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Uncertain reasoning and data mining
• Real-world environments are complex

– pure logic is not a feasible tool for describing 
the underlying stochastic rules

• It is possible to learn about the underlying 
uncertain dependencies via observations
– as shown by the success of some human experts 

• Obtaining and communicating this type of 
deep knowledge is difficult
– the objective: to develop clever algorithms and 

methods that help people in these tasks
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Different approaches to 
uncertain reasoning

• (Bayesian) probability theory
• neural networks
• fuzzy logic
• possibility measures
• case-based reasoning
• kernel estimators
• support vector machines
• etc....
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Two perspectives on probability

• The classical frequentist approach (Fisher, Neyman, Cramer, ...)
– probability of an event is the long-run frequency with which it happens

• but what then is the probability that the world ends tomorrow? 
– the goal is to find ”the true model”
– hypothesis testing, classical orthodox statistics

• The modern subjectivist approach (Bernoulli, Bayes, Laplace,
Jeffreys, Lindley, Jaynes, …)
– probability is a degree of belief
– models are believed to be true with some probability (”All models are 

false, but some are useful”)
⇒ Bayesian networks
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The Bayes rule

• ”The probability of a model M after observing data D is 
proportional to the likelihood of the data D assuming that 
M is true, times the prior probability of M.”

• Bayesianism = subjective probability theory

Model M Data D
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Thomas Bayes (1701-1761)
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Advantages of the Bayesian approach
• A consistent calculus for uncertain reasoning

– the Cox theorem: constructing a non-Bayesian 
consistent calculus is difficult

• Decision theory offers a theoretical framework for 
optimal decision-making
– requires probabilities!

• Transparency
– A “white box”: all the model parameters have a clear 

semantic interpretation
– The certainty associated to probabilistic predictions is 

intuitively understandable
– cf. “black boxes” like neural networks
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More advantages of Bayesianism

• Versatility
– Probabilistic inference: compute P(what you want to know | 

what you already know).
– cf. single-purpose models like decision trees

• An elegant framework for learning models from data
– Works with any size data sets
– Can be combined with prior expert knowledge
– Incorporates an automatic Occam’s razor principle, avoids 

overfitting
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The Occam’s razor principle
• “If two models of different complexity both fit the 

data approximately equally well, then the simpler 
one usually is a better predictive model in the 
future.”

• Overfitting: fitting an overly complex model to the 
observed data

age

underfitting

overfittingOK

# of car accidents
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Bayesian metric for learning

• P(D) is constant with respect to different 
models, so it can be considered constant.

• Prior P(M) can be determined by experts, or 
ignored if no prior knowledge is available.

• The evidence criterion (data marginal 
likelihood) P(D|M) is an integral over the model 
parameters, which causes the criterion to 
automatically penalize too complex models.
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Probability theory in practice
• Bayesian networks: a family of probabilistic 

models and algorithms enabling 
computationally efficient

1. Probabilistic inference
2. Automated learning of models from sample data

• Based on novel discoveries made in the last 
two decades by people like Pearl, Lauritzen, 
Spiegelhalter and many others

• Commercial exploitation growing fast, but 
still in its infant state
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Bayesian networks
• A Bayesian network is a model of probabilistic 

dependencies between the domain variables. 
• The model can be described as a list of dependencies, 

but is is usually more convenient to express them in a 
graphical form as a directed acyclic network.

• The nodes in the network correspond to the domain 
variables, and the arcs reveal the underlying 
dependencies, i.e., the hidden structure of the domain 
of your data.

• The strengths of the dependencies are modeled as 
conditional probability distributions (not shown in 
the graph).
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Dependencies and Bayesian networks

• The Bayesian network on the right represents the 
following list of dependencies:
– A and B are dependent on each other no matter what we 

know and what we don't know about C or D (or both).
– A and C are dependent on each other no matter what we 

know and what we don't know about B or D (or both).
– B and D are dependent on each other no matter what we 

know and what we don't know about A or C (or both).
– C and D are dependent on each other no matter what we 

know and what we don't know about A or B (or both).
– A and D are dependent on each other if we do not know 

both B and C.
– B and C are dependent on each other if we know D or if 

we do not know D and also do not know A.
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Bayesian networks: 
the textbook definition

• A Bayesian (belief) network representation for a probability 
distribution P on a domain (X1,...,Xn) is a pair (G,θ), where 
G is a directed acyclic graph whose nodes correspond to the 
variables X1,...,Xn, and whose topology satisfies the 
following: each variable X is conditionally independent of 
all of its non-descendants in G, given its set of parents FX, 
and no proper subset of FX satisfies this condition. The 
second component θ is a set consisting of all the conditional 
probabilities of the form P(X|FX).

θ = {P(+a), P(+b|+a), P(+b|-a), P(+c|+a), P(+c|-a), 
P(+d|+b,+c), P(+d|-b,+c), P(+d|+b,-c), P(+d|-b,-c)}
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G:
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A more intuitive description
• From the axioms of probability theory, it follows that

P(a,b,c,d)=P(a)P(b|a)P(c|a,b)P(d|a,b,c)

P(x1 , . . . , xn ) = P(xi
i=1

n

∏ |FXi )

A B C D
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• Assume: P(c|a,b)=P(c|a) and P(d|a,b,c)=P(d|b,c)

A B C D
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Why does it work?
• simple conditional probabilities are easier to 

determine than the full joint probabilities
• in many domains, the underlying structure 

corresponds to relatively sparse networks, so only a 
small number of conditional probabilities is needed

P(+a,+b,+c,+d)=P(+a)P(+b|+a)P(+c|+a)P(+d|+b,+c)
P(–a,+b,+c,+d)=P(–a)P(+b|–a)P(+c|–a)P(+d|+b,+c)
P(–a,–b,+c,+d)=P(–a)P(–b|–a)P(+c|–a)P(+d|–b,+c)
P(–a,–b,–c,+d)=P(–a)P(–b|–a)P(–c|–a)P(+d|–b,–c)
P(–a,–b,–c,–d)=P(–a)P(–b|–a)P(–c|–a)P(–d|–b,–c)
P(+a,–b,–c,–d)=P(+a)P(–b|+a)P(–c|+a)P(–d|–b,–c)
. . .

A
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where: n is the number of variables in M,
qi is the number of predecessors of Xi
ri is the number of possible values for Xi
Nijk is the number of cases in D, where Xi=xik and Fi=fij
Nij is the number of cases in D where Fi=fij
Nijk

’ is the Dirichlet exponent of θijk , “a prior number of cases “ identical to 
the Nijk in D.
Nij

’ is the “prior number of cases” identical to the Nij in D.

Computing the evidence
• Under certain natural technical assumptions, the 

evidence criterion P(D|M) for a given BN structure M 
and database D can be computed exactly in feasible 
time:
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B-Course: An Interactive Tutorial on Bayesian Networks 
http://b-course.cs.helsinki.fi
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Petri Myllymäki, Henry Tirri: Bayes-verkkojen 
mahdollisuudet (Tekesin Teknologiaraportti 58/98)

Copies of these slides, the above report and 
other relevant material can be found at

http://www.cs.helsinki.fi/research/cosco/Bnets
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