ all states
are transient and in the case λ = µ null recurrent.
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Random walk in an undirected graph [M&U Section 7.4]

Let G = (V,E) be a connected undirected graph and d(v) the degree of
vertex v. A random walk in G is the Markov chain with state space V and
transition probabilities Pij = 1/d(i) for all i, j such that (i, j) ∈ E.

Lemma 1.13: The random walk in G is aperiodic, if and only if G is not
bipartite, in other words, there is no partitioning V = V1 ∪ V2 such that
E ⊆ V1 × V2.

Proof: The “only if” direction is clear.

If the graph is not bipartite, it has an odd-length cycle. Since there is also a
path of lenght two from any vertex back to itself, the walk is aperiodic. 2
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From now on we assume that G is not bipartite. Then the Markov chain is
finite, irreducible and aperiodic. Therefore it will converge towards the
stationary distribution.

Theorem 1.14: The stationary distribution π of the random walk in G
satisfies

πv =
d(v)

2 |E|
.

Proof: Since
∑

v d(v) = 2 |E|, this defines π which is a probability vector.

Furthermore,

(πP )u =
∑
v

πvPv,u =
∑

v:(v,u)∈E

d(v)

2 |E|
1

d(v)
= πu.

2
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Recall that the stationary distribution satisfies πi = 1/hi,i where hi,j is the
expected time to get from vertex i to vertex j.

Corollary 1.15: For all v we have hv,v = 2 |E| /d(v). 2

Lemma 1.16: If (u, v) ∈ E, then hv,u < 2 |E|.

Proof: Since

2 |E|
d(u)

= hu,u = 1 +
∑
v

Pu,vhv,u =
1

d(u)

∑
v:(u,v)∈E

(1 + hv,u),

we must have hv,u < 2 |E| whenever (u, v) ∈ E. 2
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The cover time of a graph is the maximum over vertices v of the expected
time for the random walk starting from v to visit all vertices.

Lemma 1.17: The cover time of G = (V,E) is at most 4 |V | |E|.

Proof: Take any spanning tree of G and choose vertex v as a root. Traverse
it in depth-first order so that each edge in the tree is traversed once in each
direction. The tree has |V | − 1 edges, so this traversal gives a sequence of
vertices v0, v1, . . . , v2|V |−2 where v0 = v2|V |−2 = v and (vi, vi+1) ∈ E for all i.

By the previous lemma, the cover time is upper bounded by

2|V |−3∑
i=0

hvi,vi+1 < (2 |V | − 2)(2 |E|) < 4 |V | |E| .

2
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Example: reachability

We are given a graph G = (V,E) and vertices s, t ∈ V . The problem is to
decide whether there is a path between s and t.

We can easily do this for example by depth-first search. This however
requires O(|V |) work space.

We consider a randomized algorithm.

1. Start a random walk from s.
2. If within 4 |V |3 steps vertex t is visited,

answer “yes;” otherwise answer “no.”
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If there is no path between s and t, the algorithm always answers “no.”

Assume that a path exists, and the connected component containing s and t
is not bipartite. (If needed, we can as pre-processing add one edge to create
a triangle.) The expected time for the random walk to reach t is at most
4 |V | |E| ≤ 2 |V |3. Hence, a path is found in time 4 |V |3 with probability at
least 1/2 (Markov).

The algorithm needs only O(log |V |) bits for book keeping (assuming there’s
no issue in making the random choices).
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Parrando’s Paradox [M&U Section 7.5]

We consider a situation where two games in which the expected gain is
negative can be combined into one in which the expected gain is positive.

All the games consist of repeating flips of a biased coin. If the result is
heads, the player wins one euro. Otherwise, he loses one euro.

In game A, we flip a coin a with probability of heads pa < 1/2; for example,
pa = 0.49. The expected loss of the player is then 1− 2pa euros per round.

The game B uses coin b, if the net profit of the player up to now is divisible
by three (in euros). Otherwise, coin c is used. The probabilities of heads for
these coins are pb and pc, respectively.
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For concreteness, let us choose pb = 0.09, pc = 0.74. If it were the case that
1/3 of the time, the player’s profit is divisible by three, we could calculate
the winning probability as

1

3
·

9

100
+

2

3
·

74

100
=

157

300
>

1

2
.

However, this assumption is false. Typically, the player loses the first round,
since to start with his profit is 0 and we use coin b. Then in the second
round, coin c is used, and the playes is likely to win, getting back to 0 total
profit. The game may oscillate quite long between −1 and 0.

We need to evaluate the winning probability in game B over a longer period
of time. Consider a Markov chain that has a states {−3, . . . ,3 }, which we
interpret as amounts of profit. The expected profit over long sequences of
play is negative, if starting from 0 we are more likely to end up in −3 than
in 3.
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Let zi be the probability of reaching state −3 before state 3 starting from
state i. We wish to evaluate z0. We can solve it from the boundary
conditions z−3 = 1 and z3 = 0 and the recursion

z−2 = (1− pc)z−3 + pcz−1

z−1 = (1− pc)z−2 + pcz0

z0 = (1− pb)z−1 + pbz1

z1 = (1− pc)z0 + pcz2

z2 = (1− pc)z1 + pcz3

which yields

z0 =
(1− pb)(1− pc)2

(1− pb)(1− pc)2 + pbp2
.

Thus, with the parameter values we chose, we have z0 ≈ 0,555, making the
expected profit negative for long games.
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We present another proof for the same fact.

Let s be a sequence of states starting from 0 and ending in 3. Let f(s) be
another sequence which is the same as s except that the signs are flipped
after the last 0. Thus, for example,

f(0,−1,0,1,2,1,0,1,2,3) = (0,−1,0,1,2,1,0,−1,−2,−3).

Clearly f is a bijection from sequences ending in 3 to sequences ending in
−3.

Lemma 1.18: For any s that ends in 3 we have

Pr(s)

Pr(f(s))
=

pbp
2
c

(1− pb)(1− pc)2
.

Before proving Lemma 7.18, we notice that it implies

Pr(state 3 occurs before −3)

Pr(state −3 occurs before 3)
=

∑
s Pr(s)∑

s Pr(f(s))
=

pbp
2
c

(1− pb)(1− pc)2
.

Here summation is over sequences s that end in 3 without entering −3.
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Proof of Lemma 7.18: Divide the transitions into four classes:

A1 0→ 1
A2 0→ −1
A3 −2→ −1, −1→ 0, 1→ 2, 2→ 3
A4 −2→ −3, −1→ −2, 1→ 0, 2→ 1.

Let ti be the number of transitions belonging to Ai in s.

The transformation s 7→ f(s) changes one transition from class A1 into a
transition from class A2. Additionally, the number of transitions from A3

decreases and the number of transitions from A4 increases by 2. Therefore,

Pr(s) = pt1

b (1− pb)t2pt3

c (1− pc)t4

Pr(f(s)) = pt1−1
b (1− pb)t2+1pt3−2

c (1− pc)t4+2.

2
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We can also analyse this via the stationary distribution. Consider a Markov
chain with three states {0,1,2 }, which represent the profit of the player
modulo 3. Let π be the stationary distribution. The probability to win one
euro approaches in a long game the value

pbπ0 + pcπ1 + pcπ2 = pbπ0 + pc(1− π0) = pc − (pc − pb)π0.

We get for the stationary distribution a system of equations

π0 = (1− pc)π1 + pcπ2

π1 = pbπ0 + (1− pc)π2

π2 = (1− pb)π0 + pcπ1.

Together with the normalization constraint
∑

i πi = 1 this yields

π0 =
1

Z
(1− pc + p2

c )

π1 =
1

Z
(pbpc − pc + 1)

π2 =
1

Z
(pbpc − pb + 1)

where Z = 3− 2pc − pb + 2pbpc + p2
c . In our example case,

π0 = 673/1759 ≈ 0,3826 and pc − (pc − pb)π0 = 86421/175900 < 1/2.
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Consider now a game C in which in each round, first a fair coin is flipped,
and based on the outcome, we play either game A or B. Equivalently, we
could play B so that after choosing between b and c, we would with
probability 1/2 decide to use a instead. Thus, the winning probabilities in
game C are obtained from the winning probabilities in B by replacing pb and
pc by p∗b = 1

2
(pa + pb) and p∗c = 1

2
(pa + pc).

Hence, the win ratio in game C is with our parameter values

p∗b(p
∗
c)

2

(1− p∗b)(1− p∗c)2
=

438741

420959
> 1

making the expected profit positive. We can also derive this via the
stationary distribution:

p∗c − (p∗c − p∗b)π∗0 =
4456523

8859700
>

1

2
,

where π∗ is the stationary distribution for B calculated using p∗b and p∗c.
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Intuitively, game B leads to loss because of its particular structure. Mixing
game A into it breaks the structure and in particular helps the player leave
the “hole” around zero profit.

More formally we can notice that the paradox does not violate the linearity
of expectation. For all states s we have

E[XC | s] = 1
2
E[XA | s] + 1

2
E[XB | s]

where XZ is the profit in game Z at a given time. However, conditioning on
s changes the winning probabilities in games A and B.
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2. Continuous random variables

We consider random variables that have as range the real numbers, or some
real interval. From application point of view, we are particularly interested
in random variables that represent the time when some even occurs.

We avoid going into general theory, since in applications we usually deal
with the basic setting where there is a density function. In practice,
continuity then often just means that we calculate integrals instead of sums.
However there are some technical issues that need to be taken into account.

Outline of this chapter:

• basic properties, some important distributions

• Poisson processes

• Markov processes with continuous time.
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Recall that a random variable is a mapping X : Ω→ R, where (Ω,F ,Pr) is a
probability space and Pr(X(ω) ≤ a) is defined for all a ∈ R.

Often in practice the original sample space Ω is not interesting and we deal
just with the distribution function F defined by

F (a) = Pr(X ≤ a).

Previously we mainly considered discrete random variables with a finite or
countably infinite range. We say that X is continuous if the distribution
function F is continuous. Then in particular Pr(X = a) = 0 for all a ∈ R.

If there is a function f for which

F (a) =

∫ a

−∞
f(t) dt,

we call f the density function of X. Then F ′(a) = f(a).
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The expected value of a random variable with a density function is defined
as

E[X] =

∫ ∞
−∞

tf(t) dt.

More generally,

E[g(X)] =

∫ ∞
−∞

g(t)f(t) dt.

As before, we are in particular interested in the variance

Var[X] =

∫ ∞
−∞

(t− E[X])2f(t) dt

and moments

E[Xi] =

∫ ∞
−∞

tif(t) dt.

In the following we assume that continuous random variables have a density
function.
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Lemma 2.1 [M&U Lemma 8.1]: If X is continuous and gets only
non-negative values, we have

E[X] =

∫ ∞
0

Pr(X ≥ t) dt.

The discrete analogue is [M&U Lemma 2.9] (also page 42 of lecture notes
for Randomized Algorithms I).

Proof: Let f be the density function of X. Then∫ ∞
0

Pr(X ≥ t) dt =

∫ ∞
0

∫ ∞
t

f(s) ds dt

=

∫ ∞
0

∫ s

0
f(s) dt ds

=

∫ ∞
0

sf(s) ds

= E[X].

2
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If X and Y are continuous random variables, their joint distribution function
is

F (x, y) = Pr(X ≤ x, Y ≤ y)

and joint density function

f(x, y) =
∂2F (x, y)

∂x∂y

(if the partial derivatives exist). Thus,

F (a, b) =

∫ a

−∞

∫ b

−∞
f(x, y) dy dx.

This is generalized to three or more variables in the obvious manner.
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Example Consider the distribution

F (x, y) = 1− e−ax − e−by + e−ax−by, x, y ≥ 0,

where a, b > 0, and F (x, y) = 0 if x < 0 or y < 0. Now

f(x, y) =
∂

∂x
(0 + 0− be−by − be−ax−by) = abe−ax−by, x, y > 0,

and f(x, y) = 0 if x < 0 or y < 0. As a check we can verify that∫ x

−∞

∫ y

−∞
f(u, v) dv du =

∫ x

0

∫ y

0
abe−au−bv dv du

= ab(

∫ x

0
e−au du)(

∫ y

0
e−bv dv)

= ab ·
1

−a
(e−ax − 1) ·

1

−b
(e−by − 1)

= F (x, y).
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From the joint distribution function F we can obtain the marginal
distribution functions

FX(x) = Pr(X ≤ x), FY (y) = Pr(Y ≤ y).

We denote the corresponding density functions by fX and fY . The marginar
density function can be obtained from the joint density function by
“integrating away” the other variable:

fX(x) =

∫ ∞
−∞

f(x, y) dy.

Random variables X and Y are independent, if

Pr(X ≤ x, Y ≤ y) = Pr(X ≤ x) Pr(Y ≤ y),

that is,

F (x, y) = FX(x)FY (y),

for all x, y. If the relevant derivatives exist, this is equivalent with

f(x, y) = fX(x)fY (y)

for all x, y.
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Example Consider again

F (x, y) = 1− e−ax − e−by + e−ax−by.

Since F (x, y) = P (x)Q(y), where

P (x) = 1− e−ax

Q(y) = 1− e−by

and P and Q are valid distribution functions, we conclude that FX = P and
FY = Q, and X and Y are independent. For the density functions we get

f(x, y) = (ae−ax)(be−by) = fX(x)fY (y).
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In defining conditional probabilities we run into technical problems. If we
take the definition Pr(A | B) = Pr(A ∩B)/Pr(B) as it is, we get expressions
of the form 0/0 for example if B is of the form “Y = y”. Intuitively,
however, such conditional probabilities would seem to make sense. For
example, in the previous example we would like to say that

Pr(X + Y ≤ 5 | Y = 3) = Pr(X ≤ 2 | Y = 3) = Pr(X ≤ 2) = 1− e−2a,

because X and Y are independent.

For discrete random variables, when Pr(Y = y) > 0,

Pr(X ≤ x | Y = y) =
∑
u≤x

Pr(X = u, Y = y)

Pr(Y = y)
.

For continuous random variables we define analogously

Pr(X ≤ x | Y = y) =

∫ x

−∞

f(u, y)

fY (y)
du,

when fY (y) > 0. The conditional probability is thus defined via the
conditional density function

fX|Y (x, y) =
f(x, y)

fY (y)
.
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To motivate the previous definition, notice that it satisfies the property
Pr(X ≤ x | Y = y) = limh→0+ Pr(X ≤ x | y ≤ Y ≤ y + h), when conditioning
over a set with strictly positive probability is defined in the usual manner:

lim
h→0+

Pr(X ≤ x | y ≤ Y ≤ y + h)

= lim
h→0+

Pr(X ≤ x, y ≤ Y ≤ y + h)

Pr(y ≤ Y ≤ y + h)

= lim
h→0+

F (x, y + h)− F (x, y)

FY (y + h)− FY (y)

= lim
h→0+

(
F (x, y + h)− F (x, y)

h
·

h

FY (y + h)− FY (y)

)
=

∂F (x, y)

∂y

(
dFY (y)

dy

)−1

=

∫ x
−∞ f(u, y) du

fY (y)
.
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Uniform distribution [M&U Section 8.2]

A random variable X has uniform distribution over the interval [a, b],
denoted X ∼ U(a, b), if

Pr(c ≤ X ≤ d) =
d− c
b− a

for all a ≤ c ≤ d ≤ b. The distribution function is

F (x) =

 0 for x ≤ a
x−a
b−a for a ≤ x ≤ b
1 for b ≤ x

and the density function

f(x) =


0 for x < a
1
b−a for a ≤ x ≤ b
0 for b < x.

A straightforward integration gives the expected value and variance as

E[X] =
b+ a

2
, E[X2] =

b2 + ab+ a2

3
, Var[X] =

(b− a)2

12
.
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Lemma 2.2 [M&U Lemma 8.2]: If X ∼ U(a, b), then for all c ≤ d we have

Pr(X ≤ c | X ≤ d) =
c− a
d− a

.

That is, X conditioned on X ≤ d has distribution U(a, d).

Proof:

Pr(X ≤ c | X ≤ d) =
Pr(X ≤ c, X ≤ d)

Pr(X ≤ d)

=
Pr(X ≤ c)
Pr(X ≤ d)

=
c− a
d− a

.

2
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Lemma 2.3: Assume X1, . . . , Xn ∼ U(0,1) are mutually independent. Define
random variables Y1, . . . , Yn that have the same values as X1, . . . , Xn but
ordered from smallest to largest. Then E[Yk] = k/(n+ 1).

Proof: To calculate E[Y1] we notice that

Pr(Y1 ≥ y) = Pr(X1 ≥ y, . . . , Xn ≥ y)
= (1− y)n.

Therefore the distribution function of Y1 is 1− (1− y)n. Differentiating, we
see that the density function is f(y) = n(1− y)n−1. We obtain the expected
value by integration by parts:

E[Y1] =

∫ 1

0
yn(1− y)n−1 dy =

∣∣1
0
(−y(1− y)n) +

∫ 1

0
(1− y)n dy =

1

n+ 1
.

We could generalize this technique to obtain the other expected values
E[Yi], too. Instead of doing that, however, we save some calculation effort
by a symmetry argument.
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We place random points P0, . . . , Pn uniformly on a circle with circumference
1. Let Xi be the distance counterclockwise along the circle from P0 to Pi.
Clearly Xi ∼ U(0,1) and the random variables Xi are mutually independent.
The points Pi divide the circumference of the circle into n+ 1 parts, and the
length of part number j is Yj − Yj−1 where Yi is as in the statement of the
lemma (and we define Y0 = 0). By symmetry, all parts have the same length
distribution, and in particular the same expected length. Since the sum of
the lengths of the parts is 1, by linearity of expectation each part has
expected length 1/(n+ 1). Therefore

E[Yk] = E[Y0] +
k∑
i=1

E[Yi − Yi−1] =
k

n+ 1
.

2
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Exponential distribution [M&U Section 8.3]

To motivate the exponential distribution, recall Poisson distribution.
Consider a process where some events occur in such a way that

1. the density of events per time unit stays constant and

2. in expectation we have θ events per time unit.

We can approximate this by a discrete-time process where at time j/n, for
j = 0,1,2, . . ., an event occurs with probability θ/n independently of the
other events. When T = j/n for some j, the number of events before time
T is distributed as Bin(Tn, θ/n). When we make the time scale finer by
letting n→∞, we get as limit the distribution Poisson(Tθ).
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Thus, Poisson(Tθ) describes the number of events in a continuous-time
process during the interval [0, T ). Let X be the time when the first event
occurs. The distribution of X is then the exponential distribution with
parameter θ, which we denote by X ∼ Expon(θ).

Now X ≥ T if and only if no even occurred during the interval [0, T ). In
other words, this means Y = 0 where Y ∼ Poisson(Tθ). Hence,

Pr(X ≤ T ) = 1− Pr(Y = 0) = 1− e−Tθ.
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We have thus “derived” for the exponential distribution the distribution
function

F (x) =

{
0 if x < 0

1− e−θx if x ≥ 0.

The density function is therefore

f(x) = θe−θx, x ≥ 0.

Integration by parts yields

E[X] =
1

θ

E[X2] =
2

θ2

Var[X] =
1

θ2
.
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The exponential distribution is in some sense the continuous counterpart of
the geometric distribution. In particular, it also has the property of being
memoryless.

Lemma 2.4: If X ∼ Expon(θ), then

Pr(X > s+ t | X > t) = Pr(X > s).

Proof: Since Pr(X > r) = e−θr, we have

Pr(X > s+ t | X > t) =
Pr(X > s+ t)

Pr(X > t)

=
exp(−θ(s+ t))

exp(−θt)
= Pr(X > s).

2
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An exponentially distributed random variable can also be interpreted as the
time a device keeps working, if its mean time between failures is 1/θ. This
applies to malfunctions due to random disturbances, not due to wearing etc.
which get worse over time.

Suppose now a device has n components, all of which must be working for
the whole device to work. We assume the components have mutually
independent failures, and the mean times between failure are 1/θ1, . . . ,1/θn.
We show that the time the device works is still exponentially distributed,
and the mean time between failures is 1/(θ1 + . . .+ θn).

Lemma 2.5 [M&U Lemma 8.5]: Let X1, . . . , Xn be mutually independent
with Xi ∼ Expon(θi), and let Y = min {X1, . . . , Xn }. Now Y ∼ Expon(θ),
where θ =

∑n
i=1 θi. Furthermore, Pr(Y = Xi) = θi/θ.
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Proof: We prove the case n = 2. The case n > 2 follows easily by induction.

Since

Pr(min {X1, X2 } > x) = Pr(X1 > x) Pr(X2 > x)

= e−θ1xe−θ2x

= e−(θ1+θ2)x,

we have min {X1, X2 } ∼ Expon(θ1 + θ2).
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The joint density function of X1 ja X2 is f(x, y) = θ1e−θ1xθ2e−θ2x. Therefore,

Pr(X1 < X2) =

∫ ∞
0

∫ ∞
x1

f(x1, x2) dx2 dx1

=

∫ ∞
0

θ1e−θ1x1

(∫ ∞
x1

θ2e−θ2x2 dx2

)
dx1

=

∫ ∞
0

θ1e−θ1x1e−θ2x1 dx1

= θ1

∫ ∞
0

e−(θ1+θ2)x1 dx1

=
θ1

θ1 + θ2
.

2
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Balls and bins with feedback [M&U Section 8.3.2]

As an application of combining exponential distributions, consider placing
balls into two bins. However, this time the balls are not independent, but
there is feedback: the next ball is more likely to go to the bin that has more
balls. This is a crude model for, say, software market with two competitors,
when compatibility reasons favor the one with the larger market share.

Suppose at a given time there are x balls in bin 1 and y balls in bin 2. We
first consider a model where the next ball goes to bin 1 with probability
x/(x+ y) and to bin 2 with probability y/(x+ y). Initially we place one ball
to each bin. It is known ([M&U Exercise 1.6]; Randomized Algorithms I,
homework 1.1) that when there are n balls, the number of balls in bin 1 is
distributed uniformly over {1, . . . , n− 1 }.
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Consider now a situation in which the feedback is stronger. Let’s have the
next ball going to bin 1 with probability xp/(xp + yp) and to bin 2 with
probability yp/(xp + yp), where p > 1, and we let the process continue
indefinitely.

Theorem 2.6: Let p > 1, and assume that initially both bins have at least
one ball. With probability 1 there is some finite value c such that one of the
bins never gets more than c balls.

Proof: Let (x, y) denote the situation with x balls in bin 1 and y balls in
bin 2. If we start from (1,1), then for any x, y ≥ 1 there is a non-zero
probability of reaching (x, y). Thus, if from some (x, y) we would have a
non-zero probability of getting an unbounded number of balls in both bins,
this would happen also starting from (1,1). Thus, without loss of generality
we may assume that we start from (1,1).
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As a helpful tool we consider a continuous-time process where the bins are
independent:

• If bin 1 receives its ball number z at time t, then it receives its ball
number z + 1 at time t+ Tz, where Tz ∼ Expon(zp),

• If bin 2 receives its ball number z at time t, then it receives its ball
number z + 1 at time t+ Uz, where Uz ∼ Expon(zp),

• all random variables Tz and Uz are mutually independent

Perhaps surprisingly, this turns out to represent exactly the original process.

Consider the situation when a ball has just been added and there are x balls
in bin 1 and y balls in bin 2. Because the exponential distribution is
memoryless, it does not matter which bin received the latest ball. In any
case, the expected remaining time until the next ball to bin 1 is Expon(xp),
and to bin 2, Expon(yp). By Lemma 8.5, the next ball to arrive is for bin 1
with probability xp/(xp + yp).

Hence, the sequence of ball placements in this exponential model has the
same distribution as in the original model.
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Define the saturation times of the bins as F1 =
∑∞

z=1 Tz and F2 =
∑∞

z=1Uz. If
F1 <∞, then

• if t < F1, then at time t bin 1 contains a finite number of balls and

• as t→ F1−, the number of balls in bin 1 at time t approaches infinity.

On the other hand, if F1 =∞, then the number of balls in bin 1 is finite at
all times. The same characterization applies to the number of balls in bin 2.

Since p > 1, we have

E[F1] =
∞∑
z=1

E[Tz] =
∞∑
z=1

1

zp
<∞.

In particular, F1 is finite with probability 1, and by the same argument, so is
F2.
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Hence, we may assume that F1 and F2 are finite. If F1 = F2, then

T1 =
∞∑
z=1

Uz −
∞∑
z=2

Tz.

Whatever value the right-hand side has, the probability of T1 hitting the
same value is zero. Therefore, Pr(Z1 6= Z2) = 1.

Consider the case F1 < F2; the case F1 > F2 is similar. Then there is n such
that

n∑
z=1

Uz < F1 ≤
n+1∑
z=1

Uz.

Hence, there is m0 such that for large enough m ≥ m0 we have

n∑
z=1

Uz <

m∑
z=1

Tz <

n+1∑
z=1

Uz.

This means that bin 1 receives m balls before bin 2 receives n+ 1 balls.
Since this holds for arbitrarily large m, bin 2 never receives more than n
balls. 2
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Poisson processes [M&U Section 8.4]

Consider some events that take place over a continuous time interval. If
N(t) is the number of events during the interval [0, t] for t ≥ 0, we call
(N(t))t a stochastic counting process.

A stochastic counting process N is a Poisson process with parameter λ, if
N(0) = 0 and

1. increments are mutually independent: the differences N(t2)−N(t1) and
N(t4)−N(t3) are independent if the intervals [t1, t2] and [t3, t4] are
disjoint

2. increments are stationary: for all s and t, the difference N(t+ s)−N(s)
has the same distribution as N(t)

3. limt→0 Pr(N(t) = 1)/t = λ and

4. limt→0 Pr(N(t) ≥ 2)/t = 0.

Condition 4 entails that occurence times of different events are independent.
It would be violated for example if the events always occured two at a time.
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Let N be a Poisson process with parameter λ and

Pn(t) = Pr(N(t+ s)−N(s) = n)

the probability of excetly n events in t time units. Because of stationarity,
the number of events has Poisson distribution.

Theorem 2.7 [M&U Thm 8.7]: For all n we have

Pn(t) = e−λt
(λt)n

n!
.

Proof: We use Conditions 3 and 4 to obtain a differential equation for Pn.
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By independence, P0(t+ h) = P0(t)P0(h), so

P0(t+ h)− P0(t)

h
= P0(t)

P0(h)− 1

h

= P0(t)
1− Pr(N(h) = 1)− Pr(N(h) ≥ 2)− 1

h
→ P0(t)(−λ+ 0)

as h→ 0. Therefore,

P ′0(t) = −λP0(t).

By considering the initial condition P0(0) = 1 we get the solution

P0(t) = e−λt.
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For n ≥ 1 we similarly get

Pn(t+ h)− Pn(t) = Pn(t)(P0(h)− 1) + Pn−1(t)P1(h) +
n∑

k=2

Pn−k(t)Pk(h).

Based on the above, we have

P0(h) = 1− λh+ o(h).

By Condition 3,

P1(h) = λh+ o(h).

Condition 4 then implies

0 ≤
n∑

k=2

Pn−k(t)Pk(h) ≤ Pr(N(h) ≥ 2) = o(h).

Therefore,

P ′n(t) = lim
h→0

Pn(t+ h)− Pn(h)

h
= −λPn(t) + λPn−1(t).
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To solve the equation

P ′n(t) = −λPn(t) + λPn−1(t)

we write it as

eλt(P ′n(t) + λPn(t)) = λeλtPn−1(t)

and further as
d

dt

(
eλtPn(t)

)
= λeλtPn−1(t).

We show by induction that for all n we have

Pn(t) = e−λt
(λt)n

n!
.
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The base case n = 0 was done above. For n ≥ 1, from the induction
assumption

Pn−1(t) = e−λt
(λt)n−1

(n− 1)!

we get based on the above

d

dt

(
eλtPn(t)

)
= λeλtPn−1(t) =

λntn−1

(n− 1)!
.

Integration yields

eλtPn(t) =
(λt)n

n!
+ c,

and Pn(0) = 0 implies c = 0. 2
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Conversely, Poisson distributed event counts are also a sufficient condition
for the process being Poisson.

Theorem 2.8 [M&U Thm 8.8]: If {N(t) | t ≥ 0 } is a stochastic process
with N(0) = 0 such that

1. increments are independent and

2. the number of events in t time units is Poisson(λt),

then (N(t)) is a Poisson process with parameter λ.
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Proof: We have

lim
t→0

Pr(N(t) = 1)

t
= lim

t→0

e−λtλt

t
= λ

and

lim
t→0

Pr(N(t) ≥ 2)

t
= lim

t→0

∞∑
k=2

e−λt
(λt)k

k!t
= 0,

so Conditions 3 and 4 hold. Conditions 1 and 2 follow directly from the
assumptions. 2
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Let X1 be the time of the first event in a Poisson process. For n ≥ 1, let Xn

be the time between events n− 1 and n We call the random variables Xn

interarrival times.

Theorem 2.9 [M&U Thm 8.9]: The distribution of X1 is Expon(λ).

Proof:

Pr(X1 ≤ t) = 1− Pr(N(t) = 0) = 1− e−λt.

2

More generally,

Theorem 2.10 [M&U Thm 8.10]: The interarrival times Xn are mutually
independent and all have distribution Expon(λ).
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Proof:

Pr(Xk ≥ tk | X1 = t1, . . . , Xk−1 = tk−1)

= Pr

(
N

(
k∑
i=1

ti

)
−N

(
k−1∑
i=1

ti

)
= 0

)
= e−λtk.

Hence, Pr(Xk ≤ t) = 1− e−λt regardless of the values of X1, . . . , Xk−1. 2

The reverse of the above also holds. Exponential interarrival times thus give
a third characterization for a Poisson process.

Theorem 2.11 [M&U Thm 8.11]: If {N(t) | t ≥ 0 } is a stochastic process
such that N(0) = 0 and interarrival times are mutually mutually independent
and Expon(λ), then (N(t)) is a Poisson process with parameter λ.

(Proof omitted.)
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As we combined exponential distributions by Lemma 2.5 [M&U Lemma 8.5],
we can combine Poisson processes. We say that processes (N1(t)) ja (N2(t))
are independent, if N1(t) and N2(s) are independent for all t, s.

Theorem 2.12 [M&U Thm 8.12]: If (N1(t)) and (N2(t)) are independent
Poisson processes with parameters λ1 and λ2, respectively, then
(N1(t) +N2(t)) is a Poisson process with parameter λ1 + λ2.

If we further interpret the process (N1(t) +N2(t)) as a combination of the
events that constitute (N1(t)) and (N2(t)), then each event in the process
(N1(t) +N2(t)) is with probability λ1/(λ1 + λ2) from process (N1(t)).
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Proof: The first part follows directly from the characterization of Poisson
processes in terms of the event counts (Theorem 2.8 [M&U Thm 8.8]) and
the fact that the sum of two independent Poisson random variables also has
Poisson distribution (Randomized Algorithms I, Corollary 5.4 [M&U p. 97]).

The second part follows from the characterization of Poisson processes in
terms of exponential interarrival distributions (Theorem 2.9) and the result
about combining exponential distributions (Lemma 2.5) 2

By induction, this generalises to more than two processes.
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We can also split a Poisson process into two independent subprocesses.

Theorem 2.13 [M&U Thm 8.13]: Assume that (N(t)) is a Poisson
process with parameter λ. Assign each event independently of each other to
type 1 with probability p and type 2 with probability 1− p. Let (N1(t)) and
(N2(t)) be the processes constituted by the events of types 1 and 2,
respectively. Then (N1(t)) is a Poisson process with parameter pλ, and
(N2(t)) is a Poisson process with parameter (1− p)λ. Furthermore, (N1(t))
and (N2(t)) are independent.

Proof: Clearly N1(0) = 0 and the increments of (N1(t)) are independent.
For the first part it therefore suffices to show that N1(t) ∼ Poisson(pλ).
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We get the distribution of N1 as

Pr(N1(t) = k) =
∞∑
j=k

Pr(N1(t) = k | N(t) = j) Pr(N(t) = j)

=
∞∑
j=k

j!

k!(j − k)!
pk(1− p)j−ke−λt

(λt)j

j!

= e−λpt
(λpt)k

k!

∞∑
j=k

e−λ(1−p)t(λ(1− p)t)j−k

(j − k)!

= e−λpt
(λpt)k

k!

which is Poisson. The process N2 is handled similarly.
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To show independence, we first notice that N1(t) and N2(t) are independent
for all t:

Pr(N1(t) = m, N2(t) = n) = Pr(N(t) = m+ n, N2(t) = n)

= e−λt
(λt)m+n

(m+ n)!

(m+ n

n

)
pm(1− p)n

= e−λtp
(λtp)m

m!
· e−λt(1−p)(λt(1− p))n

n!
= Pr(N1(t) = m) Pr(N2(t) = n).
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This implies independence of N1(t) and N2(u) also for t 6= u. For example,
assume u > t. Since N(u)−N(t) and N(t) are independent, also
N2(u)−N2(t) is independent of N1(t) and N2(t). Therefore,

Pr(N1(t) = m, N2(u) = n)

=
n∑

k=0

Pr(N1(t) = m, N2(t) = k, N2(u)−N2(t) = n− k)

=
n∑

k=0

Pr(N1(t) = m, N2(t) = k) Pr(N2(u)−N2(t) = n− k)

= Pr(N1(t) = m)
n∑

k=0

Pr(N2(t) = k) Pr(N2(u)−N2(t) = n− k)

= Pr(N1(t) = m) Pr(N2(u) = n).

2
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The interarrival times of a Poisson process have exponential distribution.

However, it turns out that if we know the number of events during a given
time interval, the arrival times are distributed uniformly over this interval.

As a preliminary, consider one event during (0, t]:

Pr(X1 < s | N(t) = 1) =
Pr(X1 < s, N(t) = 1)

Pr(N(t) = 1)

=
Pr(N(s) = 1, N(t)−N(s) = 0)

Pr(N(t) = 1)

=
(λse−λs)e−λ(t−s)

λte−λt

=
s

t
,

for s ≤ t.
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More generally, when X1, . . . , Xn are mutually independent, their order
statistics are the random variables Y(1), . . . , Y(n) where the value of Y(i) is the
ith largest of the values of X1, . . . , Xn. We assume Xi 6= Xj for i 6= j, which
for continuous distributions holds with probability 1. Hence, if Xi = xi and
Y(i) = yi, then {x1, . . . , xn } = { y1, . . . , yn } ja y1 < . . . < yn.

Theorem 2.14 [M&U Thm 8.14]: The arrival times during (0, t] of a
Poisson process (N(t)) with condition N(t) = n have the same distribution
as the order statistics of n mutually independent random variables
X1, . . . , Xn where Xi is uniform over [0, t].

Proof: Denote the order statistics by Y(1), . . . , Y(n). We first calculate the
joint distribution of Y(i), then the conditional distribution of arrival times,
and notice that the distributions are the same.
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Let E denote the event

Y(1) ≤ s1, Y(2) ≤ s2, . . . , Y(n) ≤ sn.
For a permutation σ of the set {1, . . . , n }, let Eσ denote the event

Xσ(1) ≤ s1, Xσ(1) ≤ Xσ(2) ≤ s2, . . . , Xσ(n−1) ≤ Xσ(n) ≤ sn.
Omitting the cases where Xi = Xj for some i 6= j, we gets E = ∪σEσ. By
symmetry, Pr(E) = n! Pr(Eσ) for any σ. In particular,

Pr(E) = n! Pr(X1 < s1, X1 < X2 < s2, . . . , Xn−1 < Xn < sn)

=
n!

tn

∫ s1

0

∫ s2

u1

. . .

∫ sn

un−1

dun . . . du2 du1,

where 1/t comes from the uniform density over [0, t].
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On the other hand, let S1, . . . , Sn+1 be the n+ 1 first arrival times, T1 = S1

and Ti = Si − Si−1 for i > 1. We know that without the conditioning, the
interarrival times Ti are independent and exponentially distributed, with
density λe−λt. Therefore,

Pr(S1 ≤ s1, S2 ≤ s2, . . . , Sn ≤ sn, N(t) = n)

= Pr

(
T1 ≤ s1, T2 ≤ s2 − T1, . . . , Tn ≤ sn −

n−1∑
i=1

Ti, Tn+1 > t−
n∑
i=1

Ti

)

=

∫ s1

0

∫ s2−t1

0
. . .

∫ sn−
∑n−1

i=1
ti

0

∫ ∞
t−
∑n

i=1

λn+1 exp

(
−λ

n+1∑
i=1

ti

)
dtn+1 dtn . . . dt2dt1.

We evaluate the innermost integral:∫ ∞
t−
∑n

i=1

λn+1 exp

(
−λ

n+1∑
i=1

ti

)
dtn+1 =

∣∣∣∣∣
∞

tn+1=t−
∑n

i=1
ti

(
−λn exp

(
−λ

n+1∑
i=1

ti

))
= λne−λt.
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By writing uj =
∑j

i=1 ti we get

Pr(S1 ≤ s1, S2 ≤ s2, . . . , Sn ≤ sn, N(t) = n)

=

∫ s1

0

∫ s2−t1

0
. . .

∫ sn−
∑n−1

i=1
ti

0
λne−λtdtn . . . dt2dt1

= λne−λt
∫ s1

0

∫ s2

u1

. . .

∫ sn

un−1

dun . . . du2du1.

Since Pr(N(t) = n) = e−λt(λt)n/n!, we get

Pr(S1 ≤ s1, S2 ≤ s2, . . . , Sn ≤ sn | N(t) = n)

=
Pr(S1 ≤ s1, S2 ≤ s2, . . . , Sn ≤ sn, N(t) = n)

Pr(N(t) = n)

=
n!

tn

∫ s1

0

∫ s2

u1

. . .

∫ sn

un−1

dun . . . du2du1

which is the same as Pr(E). 2
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Continuous time Markovin processes [M&U Section 8.5]

A process {X(t) | t ≥ 0 } is a (time-homogeneous) Markov process, if for all
s, t ≥ 0 we have

Pr(X(t+ s) = x | X(u),0 ≤ u ≤ t) = Pr(X(t+ s) = x | X(t))

and this probability is the same for all t.

We are interested in discrete space Markov processes, for which the range of
X(t) is countable.

In discrete time, the properties of a Markov chain were represented in a
transition matrix. With a continuous time Markov process, we can identify
two subprocesses:

1. the embedded Markov chain, where the element pi,j of the transition
matrix gives the probability that the next state is j, if current state is i.

2. parameters θi which determine the times the process spends in each
state, so that the time spent in state i before moving on has
distribution Expon(θi).

The memoryless exponential distribution is essential to keep the whole
process Markovian.
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We will just have a quick look into stationary distributions without going
much into the theory.

As with discete time, the stationary distribution is such that if the process
has that distribution at some time, it keeps the same distribution in the
future. Further, under some additional assumptions, the process converges
towards the stationary distribution regardless of where it started.

Let Pj,i(t) be the probability of being in state i at time t, when at time 0 the
process is at state j. Hence, under suitable assumptions, the stationary
distribution π satisfies

lim
t→∞

Pj,i(t) = πi

for all i and j. If the process approaches the stationary distribution, then in
particular the derivative must satisfy

lim
t→∞

P ′j,i(t) = 0.

To find the stationary distribution, we calculate limt→∞ P ′(t) in another way
in terms of the stationary distribution π.
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P ′j,i(t) = lim
h→0

Pj,i(t+ h)− Pj,i(t)
h

= lim
h→0

∑
k Pj,k(t)Pk,i(h)− Pj,i(t)

h

= lim
h→0

∑
k 6=i

Pk,i(h)

h
Pj,k(t)−

1− Pi,i(h)

h
Pj,i(t)

.
We can think of the process leaving state k as a Poisson process with
parameter θk. Hence, as h→ 0, the probability of making one transition in
time h is asymptotically θkh, and the probability of making two transitions is
zero. Therefore,

lim
h→∞

Pk,i(h)

h
= θkpk,i and lim

h→∞

1− Pi,i(h)

h
= θi(1− pi,i).
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Assuming we can change the order of limit and summation (which is clear
at least for finite state spaces), we get

P ′j,i(t) =
∑
k 6=i

θkpk,iPj,k(t)− Pj,i(t)(θi − θipi,i)

=
∑
k

θkpk,iPj,k(t)− Pj,i(t)θi.

Assuming limt→∞ Pj,i(t) = πi we get

lim
t→∞

P ′j,i(t) =
∑
k

θkpk,iπk − θiπi.

Since this must be 0, we get

πiθi =
∑
k

πkθkpk,i.
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Thus, the stationary distribution satisfies rate equations

πiθi =
∑
k

πkθkpk,i

which have an intuitive interpretation:

• πiθi is the rate of transitions leaving state i

•
∑

k πkθkpk,i is the rate of transitions entering state i.

In particular, if θi = θ for all i, we get

πi =
∑
k

πkpk,i.

In this special case, the stationary distribution of the continuous time
Markov process is the same as that of the embedded discrete time chain.
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Markovian queues [M&U Section 8.6]

Consider a single server with a queue. The arrival times of customers follow
a Poisson process. Arriving customers join the end of the queue. The
customer at the front of the queue gets served, and the service time he
needs has exponential distribution.

We denote this model by M/M/1:

• first M stands for memoryless arrival distribution

• second M stands for memoryless service time distribution

• there is 1 server.

We model this as Markov process where queue lengths are the states.
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We denote by λ the parameter for the Poisson process giving the arrival
times, and by µ the parameter of the exponential distribution of the service
times. Let M(t) be the queue length at time t, and Pk(t) = Pr(M(t) = k).

Consider first the stationary distribution. Since in a time interval of length
h, the probability of a customer arriving is λh+ o(h), and of leaving,
µh+ o(h), we get

P ′0(t) = lim
h→0

P0(t+ h)− P0(t)

h

= lim
h→0

P0(t)(1− λh) + P1(t)µh− P0(h)

h
= −λP0(t) + µP1(t)

and for k ≥ 1 similarly

P ′k(t) = λPk−1(t)− (λ+ µ)Pk(t) + µPk+1(t).
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In the stationary situation, P ′k(t) = 0 for all k. Hence, if π is the stationary
distribution, we have

µπ1 = λπ0.

From this we get easily by induction

πk = π0

(
λ

µ

)k
for all k. The normalization

∑
k πk = 1 then implies π0 = 1− λ/µ assuming

λ/µ < 1. It can be shown that in this case the process does converge to this
stationary distribution.

If λ/µ ≥ 1, then
∑

k πk does not converge for any positive π0. Therefore,
there is no stationary distribution.
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To calculate the expected queue length, we write the stationary probability
for queue length k ≥ 1 as

πk =
λ

µ
pk

where

pk =

(
1−

λ

µ

)(
λ

µ

)k−1

.

Notice that pk is the probability that a random variable with Geom(1− λ/µ)
distribution gets value k. Since the expected value of Geom(q) is 1/q, the
expected queue length is

L =
λ

µ
·

1

1− λ/µ
=

λ

µ− λ
.

(Again, we assume λ < µ.)
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All this holds regardless the order in which customers are served. Let us
now analyse from an individual customer’s point of view, how long he
spends in the queue. For this we assume that customers are served on a
first in, first out principle.

Let L(k) be the event that the queue length is k when the customer arrives.
The expected time W that a customer spends in the system is

W =
∞∑
k=0

E[W | L(k)] Pr(L(k))

=
∞∑
k=0

k + 1

µ
Pr(L(k)),

where we used the fact that because of the distributions are memoryless,
the expected remaining service time for all customers is 1/µ. We next
calculate Pr(L(k)).

116



When the process is stationary, the rate of leaving state k is πkθk, where
θ0 = λ and θk = λ+ µ for k ≥ 1. By the result about combining exponential
distributions (Lemma 2.5 [M&U Lemma 8.5]), the probability that leaving
state k is due to an arrival of a new customer is λ/θk. Hence, the rate of
events where a customer arrives to find a queue length k is

πkθk ·
λ

θk
= πkλ.

By again applying Lemma 2.5, we see that the arrival event is with
probability πk such that the queue length is k:

Pr(L(k)) = πk.

This is an instance of so-called PASTA principle (Poisson Arrivals See Time
Averages).
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We can now calculate the expected waiting time:

W =
∞∑
k=0

k + 1

µ
πk

=
1

µ

(
1 +

∞∑
k=0

kπk

)
=

1

µ
(1 + L)

=
1

µ

(
1 +

λ

µ− λ

)
=

1

µ− λ

=
L

λ
.

The end result L = λW holds also more generally in various stable queue
systems.
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By joining and splitting Poisson processes we can reduce more general
queue systems into M/M/1; for example several independent arrival
processes, or several independent servers.

We could also consider queue systems of type M/M/1/K, where the queue
length has an upper limit K. If a customer arrives when the queue length is
K, he will leave immediately.

Essentially the same calculation as earlier gives then

πk =

{
π0(λ/µ)k for k ≤ K

0 for k > K.

Then

π0 =

(
K∑
k=0

(
λ

µ

)k)−1

and a stationary distribution exists regardless of whether λ < µ or not.
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Consider now a situation in which a customer can enter some service, spend
some time there, and then leave. There can be an arbitrary number of
customers in the service at any time. If the arrival and service times are
again memoryless, this can be modelled as an M/M/∞ queue. Every
customer has his own queue, and there are infinitely many queues available.

Consider first the stationary distribution. If the process is in state k
(meaning that there are k customers in service), the next event comes from
a combination of k + 1 Poisson processes. There are k processes
representing each customer leaving, and one process for arrivals.
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Hence, the time for the next event at state k has Poisson distribution with
parameter

θk = kµ+ λ,

and the event is an arrival with probability λ/(kµ+ λ). The transition
probabilities between states are

pk,k+1 =
λ

kµ+ λ

pk,k−1 =
kµ

kµ+ λ
.

The stationary distribution π satisfies conditions

πkθk = πk−1θk−1pk−1,k + πk+1θk+1pk+1,k

which thus become

πk(kµ+ λ) = πk−1λ+ πk+1(k + 1)µ

(where for the case k = 0 we define π−1 = 0).
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Write the condition

πk(kµ+ λ) = πk−1λ+ πk+1(k + 1)µ

as

πk+1(k + 1)µ− πkλ = πkkµ− πk−1λ.

Because π0 · 0 · µ− π−1λ = 0, for all k we have

πk+1(k + 1)µ− πkλ = 0.

Therefore,

πk+1 =
λ

µ(k + 1)
πk,

so

πk = π0

k∏
j=1

λ

µj
= π0

(
λ

µ

)k 1

k!
.

The normalization condition now gives the final result

πk = e−λ/µ
(λ/µ)k

k!
,

so the stationary distribution is Poisson(λ/µ).
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As an alternative solution, let M(t) be the number of customers being served
at time t. Let N(t) be the number of customers who arrived during time
interval [0, t]. Since N(t) is a Poisson process with parameter λ, we have

Pr(M(t) = j) =
∞∑
n=j

Pr(M(t) = j | N(t) = n)e−λt
(λt)n

n!
.

By Theorem 2.14 [M&U Thm 8.14] about conditional arrival times, the
arrival times of the n first customers conditioned on N(t) = n are uniform
over [0, t].

A customer who arrived at time x < t is at time t still in the system with
probability e−µ(t−x).

Thus, if we consider one fixed customer among the first n customers to
arrive, then the probability of his still being in the system at time t is

p =

∫ t

0
e−µ(t−x) ·

1

t
· dx =

1

µt

(
1− e−µt

)
.
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Since the customers are independent,

Pr(M(t) = j | N(t) = n) =
(n
j

)
pj(1− p)n−j.

Therefore,

Pr(M(t) = j) =
∞∑
n=j

(n
j

)
pj(1− p)n−je−λt

(λt)n

n!

= e−λt
(λtp)j

j!

∞∑
n=j

(λt(1− p))n−j

(n− j)!

= e−λt
(λtp)j

j!
eλt(1−p)

= e−λtp
(λtp)j

j!
.

The number of customers at time t is Poisson(λtp). The parameter of the
distribution approaches the value

lim
t→∞

λtp = lim
t→∞

λt
1

µt

(
1− e−µt

)
=
λ

µ
.
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3. The Monte Carlo method

Monte Carlo method is a generic name for a style of randomized algorithms
which most typically estimate some numerical quantity by

1. defining a random variable with the desired quantity as its expected
value and

2. calculating the average of a sufficiently large sample of independent
draws of the random variable.

We need to choose the random variable so the its values are reasonably well
concentrated around the expected value. In particular, we must pay
attention to the fact that if the target value we try to estimate is close to
zero, the relative errors can easily become very large.

Because of these considerations, the suitable distributions may be
complicated and sampling from them difficult. One general technique for
this is Markov Chain Monte Carlo (MCMC), where sampling is done using a
Markov chain with a suitable stationary distribution.

125



Basics of Monte Carlo [M&U Section 10.1]

The classic introductory example is estimating the value of π. Choose
X ∈ [−1,1] and Y ∈ [−1,1] from the uniform distribution and let

Z =

{
1 if X2 + Y 2 ≤ 1
0 otherwise.

The square [−1,1]× [−1,1] has area 4, and the unit disk has area π, so

E[Z] = Pr(Z = 1) =
π

4
.
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Let W =
∑m

i=1Zi, where Zi are independent copies of Z and m is a sample
size to be determined later. Let

W ′ =
4

m
W =

4

m

m∑
i=1

Zi.

Then E[W ′] = π, and we can apply a Chernoff bound to get

Pr

(
|W ′ − π|

π
≥ ε
)

= Pr
(∣∣∣W − mπ

4

∣∣∣ ≥ mπε

4

)
= Pr(|W − E[W ]| ≥ εE[W ])
≤ 2 exp

(
−mπε2/12

)
.

Hence, for any ε, δ > 0, if we choose

m ≥
12 ln(2/δ)

πε2
,

then with probability at least 1− δ the value W ′ approximates π with relative
error at most ε.
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More generally, if we estimate a quantity V with a randomized algorithm
such that the output X of the algorithm satisfies

Pr(|X − V | ≤ εV ) ≥ 1− δ,
we say the algorithm is an (ε, δ) approximation algorithm.

Hence, the previous sampling method gives an (ε, δ) approximation for π, as
long as m ≥ 12 ln(2/δ)/(πε2). From Chernoff bounds we get more generally

Theorem 3.1 [M&U Thm 10.1]: Let Xi, i = 1, . . . ,m be independent
identically distributed random variables with E[Xi] = µ, and let
X = (1/m)

∑m
i=1Xi. If

m ≥
3

ε2µ
ln

2

δ
,

then X is an (ε, δ) approximation for µ. 2
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For appying the previous result it is important to notice that µ appears in
the denominator of the sample size m. Since we use relative error as our
criterion, small quantities are difficult to estimate accurately.

Example 3.2: Let Bn =
{
x ∈ Rn |

∑n
i=1 x

2
i ≤ 1

}
be the n dimensional unit

ball and Vn its volume. We draw m random points Xi from the uniform
distribution over [−1,1]n. Let Zi = 1 if Xi ∈ Bn, and Zi = 0 otherwise. Then
µ = E[Zi] = Vn/2n.

It is well known that

Vn =
πn/2

Γ(1 + n/2)
≈ (2π)−1/2

(
2eπ

n

)n/2

,

where Γ(n+ 1) = n! and we used Stirling’s approximation. We conclude
that the sampling method will not give a good estimate for the volume of
Vn if the number of dimensions n is high. 2

This is a basic example of a fairly common scenario, where the size of the
“interesting” set (here Bn) is vanishigly small compared to the “obvious”
sample space (here[−1,1]n). Hence, more refined sampling strategies are
needed.
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More generally, let V (x) be some function depending on input x, and let |x|
denote the size of x.

An algorithm A(·, ·, ·) is a polynomial randomized approximation scheme for
V , if for any x and for all ε, δ > 0, the algorithm A(x, ε, δ) runs in time
poly(|x|) and gives an (ε, δ) approximation for V (x).

An algorithm A(·, ·, ·) is a fully polynomial randomized approximation scheme
(FPRAS), if additionally the run time of A(x, ε, δ) is also polynomial in 1/ε
and ln(1/δ).

The main difference in polynomial and fully polynomial schemes is that the
former allows running times such as O(n1/ε), the latter does not. The
dependence on δ is usually not an issue.
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Counting satisfying assignments [M&U Section 10.2]

For a Boolean formula ϕ(x1, . . . , xn), let c(ϕ) be the number of truth value
assignments x ∈ {0,1 }n that satisfy it. For example, c(ϕ) ≥ 1 for satisfiable
formulas, and c(ϕ) = 2n for tautologically true formulas. There are two
important computational problems related to c.

CNF counting:
Given: formula ϕ in conjunctive normal form (CNF)
Task: compute c(ϕ)

DNF counting
Given: formula ϕ in disjunctive normal form (DNF)
Task: compute c(ϕ).

If ϕ is a CNF formula, then its negation ϕ is a DNF formula of roughly same
size, and c(ϕ) = 2n − c(ϕ). Hence, if an exact answer is required, the
problems have essentially the same computational complexity.
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The DNF and CNF counting problems in exact form are known to be
complete for a class called ]P (“number P” or “sharp P”). A function f
belongs to ]P , if there is a polynomial time nondeterministic Turing machine
M such that the value f(x) is the same as the number of accepting
computations of M with input x.

However, from an approximation point of view, the DNF and CNF counting
problems are very different. The NP complete SAT problem is the same as
asking whether c(ϕ) > 0 holds for a CNF formula ϕ. Hence, approximating
CNF counting with any relative error strictly less than 100% would solve
SAT.

In the DNF case, the NP complete problem is deciding between the cases
c(ϕ) = 2n and c(ϕ) ≤ 2n − 1, and the relative difference between 2n and
2n − 1 is very small. (The satisfiability problem is trivial for DNF formulas.)

We give a FPRAS for DNF counting. For CNF counting, the existence of a
FPRAS would imply that any problem in NP could be solved in polynomial
time at least if some reasonable model of randomization is allowed.
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Our first attempt is a straight generalization from the Monte Carlo
algorithm for π. For i = 1, . . . ,m, let V i ∈ {0,1 }n be independent random
value assingments, and Xi = 1 if ϕ(V i) = 1.

Now E[Xi] = c(ϕ)/2n. Hence, for

Y =
2n

m

m∑
i=1

Xi,

we have E[Y ] = c(ϕ). Then Y gives a (ε, δ) approximation, if

m ≥
3 ln(2/δ)

ε2
·

2n

c(ϕ)
.

If c(ϕ) is polynomial, this only gives an exponential upper bound. A closer
analysis (which we omit here) shows that this is not an artefact of any loose
approximations in our proof, and an exponential sample size really is
necessary.

133



For an improved sampling method, write ϕ = C1 ∨ . . . ∨ Ct, where each term
Ci is a conjunction with `i literals. Let R(ψ) ⊆ {0,1 }n be the number of
assignments that satisfy ψ. So in general, c(ψ) = |R(ψ)|, and here in
particular,

c(Ci) = |R(Ci)| = 2n−`i.

Therefore, it is easy to calculate

t∑
i=1

c(Ci) =
t∑

i=1

2n−`i.

Since R(ϕ) = ∪iR(Ci), we have

c(ϕ)∑t
i=1 c(Ci)

= α

for some 0 ≤ α ≤ 1, and therefore c(ϕ) = α
∑

i 2
n−`i. Our plan is to

1. define a set U such that |U | =
∑t

i=1 c(Ci),

2. define a set S ⊆ U such that |S| = c(ϕ) and

3. estimate α = |S| / |U | by sampling from U .
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First, we define

U = { (i,x) ∈ {1, . . . , t } × {0,1 }n | x ∈ R(Ci) } .
Clearly

|U | =
t∑

i=1

|R(Ci)| =
t∑

i=1

2n−`i.

Now we define

S = { (i,x) ∈ U | (j,x) 6∈ U for j < i } .
Then

|S| = |∪iR(Ci)| = c(ϕ),

so

c(ϕ) =
|S|
|U |

t∑
i=1

2n−`i.

Additionally, |U | ≤ t |S|, so the ratio α = |S| / |U | can be approximated
efficiently, if we know how to sample uniformly from U .
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We claim that the following sampling procedure produces pairs (i,x)
according to the uniform distribution over U :

1. Choose i ∈ {1, . . . , t } randomly so that the probability of choosing i is

c(Ci)∑t
j=1 c(Cj)

=
c(Ci)

|U |
.

2. Choose x ∈ {0,1 }n so that the `i literals in Ci are satisfied and the
remaining n− `i variables are assigned random values uniformly and
independently.

Clearly stage 2 samples x uniformly from R(Ci), so

Pr((i,x) is chosen) = Pr(i is chosen) · Pr((i,x) chosen | i is chosen)

=
c(Ci)

|U |
·

1

c(Ci)

=
1

|U |
.

Hence, the distribution is uniform.
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We have the following algorithm.

X := 0
Repeat for k = 1, . . . ,m:

Choose a random (i,x) ∈ U .
If Cj(x) = 0 for all j < i, then X := X + 1.

Return (X/m)
∑t

i=1 2n−`i.

Based on the above, this given an (ε, δ) approximation when

m ≥
3t ln(2/δ)

ε2
.

Hence, we have an FPRAS.
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From sampling to counting [M&U Section 10.3]

The DNF counting algorithm was an example of how the cardinality |S| of a
set S is estimated as

|S| =
|S|
|U |
|U | ,

where U is such that

• |U | is known

• we have an efficient method for uniform sampling from U and

• |S| / |U | is not too small.

We consider a general method for finding a suitable sample space U .
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If the random output w of a sampling algorithm A satisfies∣∣∣∣Pr(w ∈ S)−
|S|
|Ω|

∣∣∣∣ ≤ ε
for all S ⊆ Ω, we say that A generates an ε uniform sample of Ω.

If instances x of some computational problem are associated with a sample
space Ω(x), we call A a fully polynomial almost uniform sampler (FPAUS)
for this problem, if A, given as input any ε > 0 and x, generates an ε
uniform sample of Ω(x) in running time which is polynomial in ln(1/ε)) and
the size of x

We are interested in the setting where Ω(x) is the set of solutions to a
problem instance x and we wish to estimate |Ω(x)|.
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As an example, consider the number of independent sets in a graph
G = (V,E). Thus, we take as Ω(G) the set of independent sets in G.

Let E = { e1, . . . , em }, where m = |E|, and Gi = (V, { e1, . . . , ei }) for
i = 0, . . . ,m. Hence, Ω(Gi+1) ⊂ Ω(Gi), and

|Ω(G)| =
|Ω(Gm)|
|Ω(Gm−1)|

·
|Ω(Gm−1)|
|Ω(Gm−2)|

·
|Ω(Gm−2)|
|Ω(Gm−3)|

· . . . ·
|Ω(G1)|
|Ω(G0)|

· |Ω(G0)| .

We know that Ω(G0) = 2n. We shall next show that the ratio

ri =
|Ω(Gi)|
|Ω(Gi−1)|

can be estimated with sufficient accuracy, if we have access to an almost
uniform sampler of Ω(Gi−1). We shall later return to the question of
constructing such samplers.
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Let r̃i be the estimate we got for ri by sampling. Thus, the output of the
algorithm is 2n

∏m
i=1 r̃i, whereas the correct answer is 2n

∏m
i=1 ri. The relative

error is ∣∣∣∣2n∏m
i=1 r̃i − 2n

∏m
i=1 ri

2n
∏m
i=1 ri

∣∣∣∣ =

∣∣∣∣∣
m∏
i=1

r̃i

ri
− 1

∣∣∣∣∣ .
We first estimate this total error in terms of the errors related to each
individual estimate r̃i.

Lemma 3.3: If r̃i is an (ε/(2m), δ/m) approximation for all i, and
0 < ε, δ < 1, then

Pr

(∣∣∣∣∣
m∏
i=1

r̃i

ri
− 1

∣∣∣∣∣ ≥ ε
)
≤ δ.
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Proof: We assume

Pr
(
|r̃i − ri| >

ε

2m
ri

)
<

δ

m
for all i. Hence, by the union bound, the probability that |r̃i − ri| > riε/(2m)
holds for at least one i is at most δ. With probability 1− δ we have

1−
ε

2m
≤
r̃i

ri
≤ 1 +

ε

2m

for all i Then (
1−

ε

2m

)m
≤

m∏
i=1

r̃i

ri
≤
(

1 +
ε

2m

)m
.
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We define f(ε) = (1 + ε/(2m))m and use Taylor’s formula to approximate

f(ε) = f(0) + εf ′(0) +
ε2

2
f ′′(z)

= 1 +
ε

2
+
ε2

2
·
m(m− 1)

(2m)2
(1 + z/(2m))m−2

≤ 1 + ε ·
1

2
+
ε2

8
ez/2

< 1 + ε,

where 0 ≤ z ≤ ε < 1. By similarly estimating 1− ε < (1− ε/(2m))m, we get

1− ε ≤
m∏
i=1

r̃i

ri
≤ 1 + ε

with probability 1− δ. 2
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We now consider estimating an individual ri. Since we have access only to
an almost uniform sampler of Ω(Gi−1), we cannot directly apply
Theorem 3.1.

We use the following method.

Assumption: A is an ε/(6m) uniform sampler of Ω(Gi−1).

Repeat for k = 1, . . . ,M :
Choose Zk ∈ Ω(Gi−1) using A.
If Zk ∈ Ω(Gi), then Xk = 1; else Xk = 0.

Return r̃i = (1/M)
∑m

k=1Xk.

Lemma 3.4: For all m ≥ 1 and 0 < ε, δ ≤ 1, the algorithm above returns an
(ε/(2m), δ/m) approximation r̃i for ri, assuming

M ≥
1296m2 ln(2m/δ)

ε2
.
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Proof: We first show that ri is not too small, which is the basis of the
whole idea.

Let (u, v) be the edge that is included in Gi but not in Gi−1. If
I ∈ Ω(Gi−1)−Ω(Gi), then I includes both vertices u and v. If we define
f(I) = I − { v }, we have f(I) ∈ Ω(Gi).

Since f is a one-to-one mapping from I ∈ Ω(Gi−1)−Ω(Gi) to Ω(Gi), we get
|Ω(Gi−1)−Ω(Gi)| ≤ |Ω(Gi)| and

ri =
|Ω(Gi)|
|Ω(Gi−1)|

=
|Ω(Gi)|

|Ω(Gi)|+ |Ω(Gi−1)−Ω(Gi)|
≥

|Ω(Gi)|
|Ω(Gi)|+ |Ω(Gi)|

=
1

2
.
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The rest is technicalities to show that the given sample size is sufficient for
the desired approximation accuracy.

The first part is to show that E[r̃i] is sufficiently close to ri. By our
assumptions about A, we have∣∣∣∣E[Xk]−

|Ω(Gi)|
|Ω(Gi−1)|

∣∣∣∣ =

∣∣∣∣Pr(Xk = 1)−
|Ω(Gi)|
|Ω(Gi−1)|

∣∣∣∣ ≤ ε

6m

for all k. Hence,

|E[r̃i]− ri| =

∣∣∣∣∣ 1

M

m∑
k=1

E[Xk]−
|Ω(Gi)|
|Ω(Gi−1)|

∣∣∣∣∣ ≤ ε

6m
.
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Since ri ≥ 1/2 and ε ≤ 1, we get in particular

E[r̃i] ≥
1

2
−

ε

6m
≥

1

3
.

By applying Theorem 3.1 [M&U Thm 10.1] we now see that r̃i is an
(ε/(12m), δ/m) approximation for the expected value E[r̃i], when

M ≥
3 ln(2m/δ)

(ε/12m)2 · (1/3)
=

1296m2 ln(2m/δ)

ε2
.

Hence, with probability at least 1− δ, for all i we have

1−
ε

12m
≤

r̃i

E[r̃i]
≤ 1 +

ε

12m
.
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On the other hand, we saw earlier that |E[r̃i]− ri| ≤ ε/(6m), so

1−
ε

6mri
≤

E[r̃i]

ri
≤ 1 +

ε

6mri
.

By taking into account ri ≥ 1/2, we obtain

1−
ε

3m
≤

E[r̃i]

ri
≤ 1 +

ε

3m
.

Hence, with probability at least 1− δ/m we have(
1−

ε

3m

)(
1−

ε

12m

)
≤

E[r̃i]

ri
·
r̃i

E[r̃i]
≤
(

1 +
ε

3m

)(
1 +

ε

12m

)
,

which implies

1−
ε

2m
≤
r̃i

ri
≤ 1 +

ε

2m
.

2
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Markov Chain Monte Carlo (MCMC) [M&U Section 10.4]

We saw that if we have a fully polynomial almost uniform sampler for
independent sets of a graph G, we can use it to obtain a fully polynomial
approximation scheme for the number of independent sets.

It is fairly easy to show that such a sampling method exists if the graph in
question has degree at most 4 [M&U Section 11.6]. Since our
approximation algorithm only requires sampling for the original graph and
some of its subgraphs, if the original graph G has degree at most 4, we can
approximate the number of its independent sets.

The only other parts in the proof that were specific to independent sets
were calculating the initial value |Ω(G0)| and deriving the lower bound
ri ≥ 1/2. Hence, the method is quite general.

149



Markov Chain Monte Carlo (MCMC) is a method for obtaining an almost
uniformly distributed independent sample (X1, X2, . . .) from Ω:

1. Construct a Markov chain (Y0, Y1, Y2, . . .) with state space Ω and a
uniform stationary distribution.

2. Choose X1 = Yr, X2 = Y2r, X3 = Y3r, . . . , where r is large enough.

Here the sampling interval r needs to be sufficiently long for the distribution
to be sufficiently close to the stationary distribution regardless of the initial
state. This is usually hard to analyse. (Notice that for estimating the mean
or some other statistical quantity, it may be better to use Xr, Xr+1, Xr+2, . . .,
even if this makes the individual sample points highly correlated.)

However, there are fairly standard methods for finding a Markov chain with
a desired stationary distribution, in particular the Metropolis algorithm we
shall study next.

Therefore, it is fairly common to use MCMC as a heuristic without proof of
approximation quality. In practice this often works well.

This can also be generalized to non-uniform distributions.
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Assume that Ω is finite. The first part of the construction is defining for
each x ∈ Ω its neighborhood N(x) ⊆ Ω. We assume that the neighborhood
structure is symmetric (x ∈ N(y)⇔ y ∈ N(x)), and x 6∈ N(x).

For example, if Ω is the set of all independent sets in G, we might choose
the neighborhood N(I) of an independent set I to consist of all independent
sets of the form I ∪ { v } or I − { v } for v ∈ V .

Choose some upper bound M ≥ maxx∈Ω |N(x)| and set the following
transition probabilities for the Markov chain:

Px,y =

 1/M if y ∈ N(x)
0 if y 6= x and y 6∈ N(x)

1− |N(x)| /M if y = x.
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Theorem 3.5 [M&U Lemma 10.7]: If the Markov chain constructed above
is irreducible and aperiodic, then its has the uniform distribution as its
unique stationary distribution.

Proof: For all x 6= y we have either Px,y = Py,x = 0 or Px,y = Py,x = 1/M , so
the uniform distribution π satisfies

πxPx,y = πyPy,x for all x, y.

Hence, it is a stationary distribution.

The uniqueness follows from irreducibility and aperiodicity (Randomized
Algorithms I [M&U Thm 7.7]) 2
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For example, let Ω be the set of independent sets in a graph G = (V,E) and
the neighborhoods N(x) as above. The desired Markov chain, with M = |V |,
can be implemented as follows.

1. Choose X0 = ∅ (or any other independent set).
2. If Xk = I, then

Choose v ∈ V uniformly at random.
If v ∈ I, then Xk+1 = I − { v }.
Else if I ∪ { v } is an independent set, then Xk+1 = I ∪ { v }.
Else Xk+1 = I.

The chain is clearly irreducible. If E 6= ∅, then PI,I > 0 for at least some I,
so the chain is aperiodic.
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The Metropolis algorithm

We generalize the previous idea to sampling from a non-uniform
distribution. Suppose we are given for each state x some weight b(x) > 0,
with the intention that the stationary distribution π should satisfy
πx = b(x)/B for some constant B. We then of course have B =

∑
x b(x), but

we do not require that the explicit value of B is known or easily computable.

For example, in the case on independent sets we might choose
b(I) = exp(c |I|) for some c > 0, which favors large sets.

We define the transition matrix as follows:

Px,y =


1
M

min
{

1, b(y)
b(x)

}
if y ∈ N(x)

0 if y 6= x and y 6∈ N(x)
1−

∑
z 6=x Px,z if y = x.

The previous construction is obtained as the special case where b(x) is the
same for all x.
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For example, for independent sets with weight function b(I) = exp(c |I|),
c > 0, this can be implemented as

1. Choose X0 = ∅.
2. If Xk = I, then

Choose v ∈ V from the uniform distribution.
If v ∈ I, then Xk+1 = I − { v } with probability e−c and

Xk+1 = I with probability 1− e−c.
Else if I ∪ { v } is independent, then Xk+1 = I ∪ { v }.
Else Xk+1 = I.
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Theorem 3.6 [M&U Lemma 10.8]: If the Markov chain constructed above
is irreducible and aperiodic, it has the unique stationary distribution π where
πx = b(x)/B for some constant B.

Proof: Let πx = b(x)/B, where B =
∑

x∈Ω b(x). Hence, π is a probability
distribution and satisfies b(x)/b(y) = πx/πy for all x, y.

For all x 6= y, one of the following holds:

1. b(x) = b(y) and Px,y = 1/M = Py,x,

2. b(x) > b(y) and Px,y = (1/M) · (b(y)/b(x)) and Py,x = 1/M ,

3. b(x) < b(y) and Px,y = 1/M and Py,x = (1/M) · (b(x)/b(y)).

Hence, in all cases we have b(x)Px,y = b(y)Py,x, which implies

πxPx,y = πyPy,x for all x, y.

Therefore, π is a stationary distribution.

The uniqueness follows again from finite state space, irreducibility and
aperiodicity. 2
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4. Coupling of Markov chains

Coupling is one method of analysing the speed with which a Markov chain
converges towards the stationary distribution. The analysis of this
convergence speed, called mixing time, in realistic applications is beyond the
scope of this course. We give examples of the coupling technique to give an
idea of how such results might be accomplished.

(The 1996 Gödel prize was given to Mark Jerrum and Alistair Sinclair for
their work on rapidly mixing Markov chains. Their method was based on
analysing the conductance of the Markov chains, which is a different
technique.)
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We consider ergodic, irreducible finite-state discrete-time Markov chains.
Hence, a unique stationary distribution exists.

For two probability measures D1 and D2 over a countable sample space S,
their variation distance is

‖D1 −D2‖ =
1

2

∑
x∈S

|D1({x })−D2({x })| .

The variation distance has a useful alternative formulation:

Lemma 4.1 [M&U Lemma 11.1]: If D1 and D2 are probability measures
over S, we have

‖D1 −D2‖ = max
A⊆S
|D1(A)−D2(A)| .
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Proof: Let S+ = {x ∈ S | D1({x }) ≥ D2({x }) } and
S− = {x ∈ S | D2({x }) > D1({x }) }. Clearly

max
A⊆S

(D1(A)−D2(A)) = D1(S+)−D2(S+)

max
A⊆S

(D2(A)−D1(A)) = D2(S−)−D1(S−).

Furthermore,

D1(S+) +D1(S−) = D1(S) = 1 = D2(S) = D2(S+) +D2(S−),

so

D1(S+)−D2(S+) = D2(S−)−D1(S−).

Therefore,

max
A⊆S
|D1(A)−D2(A)| = max

{
D1(S+)−D2(S+), D2(S−)−D1(S−)

}
=

1

2

(
(D1(S+)−D2(S+)) + (D2(S−)−D1(S−))

)
=

1

2

∑
x∈S

|D1({x })−D2({x })| .

2
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Let A be an algorithm that produces random samples of a space Ω
according to a distribution DA, and let U be the uniform distribution over Ω.
The previous result shows that A gives ε uniform samples if and only if
‖DA − U‖ ≤ ε.

Let π̄ be the stationary distribution of chain (Xt) with state space S, and let
ptx be the distribution of Xt under condition X0 = x. We define

∆x(t) =
∥∥π̄ − ptx∥∥ and ∆(t) = max

x∈S
∆x(t).

Furthermore,

τx(ε) = min { t |∆x(t) ≤ ε } ja τ(ε) = max
x∈S

τx(ε).

The function τ(ε) is called the mixing time of the chain. If the mixing time
is polynomial in log(1/ε) and the problem size, the chain is rapidly mixing.
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Consider a Markov chain (Mt) with state space S. A coupling of this Markov
chain is a Markov chain (Zt) = ((Xt, Yt)) with state space S × S, such that

Pr(Xt+1 = x′ | Zt = (x, y)) = Pr(Mt+1 = x′ |Mt = x)
Pr(Yt+1 = y′ | Zt = (x, y)) = Pr(Mt+1 = y′ |Mt = y).

Thus (Xt) and (Yt) are both copies of the original chain:

Pr(Xt = r | X0 = s) = Pr(Yt = r | Y0 = s) = Pr(Mt = r |M0 = s).

Trivial examples of a coupling would be two independent copies of the
original chain, or two identical copies. More useful examples are obtained by
having non-trivial dependencies between (Xt) and (Yt).

When (Xt) and (Yt) have entered the same state, we say they have coupled.
We can include a dependence that keeps the chains in the same state after
they are coupled.
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Example 4.2: Consider a Markov chain that represents shuffling a deck of
n cards by picking at each step a random card from the deck and moving it
to the top. The states are the n! permutations of the deck, and each state
has n equally probable successors (one of which is itself).

We create a coupling ((Xt, Yt)) where the initial distributions X0 and Y0 may
be arbitrary. The transition from state (Xt, Yt) is determined as follows.

1. In the permutation represented by Xt, pick a random position. Let the
C be the card in that position. Obtain Xt+1 by moving card C to the
top.

2. Obtain Yt+1 by finding the card C in permutation Yt and moving it to
the top.

Clearly Xt and Yt are copies of the same chain, and if XT = YT then Xt = Yt
for all t ≥ T . 2
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Lemma 4.3 [M&U Lemma]: Let ((Xt, Yt)) be a coupling of a Markov
chain with state space S and T such that

Pr(XT 6= YT | X0 = x, Y0 = y) ≤ ε
for all x, y ∈ S. Then

τ(ε) ≤ T.

Proof: Let π be the stationary distribution of the original chain. The choice
of initial distributions X0 and Y0 does not affect the assumption or claim of
the lemma. Hence, we consider (Yt) that has π as the initial distribution.
Therefore, also Yt has distribution π, regardless of how (Xt) is chosen.
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By the assumptions, Pr(XT 6= YT) ≤ ε for all initial distributions (X0, Y0), so
for all A ⊆ S we have

Pr(XT ∈ A) ≥ Pr((XT = YT) ∩ (YT ∈ A))
≥ 1− Pr(YT 6∈ A)− Pr(XT 6= YT)
≥ Pr(YT ∈ A)− ε.

Similarly, Pr(XT 6∈ A) ≥ Pr(YT 6∈ A)− ε. Since YT follows the stationary
distribution, the variation distance between XT and the stationary
distribution is at most ε. 2
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Example continued: Consider the mixing time for shuffling a deck of
cards, using the previously introduced coupling ((Xt, Yt)).

If each card C has been selected at least once, the decks represented by Xt

and Yt are in the same order. The problem is thus reduced to coupon
collecting.

After n lnn+ cn steps, the probability that a given card C has never been
selected is (

1−
1

n

)n lnn+cn

≤ e−(lnn+c) =
e−c

n
.

Hence, after n lnn+ n ln(1/ε) steps, the probability that the decks are not in
the same order is at most

n ·
e− ln(1/ε)

n
= ε.

Hence, τ(ε) ≤ n lnn+ n ln(1/ε) and the chain is rapidly mixing. 2
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Example 4.4: Random walk in a hypercube

Consider the familiar graph where the vertex set is V = {0,1 }n and two
vertices have an edge between them if they differ by exactly one bit.

We create a Markov chain by making transitions in the hypercube so that we
first pick randomly one of the bit positions 1, . . . , n and then with probability
1/2 flip that bit. Hence, with probability 1/2 we stay in the same state.

Alternatively, one can think that in a state x = (x1, . . . , xn) we perform one
random operation chosen from the 2n operations xi := b, i = 1, . . . , n,
b ∈ {0,1 }. Again, half the operations actually leave the state unchanged.
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The chain is ergodic, since the self-loops prevent periodicity. Hence, a
unique stationary distribution exists.

Construct a coupling ((Xt, Yt)) such that the same operation is always
performed in chain (Xt) and chain (Yt). Therefore, after each bit position
has been operated at least once, the chains are in the same state.

Again, we have an instance of coupon collecting. As in the previous
example, after O(n ln(n/ε)) step the probability that the chains have coupled
is at least 1− ε. The mixing time of the original chain is therefore
O(n ln(n/ε)). 2
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Fixed-size independent sets

We construct a Markov chain where the states are those independent sets in
a graph G = (V,E) that have exactly k vertices.

When X ⊂ V is an indepenent set with |X| = k we define m(v, w,X), for any
v ∈ X and w ∈ V , to be the independent set with k vertices as follows:

• if w 6∈ X and X ∪ {w } − { v } is an independent set, then
m(v, w,X) = X ∪ {w } − { v },

• else m(v, w,X) = X.

We construct a Markov chain (Xt) by setting Xt+1 = m(v, w,Xt), where
v ∈ Xt and w ∈ V are chosen from the uniform distributions. The chain is
ergodic, with uniform stationary distribution (left as exercise).
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We create a coupling Zt = (Xt, Yt) as follows:

• Given Xt and Yt, pick some bijection M : Xt − Yt → Yt −Xt.

• Choose random v ∈ Xt and w ∈ V and set Xt+1 = m(v, w,Xt).

• If v ∈ Yt, then v′ = v; else v′ = M(v). Let Yt+1 = m(v′, w, Yt).

Since each pair (v, w) and (v′, w) has the same probability 1/(kn) of being
chosen, (Xt) and (Yt) are copies of the original chain. Furthermore, if
Xt = Yt, then Xt+1 = Yt+1.
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How soon do we get Xt = Yt? Let’s look into the size of the set difference

dt = |Xt − Yt| = k − |Xt ∩ Yt| .
If dt = 0, then dt+1 = 0.

Suppose now the degree of the graph is at most a constant ∆, and
k ≤ n/(3∆ + 3). We first show that for some value 0 < c < 1, which depends
on n, k, and ∆, we have

E[dt+1 | dt] ≤ (1− c)dt.
By considering different alternatives we see that in any case
dt+1 ∈ { dt − 1, dt, dt + 1 }. If dt = 0, then dt+1 = 0. Consider the probabilities
of events dt+1 = dt + 1 and dt+1 = dt − 1 assuming dt > 0. Write
Xt+1 = m(v, w,Xt) and Yt+1 = m(v′, w, Yt) as above.
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If dt+1 = dt + 1, then |Xt+1 ∩ Yt+1| = |Xt ∩ Yt| − 1. This can only happen if
v = v′ ∈ Xt ∩ Yt, but v 6∈ Xt+1 ∩ Yt+1 and w 6∈ Xt+1 ∩ Yt+1.

Therefore, exactly one of the conditions m(v, w,Xt) = Xt and
m(v′, w, Yt) = Yt holds. The vertex w or some of its neighbors is in
(Xt − Yt) ∪ (Yt −Xt).

The probability of this event is

Pr(dt+1 = dt + 1 | dt > 0) ≤
k − dt
k
·

2dt(∆ + 1)

n
.

On the other hand, dt+1 = dt − 1 holds at least if v 6∈ Yt, and neither w nor
any of its neighbors is in (Xt ∪ Yt)− { v, v′ }. Since |Xt ∪ Yt| = k + dt, we get

Pr(dt+1 = dt − 1 | dt > 0) ≥
dt

k
·
n− (k + dt − 2)(∆ + 1)

n
.
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Therefore, for all m ≥ 1 we have

E[dt+1 | dt = m] = m+ Pr(dt+1 = m+ 1 | dt = m)− Pr(dt+1 = m− 1 | dt = m)

≤ m+
k −m
k
·

2m(∆ + 1)

n
−
m

k
·
n− (k +m− 2)(∆ + 1)

n

= m

(
1−

n− (3k −m− 2)(∆ + 1)

kn

)
≤ (1− c)m,

where

c =
n− (3k − 3)(∆ + 1)

kn
.

Furthermore, E[dt+1 | dt = 0] = 0. Hence,

E[dt+1] = E[E[dt+1 | dt]] ≤ (1− c)E[dt].
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By induction, we get

E[dt] ≤ E[d0](1− c)t ≤ E[d0]e−ct.

Since E[d0] ≤ k and dt only gets non-negative integer values,

Pr(Xt 6= Yt) = Pr(dt > 0) = Pr(dt ≥ 1) ≤ E[dt] ≤ E[d0]e−ct.

Therefore, Pr(Xt 6= Yt) ≤ ε for

t ≥
ln(k/ε)

c
.

The mixing time is τ(ε) ≤ (ln(k/ε)/c), so the chain is rapidly mixing.
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Monotonicity of variation distance [M&U Section 11.3]

Recall that we use ptx to denote the distribution at time t if initial state is x,
and

∆(t) = max
x∈S

∥∥π̄ − ptx∥∥ .
We show that the convergence of a Markov chain towards its stationary
distribution is monotone in the sense that

∆(t+ 1) ≤∆(t).

We will need the following lemma.

Lemma 4.5 [M&U Lemma 11.3]: Let Z = (X,Y ) be a random variable
with range S × S, where S is finite, and X and Y have marginal distributions
σX ja σY . Then

Pr(X 6= Y ) ≥ ‖σX − σY ‖ .
Furthermore, for any given marginal distributions σX and σY there is a joint
distribution for which this holds as equality.
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Proof: Since Pr(X = Y = s) ≤ min {Pr(X = s),Pr(Y = s) }, we have

Pr(X 6= Y ) =
∑
s∈S

(Pr(X = s)− Pr(X = Y = s))

≥
∑
s∈S

(Pr(X = s)−min {Pr(X = s),Pr(Y = s) })

=
∑
s∈S

(σX(s)−min {σX(s), σY (s) })

=
∑
s∈S+

(σX(s)− σY (s)),

where S+ = { s ∈ S | σX(s) ≥ σY (s) } as in the proof of Lemma 4.1 [M&U
Lemma 11.1] The same argument as in the proof of Lemma 4.1 shows that∑

s∈S+

(σX(s)− σY (s)) = ‖σX − σY ‖ .

175



Assume now that σX and σY are given. We want a joint distribution with

Pr(X 6= Y ) = ‖σX − σY ‖ .
Based on the above, this is equivalent with having

Pr(X = Y = s) = min {σX(s), σY (s) } .
for all s ∈ S. Define m(s) = min {σX(s), σY (s) }. We claim that the desired
joint distribution is obtained as

Pr(X = x, Y = y) =

{
m(x) if x = y

(σX(x)−m(x))(σY (y)−m(y))

1−
∑

z
m(z)

if x 6= y.

The basic idea is that of the probability mass σX(x) related to the event
(X = x), we reserve m(x) for the event (X = Y = x). The remaining part
σX(x)−m(x) is shared among events (X = x, Y = y) respecting the desired
marginal distribution for Y .
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The distribution Pr has the desired margins. If m(x) = σX(x), then
Pr(X = x, Y 6= x) = 0, and

Pr(X = x) =
∑
y∈S

Pr(X = x, Y = y) = Pr(X = Y = x) = m(x).

On the other hand, if m(x) = σY (x), then

Pr(X = x) =
∑
y∈S

Pr(X = x, Y = y)

= m(x) +
∑
y 6=x

(σX(x)−m(x))(σY (y)−m(y))

1−
∑

zm(z)

= m(x) +
(σX(x)−m(x))

∑
y 6=x(σY (y)−m(y))

1−
∑

zm(z)

= m(x) +
(σX(x)−m(x))(1− σY (x)− (

∑
ym(y)−m(x)))

1−
∑

zm(z)

= σX(x).

2

177



Theorem 4.6 [M&U Thm 11.4]: Any ergodic Markov chain satisfies
∆(T + 1) ≤∆(T ) for all T .

Proof: Consider an arbitrary state x. Let ptx be the distribution of the chain
at time t when the initial state is x. Let pt∗ be the distribution of the chain
at time t when the initial state follows the stationary distribution. Hence, pt∗
is still the stationary distribution, and

∆x(t) =
∥∥ptx − pt∗∥∥ .

Let (Xt) and (Yt) be Markov chains with distributions ptx and pt∗.
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Consider some fixed time T . By Lemma 4.5, we can construct for
ZT = (XT , YT) a joint distribution such that Pr(XT 6= YT) =

∥∥pTx − pT∗ ∥∥ (and

the margin distributions remain pTx and pT∗ ). Additionally, we can define
ZT+1 = (XT+1, YT+1) by making a coupling such that if XT = YT , then
XT+1 = YT+1.

Hence, by the construction of the distributions of (XT , YT) and (XT1
, YT+1),

we have

∆x(T ) =
∥∥pTx − pT∗ ∥∥ = Pr(XT 6= YT) ≥ Pr(XT+1 6= YT+1).

By Lemma 4.5, in any case we have

Pr(XT+1 6= YT+1) ≥
∥∥pT+1

x − pT+1
∗

∥∥ = ∆x(T + 1).

Since x was arbitrary, the claim follows. 2
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Geometric convergence [M&U Section 11.4]

Theorem 4.7 [M&U Thm 11.5]: Consider a finite-state irreducible
aperiodic Markov chain with transition matrix P and stationary distribution
π. Let mj = mini pij for all j, and m =

∑
jmj. For all x and T we have∥∥pTx − π∥∥ ≤ (1−m)T .

Proof: We create two copies of the chain, (Xt) and (Yt). No matter what
the values of Xt−1 and Yt−1 are, the assumptions imply

Pr(Xt = Yt = j) ≥ mj

for all j. Hence Pr(Xt 6= Yt) ≤ 1−m, and the probability of making at least
T without coupling is at most (1−m)T . 2
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In practice we often have mj = 0 for all j, in which case the previous result
is not directly useful. However, under the assumptions, for all i, j there is tij
such that P tij

ij > 0. If additionally Pii > 0, then P t
ij > 0 for all t ≥ tij. Then

P T
ij > 0 for all i, where T = maxi tij. Hence, we can apply the result to the

chain with transition matrix P T . This chain has the same stationary
distribution as the original one.

Instead of assuming Pii > 0, it is sufficient to make the weaker assumption
that state i is aperiodic.
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We have an even more general result that shows geometric convergence.

Theorem 4.8 [M&U Thm 11.6]: Consider a finite-state irreducible
aperiodic Markov chain (Mt) for which τ(c) ≤ T for some c < 1/2. Then for
all ε we have

τ(ε) ≤
⌈

ln ε

ln(2c)
T

⌉
.

Proof: Let the transition matrix of the chain be P , and stationary
distribution π. Fix states x and y. By assumption,

∥∥pTx − π∥∥ ≤ c and∥∥pTy − π∥∥ ≤ c, so
∥∥pTx − pTy ∥∥ ≤ 2c. By Lemma 4.5 [M&U Lemma 11.3], we can

construct a random variable ZT,x,y = (XT , YT) such that XT and YT have
distributions pTx and pTy , and Pr(XT 6= YT) ≤ 2c.
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Let now (M ′t) be a Markov chain with transition matrix P T . We make a
coupling for this chain using the same coupling that gave us ZT,x,y. More
specifically, if the coupling at time t is in state (x′, y′), then the distribution
at time t+ 1 is the same as for ZT,x′,y′.

Then the probability that (M ′t) makes k transitions without coupling is at
most (2c)k. Hence, after k transitions (M ′t) has variation distance at most ε
from the stationary distribution if

(2c)k ≤ ε,
which means

k ≥
⌈

ln ε

ln(2c)

⌉
.

The claim follows since T transitions in (Mt) correspond to one transition in
(M ′t) and the chains have identical stationary distributions. 2
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Sampling graph colorings [M&U Section 11.5]

A (vertex) coloring of a graph G = (V,E) with c colors is a mapping
h : V → {1, . . . , c }. The coloring is proper if h(u) 6= h(v) whenever (u, v) ∈ E.

If the graph has degree ∆, it can easily be colored properly using ∆ + 1
colors by just considering the vertices one after another and always picking
a color that has not been used in the neighborhood of the vertex.

The chromatic number χ(G) of graph G is the smallest number of colors in
a proper coloring. Determining the chromatic number is a well-known
NP-hard problem. Here we consider sampling from proper colorings where
the number of colors is well above the chromatic number.
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We define the Markov chain in a straightforward manner. To make a
transition, we choose a vertex v ∈ V and a color ` ∈ {1, . . . , c } from the
uniform distribution. If changing the color of v into ` results in a proper
coloring, we make the change. Otherwise the coloring remains unchanged.

The chain is clearly aperiodic. It is also irreducible assuming c ≥∆ + 2. To
move from coloring X to coloring Y , we fix the colors of vertices in some
arbitrary order. If changing the color of a vertex v to match Y would lead to
an improper coloring, this must be because of some later vertex v′. Since
c ≥∆ + 2, we can fix the situation by changing the color of v′ to a different
one that is not used in any of its neighbors.

We first give a simple coupling that show rapid mixing when c ≥ 4∆ + 1.
We then improve the construction to get down to c ≥ 2∆ + 1.
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Theorem 4.9: If a graph has n vertices and maximum degree ∆, then for
c ≥ 4∆ + 1 the mixing time of the Markov chain of its proper c-colorings is

τ(ε) ≤
⌈

nc

c− 4∆
ln
n

ε

⌉
.

Proof: We construct a coupling ((Xt, Yt)) such that at each transition, both
chains choose the same pair (v, `). Let Dt be the set of vertices that at time
t have different color in chains (Xt) ja (Yt), and dt = |Dt|. We’ll show that if
dt > 0, then dt is more likely to decrease than increase. The proof strategy is
similar to the one we used for fixed-size indepent sets.

186



Assume that dt > 0, and consider first the case v ∈ Dt, which has probability
dt/n. If further v ∈ Dt+1, then the chosen color ` has appeared in a neighbor
of v in at least one of the colorings Xt and Yt. There are at most 2∆ such
colors. Hence, the probability that Dt decreases is

Pr(dt+1 = dt − 1 | dt > 0) ≥
dt

n
·
c− 2∆

c
.

On the other hand, suppose v 6∈ Dt. If v ∈ Dt+1, then the chosen color ` is
such that some u gets color ` in exactly one of the colorings Xt and Yt.
Each u ∈ Dt can in this manner affect at most ∆ vertices v and two colors `.
Hence,

Pr(dt+1 = dt + 1 | dt > 0) ≤ dt ·
∆

n
·

2

c
.

If dt = 0, then dt+1 = 0, so these estimates hold (as equalities) also if we
change the condition to be dt = 0.
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Therefore,

E[dt+1 | dt] = dt + Pr(dt+1 = dt + 1)− Pr(dt+1 = dt − 1)

≤ dt + dt ·
∆

n
·

2

c
−
dt

n
·
c− 2∆

c

= dt

(
1−

c− 4∆

nc

)
and

E[dt+1] = E[E[dt+1 | dt]] ≤ E[dt]

(
1−

c− 4∆

nc

)
.

By induction, we get

E[dt] ≤ d0

(
1−

c− 4∆

nc

)t
.
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Since d0 ≤ n and dt is a non-negative integer,

Pr(dt ≥ 1) ≤ E[dt] ≤ n
(

1−
c− 4∆

nc

)t
≤ n exp

(
−
t(c− 4∆)

nc

)
.

Hence, Pr(dt = 0) ≥ 1− ε for

t ≥
nc

c− 4∆
ln
n

ε
.

2

The preceding analysis can be made sharper by considering how many of
the neighbors of v are in Dt. For this to be useful, we also need to change
the coupling a bit. This results in a slightly smaller requirement for the
number of colors.
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Theorem 4.10 [M&U Thm 11.8]: If a graph has n vertices and degree at
most ∆, then the mixing time for its proper c-colorings is

τ(ε) ≤
⌈
n(c−∆)

c− 2∆
ln
n

ε

⌉
assuming c ≥ 2∆ + 1.

Proof: Again we make a coupling ((Xt, Yt)). We choose a random v ∈ V as
earlier. If v has different color in Xt and Yt, we choose a random
` ∈ {1, . . . , c } and try in both chains to switch the color of v to ` as
previously. The case when vt has the same color in Xt and Yt is more
delicate and will be handled later.
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Again, let Dt be the set of vertices that have different color in Xt and Yt,
and let dt = |Dt|. Additionally, we define At = V −Dt.

Denote the set of neighbors of v by N(v). We define

d′(v) =

{
|N(v) ∩Dt| if v ∈ At
|N(v) ∩At| if v ∈ Dt.

Then ∑
v∈Dt

d′(v) =
∑
w∈At

d′(v) =: m′.

If v ∈ Dt, then there are at least c− (2∆− d′(v)) colors that can properly be
given to v both in Xt and Yt. Therefore,

Pr(dt+1 = dt − 1 | dt > 0) ≥
∑
v∈Dt

1

n
·
c− 2∆ + d′(v)

c
=

(c− 2∆)dt +m′

cn
.
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We now move to the case v ∈ At. Consider first the situation where exactly
one of the neighbors of v have different color in Xt and Yt. Denote these
colors by `x and `y. We make the coupling so that if in (Xt) we chose (v, `x),
then in (Yt) we choose (v, `y), and vice versa. Now only one of these choices
will give v different color in Xt+1 and Yt+1, when in our original coupling
both choices did this.
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More generally, let S1 be the set of colors that appear among the neighbors
of v in Xt but not in Yt. Similarly, let S2 be the set of colors that appear
among the neighbors of v in Yt but not in Xt.

We make as many pairs (`1, `2) ∈ S1 × S2 as possible and make the coupling
so that if in Xt+1 we attempt to assign color `1 to v, then in Yt+1 we choose
`2, and vice versa. Now, since we assumed v ∈ At, exactly one of the colors
{ `1, `2 } is such that choosing it in (Xt) causes v to get different color in
Xt+1 and Yt+1. Hence,

Pr(dt+1 = dt + 1 | dt > 0) ≤
∑
v∈At

1

n
·
d′(v)

c
=
m′

cn
.
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As previously, we now notice that

E[dt+1 | dt] ≤ dt +
m′

cn
−

(c− 2∆)dt +m′

cn
= dt

(
1−

c− 2∆

cn

)
and

Pr(dt ≥ 1) ≤ E[dt] ≤ n
(

1−
c− 2∆

cn

)t
≤ n exp

(
−
t(c− 2∆)

cn

)
.

Hence, Pr(dt = 0) ≥ 1− ε for

t ≥
cn

c− 2∆
ln
n

ε
.

2
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5. Martingales

Martingales are a useful class of random processes that allow us to
generalize many results from independent random variables to certain types
of dependencies.

We shall only introduce the basic concepts. As an example application we
introduce the generalization of Chernoff bounds for large deviations of

∑
iXi

where the random variables Xi don’t need to be independent (but still must
satisfy some conditions).

(The term “martingale” in this context originally comes from a betting
strategy in which the bet is doubled after each loss.)
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Let (Z0, Z1, Z2, . . .) and (X0, X1, X2, . . .) be finite or countably infinite
sequences of random variables.

We call (Zt) a martingale with respect to (Xt) if for all n

1. the values of X0, . . . , Xn determine the value of Zn

2. E[|Zn|] <∞ and

3. E[Zn+1 | X0, . . . , Xn] = Zn.

The sequence (Zn) is a martingale if it is a martingale with respect to itself.
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Example 5.1: Let Xi be results of independent throws of a 6-sided die.
Before throw i, the player places a bet Ri ∈ [0, c]. If Xi is odd, the player
wins Ri units, otherwise he loses Ri units of money. Let Yi ∈ [−c, c] be the
amount the player wins in round i, and Zt =

∑t
i=1 Yi.

If Ri is constant, the random variables Yi are independent and we can apply
the familiar Chernoff bounds to the total profit Zt.

If Ri may depend on the previous gains Z0, . . . , Zi−1, then (Zt) is a martingale.

If Ri may depend on the results of the earlier throws X0, . . . , Xi−1, then (Zt)
is a martingale with respect to (Xt). 2
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Let X0, . . . , Xn be a sequence of random varibles and Y such that E[|Y |] <∞
and the values X0, . . . , Xn determine Y . Define

Zi = E[Y | X0, . . . , Xi].

Hence, (Z0, Z1, . . . , Zn) gives a sequence of increasingly well-informed
estimates of Y . In particular Zn = Y , and if X0 is some constant “fake
variable” then Z0 = E[Y ] is constant.

This is a martingale with respect to (Xt):

E[Zi+1 | X0, . . . , Xi] = E[E[Y | X0, . . . , Xi+1] | X0, . . . , Xi]
= E[Y | X0, . . . , Xi]
= Zi,

where we used the property

E[E[Y | U, V ] | U ] = E[Y | U ].

Martingales like this are called Doob martingales.
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If a martingale represents a gambling scenario like above, the game is fair in
the sense that the expected wealth of the player at any given time is the
same as his initial wealth:

Lemma 5.2 [M&U Lemma 12.1]: If Z0, Z1, . . . is a martingale with respect
to X0, X1, . . ., then

E[Zt] = E[Z0]

for all t.

Proof: By known properties,

E[Zi] = E[E[Zi+1 | X0, . . . , Xi]] = E[Zi+1].

The claim follows by induction. 2
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As an example of applying martingales, we consider generalizing Chernoff
bounds.

Theorem 5.3 (Azuma-Hoeffding, [M&U Thm 12.4]): Let X0, X1, . . .
be a martingale such that

|Xk −Xk−1| ≤ ck.
Then for all t we have

Pr(|Xt −X0| ≥ λ) ≤ 2 exp

(
−

λ2

2
∑t

i=1 c
2
k

)
.

We omit the proof. It is based on a similar estimation of generating
functions as the Chernoff bounds for independent variables.

Corollary 5.4 [M&U Corollary 12.5]: Let X0, X1, . . . be a martingale such
that

|Xk −Xk−1| ≤ c.
Then for all t we have

Pr(|Xt −X0| ≥ cλ
√
t) ≤ 2 exp

(
−
λ2

2

)
.
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Example 5.5: Let X be a random string of n symbols over an alphabet Σ
where |Σ| = s. Hence, X = X1 . . . Xn, where Xi are independent and
uniformly distributed over Σ.

An occurence of a string B = b1 . . . bk in X is an index 1 ≤ i ≤ n− k + 1 such
that Xi+j−1 = bj for all j. Let Fi = 1 if i is an occurence of B, and

∑
i Fi the

number of occurences. Therefore,

E[F ] =
n−k+1∑
i=1

Pr(X[i . . . i+ k − 1] = B) =
n− k + 1

sk
.
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Define a Doob martingale with Z0 = E[F ] and

Zi+1 = E[F | X1, . . . , Xi+1].

Since Fi can depend on Xj+1 only if i ≤ j + 1 ≤ i+ k − 1, for any given j
there are at most k indices i such that the difference

∆i,j = E[Fi | X1, . . . , Xj+1]− E[Fi | X1, . . . , Xj]

in non-zero. Since Fi ∈ {0,1 }, we have in any case

−1 ≤∆i,j ≤ 1.

Therefore,

|Zj+1 − Zj| =
n−k+1∑
i=1

|∆i,j| ≤ k.

Corollary 5.4 now implies

Pr(|F − E[F ]| ≥ kλ
√
n) ≤ 2 exp

(
−
λ2

2

)
.

2
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6. Summary

We have seen various ways of applying probabilities in designing and
analysing algorithms:

• algorithms that use randomness

• average case analysis

• some other random environment (for example, queue systems).

Things we can analyze about algorithms:

• the expected cases: clearly more difficult than worst-case analysis, but
linearity of expectation often makes this manageable

• variance: usually difficult to analyse

• large deviations: usually difficult, but in particular cases we may be able
to apply powerful tools such as Chernoff bounds.
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Ways to use randomness in algorithm desing:

• avoiding the worst case (as in Las Vegas algorithms)

• sampling: works for example for counting; helpful techniques include
Chernoff bounds, MCMC and rapidly mixing Markov chains.

• fingerprinting: we use randomness to create a small fingerprint for a
large object (for example, hashing).

• load balancing: packet routing in networks etc.

• symmetry breaking, in particular in distributed computing.

The End
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