FL 0o

00014 HELSINGIN YLIOPISTO Group exercise IT (18-22.10.2004)

1. Consider tree:

Nodes are listed depth-vise, starting at depth 0, every depth at own row. Within one row, nodes
are listed from left to right. If node z has both children, we denote _x_, if only left child we denote
_z, etc.

Design algorithm that given a tree does this visualization for it.

2. The following recursive algorithm does an inorder traversals to a tree

inorder-tree-walk(x)
if x # NIL then
inorder-tree-walk(left[x])
print key|[x]
inorder-tree-walk(right[x])

Another way to traverse through a tree is to use preorder traversal, where the node itself is treated
before going to its children. As recursive algorithm:

preorder-tree-walk(x)
if x # NIL then
print key[x]
preorder-tree-walk(left[x])
preorder-tree-walk(right[x])

e list the nodes of tree in exercise 2 in preorder

e implement preorder tree traversals without recursion

e implement inorder tree traversals without recursion

What is the time/state complexity of operations?

3. 2-3-4-tree

Topic of Chapter 18 of the Cormen book is B-tree. A special case of B-tree, where t = 2, is called
2-3-4 tree (Cormen page 439). Find out how 2-3-4 tree works and denonstrate its usage when keys
41, 38, 12, 19 and 8 are added to an empty tree. Draw tree after each insertion.

Red-black tree is easy to convert to a 2-3-4 tree, and vice versa. How this is done?



