
Protocol Software Engineering:
Protocol Testing

Kimmo Raatikainen & Oriana Riva

Department of Computer Science



29.1.2007© Kimmo Raatikainen & Oriana Riva 2

Lesson Outline

Some protocol testing methods
R. Lai: A survey of communication protocol testing. The 
Journal of Systems and Software 62 (2002) 21–46. 

Example: VoIP
Ruibing Hao, David Lee, Rakesh K. Sinha, and Nancy 
Griffeth: Integrated System Interoperability Testing With
Applications to VoIP. IEEE/ACM Transactions on 
Networking, Vol. 12, No. 5 (October 2004) 823-836.

Testing SDL
Ana R. Cavalli, Byoung-Moon Chin, and Kilnam Chon: 
Testing methods for SDL systems. Computer Networks and 
ISDN Systems 28 (1996) 1669-l 683. 



29.1.2007© Kimmo Raatikainen & Oriana Riva 3

A survey of communication 
protocol testing



29.1.2007© Kimmo Raatikainen & Oriana Riva 4

Introduction … 

A protocol is a precise set of rules that defines 
the interaction among elements of a system.

Protocol conformance testing seeks to 
ensure that such elements will operate correctly 
once the system has been implemented by 
checking that the protocol implementation 
conforms to the specification.
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... Introduction...

Formal Description Techniques (FDTs) have 
been developed to provide a formal specification 
acting as a sound basis for protocol testing.

e.g., Specification and Description Language (SDL)

Standardized procedures for protocol testing 
have been developed by ISO

The standard ISO 9646 defines the details for 
Conformance Testing Methodology and Framework 
(CTMF).
A test notation called Tree and Tabular Combined 
Notation (TTCN) has also been developed.
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… Introduction …

Academic research has recently made 
significant advances

in the generation of test sequences from formal 
specifications and
in the development of computer-aided test tools to 
improve the effectiveness of testing

This state-of-the-art research is not necessarily 
state-of-the-practice
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… Introduction

There is not much progress in the use of test sequence 
generation techniques for practical testing of 
communication networks.
Test design is still largely performed by testers by 
interpreting the specifications written in a natural 
language.
Testers have to face real problems such as deadlines, 
resource and economic constraints.
The big gap between academic and industrial testing 
practices is the fact that academia has not been 
addressing the real-life testing issues and problems 
account for the fact that academic testing methods are 
seldom used in industry.
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Background knowledge

Graphs

Finite state machine

Extended finite state machine

Distinguishing sequences

Characterizing sequences

Unique input/output (UIO) sequences
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Graphs …

Let G = (V,E) be a labelled directed graph with vertex set 
V edge set E

V = {v1; . . . ; vn} and m = |E|.

In general, G may contain loops and multiple edges, 
which are distinguished from one another by different 
labels.
An edge from vertex vi to vj is represented by a triple     
(vi, vj; Lk), where Lk is a distinct label.
A walk in G is a finite non-null sequence of consecutive 
edges

W = {(vi,1, vi,2; L1)(vi,2, vi,3; L2) ... (vi,r-1, vi,r ; Lr-1)}
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… Graphs …

A tour is a walk that starts and ends at the same vertex.

An Euler tour of G is a tour which contains every edge of 
E exactly once.

Graph G is strongly connected if for any pair of distinct 
vertices vi and vj there exists a walk W in G with origin vi

and tail vj

G is weakly connected if the underlying undirected graph 
is connected
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… Graphs

A postman tour of G is a tour which contains every edge 
of E at least once.

The Chinese Postman Problem is to find an optimal 
(minimum cost) postman tour of a directed, strongly 
connected graph G

such a tour is called a Chinese Postman Tour.

If G contains an Euler tour, the Euler tour is also a 
Chinese Postman Tour.
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Finite state machine

A finite-state machine (FSM) M can be represented by a 
directed graph G = (V,E)

the set V = {v1; . . . ; vn} of vertices represents the set of 

specified states, S, of the FSM, and

a directed edge represents a transition from one state to 

another in the FSM

A specification of an FSM is said to be fully specified if, 
for every state, every input in the input set of M generates 
an output.
Otherwise, the specification is said to be partially 
specified.
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Extended finite state machine …

The extended finite state machine (EFSM) is introduced 
as a remedy to the state space explosion problem of the 
FSM in specifying large, practical protocols involving 
context variables, such as sequence numbers.

An EFSM is an FSM augmented with minor states 
(context) variables.

These variables form additional enabling conditions in the 
transitions to reduce the number of states required in the 
underlying FSM.
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… Extended finite state machine …

Different transitions may occur in response to the same 
combination of input event and starting (major) state in an 
EFSM.

A transition in an EFSM may be triggered by three types 
of enabling conditions:

the input event,

the current (major) state, and

a boolean expression involving minor state variables.
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… Extended finite state machine …

Each transition now consists of three operations:
the output operation,

the state transition (changing major state), and

operations that alter values of the minor state variables.

©Mihalis Yannakakis, Columbia University
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… Extended finite state machine

Test sequences generated from an FSM are generally 
done according to their directed graphs.

Since minor state variable need to be considered as well 
in an EFSM to ensure the final test sequences are 
executable, when these variables are included in an 
extended directed graph, can become very cluttered and 
difficult to use.

The tabular format is better suited for representing an 
EFSM for testing purposes and is also used as a tool for 
test sequence generation procedure.
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Distinguishing sequences

A distinguishing sequence is defined as a set of inputs 
that generate a set of outputs different for each starting 
state si in an FSM.

For generating a test sequence by using the 
distinguishing sequences method, first a distinguishing 
sequence for the FSM to be tested is found based on the 
specification.

Note that it is necessary for an FSM to be fully specified 
for having a distinguishing sequence.
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Characterizing sequences

For the FSMs that do not have distinguishing sequences, 
the characterizing sequences method defines partial 
distinguishing sequences each of which distinguishes a 
state si from a subset of the remaining states instead of 
distinguishing si from every state of the FSM.

The complete set of such input sequences for an FSM is 
called the characterizing set W of the FSM. 

This method, similar to the distinguishing sequences 
method, requires a fully specified FSM.
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Unique input/output (UIO) sequences …

A UIO sequence for a state si is an input/output behaviour
that is not exhibited by any other state:

UIO(si) = (i1/ o1)(i2 / o2)…(ip / op)

UIO sequences are not the same as distinguishing 
sequences.

For a test, the input portion of distinguishing sequence is the 

same for all states; different states are distinguished by the 

distinct output.

For the UIO sequences, the input portion is normally 

different for each state.
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… Unique input/output (UIO) sequences …

When the input part of the UIO sequence for a certain 
state s is applied to the FSM, the output sequence is 
compared with the expected output sequence.

If they are the same, then the FSM is in state s
Otherwise, the FSM is not in state s

When the input portion of a distinguishing sequence is 
applied to the FSM, the outputs contain sufficient 
information to decide not only whether the machine is in 
state s but also if not s, then which one.
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… Unique input/output (UIO) sequences

UIO sequences are typically shorter than the 
distinguishing sequences or characterizing sequences 
since the UIO sequences are a subset of them.

Also, almost all FSMs have UIO sequences unless the 
FSM has equivalent states
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Test sequence generation methods

As implementation can be different from a protocol 
standard, conformance testing is needed to confirm the 
implementations to its standard.

Testing is carried out by using test sequences.
A test sequence is a list of inputs and expected outputs.

Four formal methods (T-, U-, D- and W- method) have 
been presented for generating test sequences for protocol 
from a protocol specification.
All four methods assume a Mealy machine model (M) for 
protocol entity specifications.
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Mealy machine

A Mealy machine is an FSM which produces an output 
upon each transition

Let M represent a Mealy machine and adopt the following 
notation:

M|s ≡ machine M at state s;
M|s(α) ≡ the last output symbol on input string α to M|s;
M|s<α> ≡ the output string on input string α to M|s.
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Some definitions …

Definition 1: A machine M is minimal if the number of 
states of M is less than or equal to the number of states of 
M’ for any Mealy machine M’ equivalent to M.

Definition 2: A machine is completely specified if from 
each state it has a transition for each input symbol. M is 
incompletely specified if it is not completely specified.

Definition 3: A machine M is strongly connected if from 
each state pair (si,sj) there is a transition path going from 
si to sj.
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… Some definitions …

Definition 4: A transition table of M is a table consisting 
of two subtables: an output subtable and a next-state 
subtable, each with rows and columns identified by the 
states and input symbols of M, respectively. An entry in 
the output (next-state) subtable specifies, corresponding 
to a state s and an input symbol A of M, the output (next-
state) of M|s on A.

Definition 5: A test subsequence for M is a sequence of 
input symbols for testing either a state or a transition of M. 
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… Some definitions

Definition 6: A test sequence for M is a sequence of input 
symbols that can be used in testing conformance of 
implementations of M against the specification of M.

Definition 7: A β – sequence for M is a concatenation of 
test subsequences for testing all transitions of M.

Definition 8: An optimized test sequence is a test 
sequence such that no subsequence of it is completely 
contained in any other subsequence.
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The T-Method …

The T-method assumes a minimal, strongly connected, 
and completely specified M.

A test sequence, called a transition-tour sequence can 
be generated by simply applying random inputs to a fault-
free M until the machine has traversed every transition at 
least once.

However, the sequence generated may contain many 
redundant inputs which in turn generate loops in the 
transition tour.
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The U-Method …

The U-method assumes a minimal, strongly connected 
and completely specified Mealy machine.

It involves deriving a unique input/output (UIO) 
sequence for each state of M.

A UIO sequence for a state of M is an I/O behavior that is 
not exhibited by any other state of M.

A UIO sequence can be used to determine whether the 
FSM was in a specified start state or not.
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… The U-Method

However, if the FSM was in some other (error) state, it will 
not be possible to determine the identify of that using a 
UIO sequence.

Optimized test sequence can be obtained by applying the 
Rural Chinese Postman Tour
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The D-Method

The D-method assumes a Mealy machine which is 
minimal, strongly connected, completely specified and 
possesses a distinguishing sequence.

An input string x is said to be a distinguishing sequence
of a machine M if the output string produced by M in 
response to x is different for each starting state.

The key idea of this method is to compute a distinguishing 
sequence (if it exists) for a machine M.
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The W-Method

The W-method assumes a minimal, strongly connected, 
and completely specified Mealy machine.

It involves deriving a characterization set W of the FSM.

A characterization set W for M is a set consisting of input 
strings α1, . . . , αk such that the last output symbols 
observed from the application of these strings (in a fixed 
order) are different at each state of M.
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Comparison …

A test sequence generated by the T-method can be used 
to confirm the existence of transitions but it cannot test the 
tail states of the transitions.
Regarding the U-method, a state can be uniquely 
identified by observing the output string produced by the 
application of the input string from its UIO sequences.
In contrast to an application of the D-method, a state can 
be identified by observing distinguishing sequence for a 
Mealy machine.
Set W for machine M enables easy identification for each 
state of M based on the W-method.
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… Comparison …

Since most protocols are not completely specified, 
conformance is defined at two levels:

weak and strong conformance.

An implementation has strong conformance to the 
specification if both generate the same outputs for all 
input sequences.
An implementation has weak conformance to a 
specification if the implementation has the same 
input/output behaviour as the protocol specification 
consisting of core edges only.

it has unspecified behavior for the input-state combinations 

specified by those non-core edges.
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… Comparison …

The fault detection capabilities of the weak and strong 
conformance test sequences generated can be stated as 
follows:

The fault coverage of the weak conformance test sequence 

for the U-method is better than the fault coverage of the 

weak conformance test sequence for the T-method.

The fault coverage of the strong conformance test sequence 

for the U-, D-, and W-methods is better than the fault 

coverage of the strong conformance test sequence for the T-

method.

The fault coverage of the strong conformance test sequence 

for the U-, D-, and W-methods are the same.
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Some conclusions …

All of these four methods assume minimal, strongly 
connected and fully specified Mealy machine models of 
protocol entities.

On the average, the T-method will produce the shortest 
test sequence and the W-method the longest test 
sequence among the four methods, while D- and U-
methods generate test sequence of comparable lengths.

T-method weak conformance test sequences are able to 
detect faults in output labels but not in tail states of 
transition edges.
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… Some conclusions

U-method weak conformance test sequences can detect 
both kinds of single faults but not combinations of fault in 
some cases.

For strong conformance testing, T-method test sequences 
show the same behavior as that method’s weak 
conformance counterpart while U-, D- and W-method 
test sequences are capable of detecting all kinds of 
faults and give the same performance.
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The UIO method …

Since the 1980s, UIO sequences have been widely used 
to ensure that protocols conform to their specification.

Some limitations of the approaches will occur when UIOs
and signatures are not unique in an implementation 
because they may not detect erroneous final states in the 
implementation
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… The UIO method …

The UIOv-method has been presented in order to ensure 
that these erroneous states are captured.

The use of partially Unique Input/Output (PUIO)
sequences, and a more efficient algorithm for generating 
a UIO sequence for any given state have been proposed.
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... Approaches using UIO sequences

The UIOSs-method

Rural Chinese Postman method

Multiple UIO method

Overlaps method

Multiple UIO and overlaps method

The UIOv-method

Discriminating UIO sequences
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The UIOSs-method …

In the past, checking experiments were based on the 
existence of distinguishing sequences, which are I/O 
sequences capable of identifying each of the states in an 
FSM.

Only a limited number of FSMs have distinguishing 
sequences.

UIOSs were proposed to be used in checking 
experiments.
An UIOS for a state is an I/O behavior not exhibited by 
any other state.
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… The UIOSs-method …

The advantages of UIOs are that they are generally 
shorter than distinguishing sequences.

In practice, nearly all FSMs have UIOs for each of their 
states.
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… The UIOSs-method

The input sequence of the distinguishing sequences for all 
the states in the FSM are identical, but each output 
sequence is different and it depends on the state; hence, 
states can be identified by outputs they generate.

For UIOSs, the input sequence may be different for 
different states so that these states can be identified 
according to its inputs as well as its outputs.

If the input sequence happens to be identical for different 
states, then each of these states must again produce 
different output sequences in order to be distinguishable.
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Rural Chinese Postman method

The method uses the Rural Chinese Postman (RCP)
problem in graph theory to minimize the transfer 
sequence between subsequences.

It opened a new direction for optimization research.
Other optimization methods are basically extensions of this 

method.

The RCP problem is NP-complete for the most general 
case, but when the edge-induced subgraph G|EC| is 
weakly connected, it can be solved in polynomial time. 
When G|EC| is not weakly connected, heuristics will have 
to be used to find sub-optimal solution.
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Multiple UIO method …

Multiple UIO sequences are a set of minimal length UIOs
for a state.

It was found that using different UIOs for identifying a 
state in different subsequences can reduce the length of 
the overall test sequence.

This is because by selecting the appropriate UIOs, the 
graph G|EC| can be made closer to symmetry,

the difference of in-degrees and out-degrees for a vertex 

may be smaller, thereby fewer edges from E are needed to 

augment it.
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Overlaps method …

The overlapping between subsequences is considered to 
further minimize the test sequence.

A single UIO sequence is used.

The idea is that if two subsequences S1 and S2 are 
overlapped, then they can be merged with the overlapping 
part serving both S1 and S2. 
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… Overlaps method

The problem is how to maximally exploit the overlapping.

There is a technique to transform the problem into a 
minimum cost maximum cardinality matching problem in a 
bipartite graph.

Some heuristics are then used to connect them.
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Multiple UIO and overlaps method …

This technique combines multiple UIO sequences and 
overlaps to fully exploit the properties of the 
subsequences and yield the shortest test sequence.

A machine is called definitely diagnosable if it has no 
converging edges

no two edges going into the same state with the same input 

output label.
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… Multiple UIO and overlaps method …

In this case, the test sequence is simply an Euler tour of 
the FSM graph G plus the UIO sequence for the last state 
of the tour.

The rationale is that for such machines, the test sequence 
not only tests each transition but also serves as the 
characterizing sequence for each state visited.
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… Multiple UIO and overlaps method

If converging edges exist, a graph G’ is constructed by 
removing the converging edges.
Then a set of disjoint paths in G’ that covers all edges is 
completed.
The problem becomes how to join these disjoint paths 
and the converging edges such that the total length is 
minimal.

UIO sequences are used both for joining the paths and also 

identifying the states along the paths.

It turns out that such a problem can be converted to a 

maximum cardinality minimum cost matching problem for a 

bipartite graph.
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The UIOv-method

The protocol specification, from which test sequences are 
generated, consists of control and data portions.

The control portion is typically modelled as a finite-state 

machine, FSM, while the data portion is typically modeled as 

program segments in so-called EFSMs.

The UIOv method is extended to handle both control and 
data portions.
The UIOv method added a verification procedure in order 
to ensure that the UIO sequences are all unique in an 
implementation.
The UIOv-method is fully applicable to protocols modeled 
by completely specified finite state machines.
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Discriminating UIO sequences …

This approach is based on the ability of constructing test 
subsequences in order to uniquely distinguish edges in 
the traversal of the FSM.

This is accomplished by selectively concatenating 
additional edges to each test subsequence.

The new test subsequence can distinguish not only the 
partial behavior of the original edge under test, but also 
the end state of any additional edge.

The process can be iteratively continued to further reduce 
the number of tests.
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… Discriminating UIO sequences …

The main advantages of this approach are that:
The number of subsequences is considerably reduced with 

respect to the number of test subsequences required in the 

β-approximation.

Multiple edges can be concentrated prior to the execution of 

a test subsequence in a β-approximation.

No fault coverage is lost.
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… Discriminating UIO sequences

Main Results
A discriminating test subsequence can be constructed by 

iteratively finding an edge which discriminates the head state 

of any edge considered prior to the edge under test.

No fault coverage degradation occurs compared to a test 

sequence generated by a traditional UIO method.
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Test coverage

Several studies have tried to find out how to measure the 
goodness of a set of test cases and how to generate or 
select test suites with some good coverage measure.

Fundamental problems in conformance testing are:
how to generate a generic (super) test suite to ‘‘fully’’ cover a 

given protocol specification within the space and time 

resources available,

how to select a subset of test cases from a given generic 

test suite to maximize the coverage,

how to determine the coverage of a given test suite, a given 

protocol specification or its derived generic (super) test suite.
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The Multi-level approach …

In the multi-level approach, the key idea is to use a 
combination of methods to generate the entire test 
sequence.

different portions of the test sequence are generated using 

different methods.

The specification graph is split into several disjoint 
subgraphs called

basic subgraph,

level 1 subgraph,

level 2 subgraph, etc.



29.1.2007© Kimmo Raatikainen & Oriana Riva 56

… The Multi-level approach …

The basic subgraph is chosen to represent the most 
important behavior of the protocol.

Edges of the remaining subgraphs correspond to behavior 
given in the specification, but not included in any of the 
other subgraphs.

Initially, only edges belonging to the basic subgraph are 
checked.

Edges in other subgraphs are checked only if the basic 
subgraph is correct.
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… The Multi-level approach …

The test subsequence for each subgraph is obtained by 
applying one of the test generation methods that is most 
suitable.

The complete test consists of subjecting the 
implementation to the level 0 test, the level 1 test and so 
on, in that order.

A level j test can be undertaken only after levels 0 to j-1 are 

tested.

Any behaviour that is used in preamble and post-amble 
portions of a level j test, should have been verified to be 
correct in a lower level test.
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… The Multi-level approach …

It is mandatory that the level 0 (basic subgraph) test is 
successfully checked in an implementation, before higher 
level tests are applied.

If an implementation fails in a level 0 test, then it does not 
conform to the basic requirements of the specification and 
hence higher level tests are not conducted.

if any of the higher level tests fail, the test can continue.
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… The Multi-level approach

Test sequences generated using this approach have a 
high degree of fault coverage and capability to recover 
from errors.

The method does not assume the existence of an error-
free reset input to move a protocol finite state machine 
from any state to an initial state.
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The E-method …

Extended transition tour (E-method) is proposed for 
generating test sequences for communication protocols 
modeled as finite machines.

The principle behind the E-method is to verify that the 
behavior corresponding to each incoming edge and 
outgoing edge of every state in the implementation, is 
similar to that of the specification.
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… The E-method …

Each state in the FSM is characterized by a set of 
transition pairs.

The methods to test the conformance of an implemented 
protocol, with respect to its specification, consists of 
checking whether the behavior corresponding to all the 
transition pairs in the implementation is the same as that 
of the specification
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… The E-method

Test sequences generated using the E-method are 
typically much longer than those generated by other 
methods but have a better fault coverage.

The E-method can be used
to generate test sequences for protocol FSMs which are 

very sparse graphs or

to test certain limited behavior of protocols (subgraphs of a 

protocol FSM).
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Fault models

A software failure is caused by a fault, which is a defect 
in the executable software product.

It is important to find out how many faults each module 
contains.

Important fault models in protocol testing:
Finite state machines
State machines with input queues
Petri nets
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Type of faults in finite state machines…

Output fault
The machine provides an output different from the one 

specified by the output function.

Transfer fault
The machine enters a different state than that specified by 

the transfer function.
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… Type of faults in finite state machines …

Transfer faults with additional states
In most cases, one assumes that the number of states of the 

system is not increased by the presence of faults.

Certain types of errors can only be modeled by additional 

states, together with transfer faults which lead to these 

additional states.
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… Type of faults in finite state machines

Additional or missing transitions
In many cases, it is assumed that the finite state machine is 

deterministic and completely defined, i.e., for each pair of 

present state and input there is exactly one specified 

transition.

In the case of incompletely specified machines, no transition 

may be specified for a given pair, while in the case on non-

deterministic machines, more than one transition may be 

defined.

In these cases, the fault model could include additional 

and/or missing transitions.
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State machines with input queues

In many situations, a system is described in the form of 
one or several state machines which are combined with 
input queues.

An input event is stored within the queue of the receiving 
machine before it is processed by the latter, usually in 
FIFO order.

Certain models assume that a given machine may have 
several input queues, which correspond to different 
sources of input events.
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The types of faults considered in state 
machines with input queues …

Ordering fault
A machine has an ordering fault in relation with its input 

queues if the FIFO ordering is not preserved, or if in the 

case of multiple input queues, some input event enters a 

wrong input queue.

Maximum length fault
A machine has a maximum length fault if the maximum 

length implemented is less than the one specified, or if an 

input event may get lost while the number of submitted input 

events does not overflow the maximum queue length 

specified.
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The types of faults considered in state 
machines with input queues

Flow control fault
A machine has a flow control fault if errors of ordering or of 

loss occur, but only in case the number of submitted input 

events overflows the maximum queue length specified.
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Petri nets …

A Petri net consists of a number of places, which may 
contain zero, one or more tokens, and a number of 
output arcs, each connecting the transition with a place.

A transition may fire if all places which are connected by 
input arcs contain at least one token

When the transition fires, one token is removed from 
these places, and one token is added to those places 
which are connected by an output arc.
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… Petri nets

A single Petri net may be used to model a system of 
interconnected finite state machines.

The states of the FSM correspond to certain places of the 
Petri net, and each different type of input or output is 
modeled by another place which may contain the input or 
output event in the form of a token.

The output and transfer faults of an FSM correspond to 
the fault of a Petri net where one of the output arcs of the 
transition leads to the wrong place.
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The types of faults considered in Petri net

Input or output arc fault
A transition has an input or output arc fault if one of the input 

or output arcs is connected to the wrong place, if an input or 

output arc is missing, or if an input or output arc exists in 

addition to those specified.

Missing or additional transition
A Petri net has a missing or additional transition if the 

number of transitions is not the same as in the specification.
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Software Environments …

Protocol testing is playing a more and more essential role
it provides a means of enhancing the interoperability and 

reliability of communication software

Many software environments for protocol testing have 
been developed

They have helped protocol testing to become more efficient, 

reliable and flexible
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… Software Environments

On the next slide there is a list of some of the software 
tools for protocol testing

Lai’s survey gives brief introductions of some environments 

that are related to protocol testing

In practice, protocol testing without any software tool is 
good enough only in tiny examples
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Some Software Environments for protocol
testing

TESTL
TESTGEN
TESTGEN+: TESTGEN, TESTSEL, TESTVAL
UCB Environment: a test suite generator (TSG), a test
case management system (TCMS), a trace analyzer
(TAN) and a test executor (TEX)
TENT
FAITH
FOREST
CVOPS
PROSITE
SELEXPERT
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Summary of test sequence generation 
methods …

T-method: Uncomplicated 

U-method: Involving UIO sequences 

D-method: Involving a distinguishing sequence 

W-method: Involving a characterization set W 

UIOSs-method: Based on UIO sequences 

RCP-method: Minimizing the transfer sequence between 
subsequences 
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… Summary of test sequence generation 
methods …

MUIO (Multiple UIO-method): A set of minimal length 
UIOs reducing the length of the overall test sequence, 
short test sequences

Overlaps method: Overlapping between subsequences, 
reduction in the test sequences length, short test seq.

MUIO with overlapping method: Combining multiple UIO 
and overlaps, fully exploring the properties of the 
subsequences, shortest test sequences

UIOv-method: All unique in an implementation with a 
verification procedure
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… Summary of test sequence generation 
methods …

Discriminating UIO sequences: Based on the ability of 
constructing test sequences, uniquely distinguishing 
edges in the traversal of the FSM, reducing the number of 
test subsequences, no loss fault coverage 

Multi-level method: Combining of several methods to 
generate the entire test sequence, high degree of fault 
coverage and capability to recover from errors

E-method: Characterized by a set of incoming edges and 
outgoing edges, good fault coverage
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Break
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Integrated System Interoperability 
Testing With Applications to VoIP
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Introduction …

When two or more entities in separate communicating 
systems are integrated and need to interact with each 
other to perform a certain task the capability to operate as 
desired is called interoperability

Products from different vendors or even from the same 
vendor often do not interoperate properly

Two main causes of noninteroperation are:
ambiguity of protocol specification, and

vendor’s proprietary extensions.
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… Introduction …

Interoperability testing is to check the interoperations 
among integrated system implementations.

conformance testing that checks the conformance of the 

implementation of a protocol to its specification

In conformance testing, the implementation under test is 
usually residing in an isolated environment for the tester 
to execute the test
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… Introduction …

In interoperability tests, the implementations are usually 
residing in an open environment

the degree of interoperation between implementations 

depends not only on the implementations themselves but 

also on the environment

The research work on interoperability testing can be 
roughly classified into two categories:

general concepts and experiences of interoperability testing, 

and

systematic generation of interoperability test suites.
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… Introduction

Most of the recent research work in this field is related to 
interoperability test suite derivation.

One approach for interoperability test generation is to 
apply conformance test generation techniques on 
composed finite state machines (constructed from several 
components systems via a reachability analysis)

Problem: we may not have complete information on all the 
interoperating systems.

In VoIP systems, we can model end user behavior and 
H.323 protocols, but we do not have a specification of the 
communication system
the IP network is too complex to model.
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The work of Hao et al. …

Motivated by the need to test interoperability of systems 
carrying voice calls over the IP network

The VoIP system must be integrated and interoperate with 

the existing public switched telephone network (PSTN).

The system behavior is modelled by extended finite state 
machines (EFSM).

Based on the experiences of domain experts, a key idea 
in developing the coverage criteria is that interoperability 
errors are introduced only when the integrated systems 
are “interacting” with each other.
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… The work of Hao et al.

For instance, for VoIP interoperability testing, we only 
need information about end users required behaviors and 
H.323 interfaces.

The designed the ITIS (Interoperability Testing Intelligent 
System) software tool.

Using IT IS, interoperability test cases were generated for:
End users versus the rest of the communication system; and

End users and H.323 versus the rest of the communication 

system
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Interoperability Test Generation …

Interoperability testing is rather complex
there are different models for different applications and 

system implementation environments

A common type of interoperability testing is usually 
performed on two interconnected implementations from 
different vendors (implementations A and B)
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… Interoperability Test Generation …

In the model of the article, there is an integrated system 
consisting of

system components of which we have complete information 

(A)

system components of which we don’t have or choose not to 

have information (either it is not available or too complex to 

model) B

We can only access the systems through the interface 
with A.
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… Interoperability Test Generation

We can apply inputs to A and observe its corresponding 
output responses and its interoperations with while they 
are interoperating

Note that the output responses of A include its local 
outputs as a system component itself and also its 
interfaces with B, such as sending messages to and 
receiving messages from B.
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The test architecture based on the 
interoperability test model

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 825
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Integrated VoIP System

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 825
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Restrictions

Because of the limited controllability and observability in 
the test architecture it is a rather intriguing problem for 
fault identification.

we do not intend to solve the problem of identifying where 

the faults are in the network.

In practice, usually we deploy some traffic sniffers in the 
network to record the packet exchange which could be 
used at a later time for a manual analysis and diagnosis.
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Notes …

Interoperability and conformance testing are closely 
related but different.

Given a system specification A and an implementation A’, 
which is a “black-box”, we want to apply a test to A’ to 
conclude whether it conforms to the specification A

A’ is identical to A.

In the interoperability testing, we want to test the 
interoperations between the system components A and B

we have complete information and control of A and no 

information of B.
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… Notes

By a rationale similar to the case of conformance testing, 
ideally, we want to apply all the possible executable 
sequences as tests to A to trigger all the possible 
interoperations between A and B

the interoperations which can be controlled and observed by 
applying tests to A only. 

In general, there are infinitely many such tests.
So we want to reduce the tests to finitely many and minimize 
the number of tests yet maintaining the same coverage on 
interoperations between A and B, which are triggered by the 
tests.
We need to explore the redundancy criteria and use efficient 
test generation algorithms.



29.1.2007© Kimmo Raatikainen & Oriana Riva 95

Three states FSM as protocol system A

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 826

Conformance testing:
ac|00, bd|11

Interoperability testing:
ac|00, bd|11, ad|01, bc|10
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Test Generation Strategy …

We can model the joint-behavior of A and B by an EFSM
and construct its reachability graph, which is a directed 
graph or a transition diagram.

The EFSM that covers the joint-behavior of several 
system components can be constructed by calculating the 
Cartesian product of the EFSMs for these components. 
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… Test Generation Strategy …

When we conduct interoperability testing, we are 
concerned only with those failures that occur when the 
components of integrated systems are interoperating.

So the coverage criteria of our interoperability test 
generation is to test all the possible interoperations of A 
with B.
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… Test Generation Strategy …

Ideally, we want to check every input sequence to A 
(scenarios)

Covering all possible execution sequences requires that we 

cover all the branches and all the possible paths in the 

EFSM.

In general, this is impossible:
transition diagrams often contain cycles and, therefore, will 

have infinitely many distinct paths.
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… Test Generation Strategy

A key idea in developing the test cases is that 
interoperability errors will be introduced only when the 
gateways are actually talking to each other about a call

we can ignore local activities involved in the protocol (“white”

transitions)

A white transition is purely local and is involved with only 
one gateway.

A black transition involves both gateways.
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Partial call flow of a telephone call

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 826
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Objectives of interoperability testing

Based on our information about A, we want to construct a 
set of non redundant tests such that all the 
interoperations of A with B are tested. 

Our goals are:
1. Completeness: all the interoperations between the two 

systems are tested; and

2. Non-redundancy: all the redundant tests are removed to 

minimize the total number of tests
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An “Exhaustive” Test Set …

To trigger all the interoperations between A and B ideally,
we want to include all the possible tests

all the paths from the initial configuration

In general, there are infinitely many such paths.

From the practical experiences in testing, exercising a 
cycle multiple times has the same coverage for 
interoperability testing as exercising it once.
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… An “Exhaustive” Test Set …

Testing a complex cycle (with repeated nodes) is the 
same as testing each of its simple cycles (without 
repeated nodes)

We only need to test each simple cycle once for the 
interoperability testing.

Each path consists of an acyclic path with zero or more 
simple cycles attached to it

A set of paths that contains all the acyclic paths, on some 
of which all the simple cycles are attached, has the same 
coverage as all the paths.
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… An “Exhaustive” Test Set

In a directed graph, there is a finite number of acyclic 
paths and a finite number of simple cycles.

The number of such paths is finite, and they consist of a 
test set with a complete coverage.



29.1.2007© Kimmo Raatikainen & Oriana Riva 105

Three steps to generate an exhaustive test set

1. Generate all possible acyclic paths, i.e., paths without 
any repeated vertices.

2. Generate all possible simple cycles, i.e., cycles that do 
not contain any smaller cycles.

3. “Combine” the paths (from step 1) and simple cycles
(from step 2) to generate the final set of paths.
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Elaboration of steps 1 and 2

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 827

Directed acyclic graph
DAG
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Next-transition-tree …

This data structure can be defined for any graph, but in 
our case, the graph will always be an SCC.

For any node v, the next-transition-tree T(v) stores all 
acyclic paths from v to other vertices in its SCC.

The tree has v as its root.

The children of v are all the nodes in its SCC that have a 
direct edge from v.
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… Next-transition-tree

In general, the children of any node u are all the nodes in 
its SCC that have a direct edge from node u.

If a child node has appeared on the path from the root 
node v to u, then it is not included in the tree.

Note though that a node may appear multiple times in this 
tree but not on a tree path.
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The next-transition-tree for nodes s3 and s4

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 827

T(s3) T(s4)
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Generating all acyclic paths and simple cycles 
within an SCC

Let T(v) be the next-transition-tree of node in an SCC.

We can easily obtain all the acyclic paths from v and all 
the simple cycles containing v.

It is based on the following lemma:
For a next-transition-tree from node v, T(v), each tree path 

from v to a node u is an acyclic path in the SCC. 

Conversely, for each acyclic path from v to u in the SCC, there 

is an identical tree path from v to a node u in T(v). 
Furthermore, all the tree paths in T(v) are distinct.
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Acyclic paths and simple cycles within an SCC 

© IEEE/ACM Transactions on Networking,
Vol. 12, No. 5, October 2004, p. 828
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Test generation using Exhaustive-Coverage
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Practical Redundancy Criterion …

R1: Proper prefixes are redundant and can be discarded.

R2: Remove all-white test sequences.

R3: Let (u,v) be the first black edge in the test sequence. 
Then replace the path from the source node to node u
with the shortest path between the source node and node 
u

R4: Let (u,v) be the last black edge in the test sequence. 
Then replace the path from node v to the sink node with 
the shortest path between node v and the sink node.
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… Practical Redundancy Criterion

R5: Remove all-white simple cycles.

R6: Generate acyclic paths that consist only of black 
edges, except that the prefix from the source node and 
the suffix to the sink node is allowed to contain white 
edges.

R7: Generate simple cycles consisting only of black 
edges.
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Algorithms for Interoperability Test Generation

Hao et al gives the following algorithms:
Paths-In-DAG (R1)

Exhaustive-Coverage (R1)

Exhaustive-Test (R1 optionally with Chinese Postman Tour)

Complete-Coverage (R1-R4)

Complete-Test (R1-R5)

Basic-Coverage (R1-R6)

Basic-Test (R1-R7)
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Test Cases for End User VoIP Testing

14414Basic-Test

598116598Complete-Test

950430950
Exhaustive-

Test

Final testsSimple cyclesAcyclic pathsAlgorithms

EFSM: 21 states, 68 transitions, 24 black edges
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Test Cases for Authorized Phone Call Feature 
of VoIP Systems

626Basic-Test

561256Complete-Test

196108196
Exhaustive-

Test

Final testsSimple cyclesAcyclic pathsAlgorithms
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Test Cases for H.323 Call Signaling

77077Basic-Test

2,20402,204Complete-Test

140,3900140,390
Exhaustive-

Test

Final testsSimple cyclesAcyclic pathsAlgorithms

EFSM: 419 states, 1290 transitions, 27 black edges

0,05%



29.1.2007© Kimmo Raatikainen & Oriana Riva 119

Conclusions …

Heterogeneity is one of the prominent features of 
networking systems, and interoperability is ubiquitous and 
has become a major hurdle for system reliability and 
quality of service.

Interoperability testing is indispensable for the integration 
of reactive systems.

Conventional conformance testing techniques do not 
apply

We want to test the system interfaces but not to check 

implementations versus specifications.
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… Conclusions

While fully recognized by the industry, integrated system 
interoperability testing provides a challenge and 
opportunities for researchers to study the essence of the 
problem and to invent novel technique for system 
interoperability testing and for improving the reliability of 
the integrated systems.
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Testing SDL
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Testing methods for SDL systems

Testing methods for SDL systems can be classified into 
two main groups:

those that intent the totally automated test generation from 

the SDL systems specification and

those that provide interactive test generation methods
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Case study: Inres protocol

The Inres (Initiator-Responder) protocol is connection-
oriented and asymmetric.

The initiator establishes a connection and sends data.

The responder accepts and releases connections, and 
receives data.
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Overview of the Inres protocol and service

© Computer Networks and ISDN Systems 28 (1996) p. 1670
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Test architecture

The test architecture is a description of the environment 
in which the IUT (Implementation Under test) is tested.

There are two possible test architectures for the Inres
protocol.
1. If conformance testing for the three blocks of initiator, 

medium and responder is requested, the PCOs (Points of 
Control and Observation) are located at the Isapin and 
Isapres points, where available PCOs are located directly 
above the IUT.

2. If conformance testing for the two blocks of initiator and 
medium is requested, the PCOs are located at the Isapin
and at the interaction point between the responder and the 
medium block.
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Test architecture for Inres protocol 

© Computer Networks and ISDN Systems 28 (1996) p. 1671
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Inres initiator test architecture 

© Computer Networks and ISDN Systems 28 (1996) p. 1671
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Automated test generation methods

Some of the automated test generation methods derive 
tests directly from the SDL specification.

Others consist of transforming the SDL specification into a 
model written in another formalism, from which tests are 
generated.

input/output finite state machines (I/O FSMs) are quite 

popular as an intermediate model for test generation.
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Verification of the uniqueness of UIOs

The validity of any method based on UIOs is based on the 
fact that the UIOs are unique both in the specification and 
in the implementation.

Before applying any method based on these concepts 
and in order to improve the coverage of faults, it is 
necessary to verify the uniqueness of the identification of 
each state.

This procedure insures that each state in the 
implementation has an identification and that it is unique

not accepted by any other state in the implementation
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Conformance

Since the implementation is tested as a black box, the 
strongest conformance relation that can be tested is trace 
equivalence:

two I/O FSMs are trace equivalent if the two cannot be 

distinguished by any sequence of inputs.

To prove trace equivalence it suffices to show that
(a) there is a set of implementation states {p1,p2,…, pn} 

respectively isomorphic to the specification states (s1,s2,..., 

sn), and

(b) every transition in the specification has a corresponding 

isomorphic transition in the implementation.
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Assumptions for test generation

The purpose of test generation is to produce a sequence 
of inputs (and corresponding outputs), called a test 
sequence, which can be applied to an implementation to 
verify that it correctly implements the specification.
There is a number of necessary assumptions that must 
be made in order to make the experiment possible:
1. the I/O FSM specification is strongly connected, so that all 

states can be visited;
2. the I/O FSM specification does not have strongly 

equivalent states (it is minimized);
3. the I/O FSM specification is deterministic and fully 

specified; and
4. the I/O FSM implementation has no more states than the 

I/O FSM specification.
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External and internal events …

To perform tests on the SDL specifications using the 
following method, the concept of internal event, denoted 
by i, is introduced.

In the generation of global I/O FSMs from the reachable 
state graph, the external events having interactions with 
the PCOs are separated from the internal events having 
no direct interaction with the PCOs.

The internal event is a hidden event between the two 
PCOs and is not visible.
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… External and internal events

Depending on the location of the PCO, distinct global I/O 
FSMs containing different internal events can be 
obtained.

By applying a bisimulation reduction algorithm to the 
global I/O FSM, these internal events are eliminated and a 
reference I/O FSM with a small number of states is 
obtained.
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Test sequence generation from the SDL 
specification …

Step 1: A state transition graph is generated. From the 
state transition graph obtained and the data for the PC0 
that interact with the SDL environment, a global I/O FSM 
is generated that includes external events and internal 
events.
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… Test sequence generation from the SDL 
specification …

Step 2: The global I/O FSM is transformed into the 
reference I/O FSM. In this step, the transitions that are 
labelled by internal events (for both the input and output 
events) and the states between these transitions are 
eliminated by application of a reduction algorithm. 
However, we maintain those transitions that have an 
internal event (as input or output) and an observable 
event (as input or output). The preserved internal actions 
will be renamed by “null”.
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… Test sequence generation from the SDL 
specification …

Step 3: Some cases of nondeterministic I/O FSMs are 
transformed into deterministic FSM using a 
determinization algorithm. In this step, we also transform 
the I/O FSMs into fully specified I/O FSMs by adding to 
each state a looping transition having as an input the  
non-specified input and “null” as an output. Note that this 
transformation respects the semantics of SDL.

Step 4: The minimization algorithm to eliminate strongly 
equivalent states is applied.
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… Test sequence generation from the SDL 
specification …

Step 5: The strong connectivity of the reference I/O FSM 
is verified.

Step 6: The UIO sequences are generated for each state.

Step 7: The sequence of tests for verifying the uniqueness 
of the identification is generated.
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… Test sequence generation from the SDL 
specification 

Step 8: A non-optimized test sequence is then generated, 
which tests each transition in the reference I/O FSM 
starting from the initial state. An optimal test sequence 
can also be obtained, which is a minimum cost tour for the 
reference I/O FSM. 

Optimization can be obtained using UIO sequences, the 

Chinese postman tour or multiple UIOs and overlapping.


