
Protocol Software Engineering:
Protocol Testing

Kimmo Raatikainen & Oriana Riva

Department of Computer Science

29.1.2007© Kimmo Raatikainen & Oriana Riva 2

Lesson Outline

Some protocol testing methods
R. Lai: A survey of communication protocol testing. The
Journal of Systems and Software 62 (2002) 21–46.

Example: VoIP
Ruibing Hao, David Lee, Rakesh K. Sinha, and Nancy
Griffeth: Integrated System Interoperability Testing With
Applications to VoIP. IEEE/ACM Transactions on
Networking, Vol. 12, No. 5 (October 2004) 823-836.

Testing SDL
Ana R. Cavalli, Byoung-Moon Chin, and Kilnam Chon:
Testing methods for SDL systems. Computer Networks and
ISDN Systems 28 (1996) 1669-l 683.

29.1.2007© Kimmo Raatikainen & Oriana Riva 3

A survey of communication
protocol testing

29.1.2007© Kimmo Raatikainen & Oriana Riva 4

Introduction …

A protocol is a precise set of rules that defines
the interaction among elements of a system.

Protocol conformance testing seeks to
ensure that such elements will operate correctly
once the system has been implemented by
checking that the protocol implementation
conforms to the specification.

29.1.2007© Kimmo Raatikainen & Oriana Riva 5

... Introduction...

Formal Description Techniques (FDTs) have
been developed to provide a formal specification
acting as a sound basis for protocol testing.

e.g., Specification and Description Language (SDL)

Standardized procedures for protocol testing
have been developed by ISO

The standard ISO 9646 defines the details for
Conformance Testing Methodology and Framework
(CTMF).
A test notation called Tree and Tabular Combined
Notation (TTCN) has also been developed.

29.1.2007© Kimmo Raatikainen & Oriana Riva 6

… Introduction …

Academic research has recently made
significant advances

in the generation of test sequences from formal
specifications and
in the development of computer-aided test tools to
improve the effectiveness of testing

This state-of-the-art research is not necessarily
state-of-the-practice

29.1.2007© Kimmo Raatikainen & Oriana Riva 7

… Introduction

There is not much progress in the use of test sequence
generation techniques for practical testing of
communication networks.
Test design is still largely performed by testers by
interpreting the specifications written in a natural
language.
Testers have to face real problems such as deadlines,
resource and economic constraints.
The big gap between academic and industrial testing
practices is the fact that academia has not been
addressing the real-life testing issues and problems
account for the fact that academic testing methods are
seldom used in industry.

29.1.2007© Kimmo Raatikainen & Oriana Riva 8

Background knowledge

Graphs

Finite state machine

Extended finite state machine

Distinguishing sequences

Characterizing sequences

Unique input/output (UIO) sequences

29.1.2007© Kimmo Raatikainen & Oriana Riva 9

Graphs …

Let G = (V,E) be a labelled directed graph with vertex set
V edge set E

V = {v1; . . . ; vn} and m = |E|.

In general, G may contain loops and multiple edges,
which are distinguished from one another by different
labels.
An edge from vertex vi to vj is represented by a triple
(vi, vj; Lk), where Lk is a distinct label.
A walk in G is a finite non-null sequence of consecutive
edges

W = {(vi,1, vi,2; L1)(vi,2, vi,3; L2) ... (vi,r-1, vi,r ; Lr-1)}

29.1.2007© Kimmo Raatikainen & Oriana Riva 10

… Graphs …

A tour is a walk that starts and ends at the same vertex.

An Euler tour of G is a tour which contains every edge of
E exactly once.

Graph G is strongly connected if for any pair of distinct
vertices vi and vj there exists a walk W in G with origin vi

and tail vj

G is weakly connected if the underlying undirected graph
is connected

29.1.2007© Kimmo Raatikainen & Oriana Riva 11

… Graphs

A postman tour of G is a tour which contains every edge
of E at least once.

The Chinese Postman Problem is to find an optimal
(minimum cost) postman tour of a directed, strongly
connected graph G

such a tour is called a Chinese Postman Tour.

If G contains an Euler tour, the Euler tour is also a
Chinese Postman Tour.

29.1.2007© Kimmo Raatikainen & Oriana Riva 12

Finite state machine

A finite-state machine (FSM) M can be represented by a
directed graph G = (V,E)

the set V = {v1; . . . ; vn} of vertices represents the set of

specified states, S, of the FSM, and

a directed edge represents a transition from one state to

another in the FSM

A specification of an FSM is said to be fully specified if,
for every state, every input in the input set of M generates
an output.
Otherwise, the specification is said to be partially
specified.

29.1.2007© Kimmo Raatikainen & Oriana Riva 13

Extended finite state machine …

The extended finite state machine (EFSM) is introduced
as a remedy to the state space explosion problem of the
FSM in specifying large, practical protocols involving
context variables, such as sequence numbers.

An EFSM is an FSM augmented with minor states
(context) variables.

These variables form additional enabling conditions in the
transitions to reduce the number of states required in the
underlying FSM.

29.1.2007© Kimmo Raatikainen & Oriana Riva 14

… Extended finite state machine …

Different transitions may occur in response to the same
combination of input event and starting (major) state in an
EFSM.

A transition in an EFSM may be triggered by three types
of enabling conditions:

the input event,

the current (major) state, and

a boolean expression involving minor state variables.

29.1.2007© Kimmo Raatikainen & Oriana Riva 15

… Extended finite state machine …

Each transition now consists of three operations:
the output operation,

the state transition (changing major state), and

operations that alter values of the minor state variables.

©Mihalis Yannakakis, Columbia University

29.1.2007© Kimmo Raatikainen & Oriana Riva 16

… Extended finite state machine

Test sequences generated from an FSM are generally
done according to their directed graphs.

Since minor state variable need to be considered as well
in an EFSM to ensure the final test sequences are
executable, when these variables are included in an
extended directed graph, can become very cluttered and
difficult to use.

The tabular format is better suited for representing an
EFSM for testing purposes and is also used as a tool for
test sequence generation procedure.

29.1.2007© Kimmo Raatikainen & Oriana Riva 17

Distinguishing sequences

A distinguishing sequence is defined as a set of inputs
that generate a set of outputs different for each starting
state si in an FSM.

For generating a test sequence by using the
distinguishing sequences method, first a distinguishing
sequence for the FSM to be tested is found based on the
specification.

Note that it is necessary for an FSM to be fully specified
for having a distinguishing sequence.

29.1.2007© Kimmo Raatikainen & Oriana Riva 18

Characterizing sequences

For the FSMs that do not have distinguishing sequences,
the characterizing sequences method defines partial
distinguishing sequences each of which distinguishes a
state si from a subset of the remaining states instead of
distinguishing si from every state of the FSM.

The complete set of such input sequences for an FSM is
called the characterizing set W of the FSM.

This method, similar to the distinguishing sequences
method, requires a fully specified FSM.

29.1.2007© Kimmo Raatikainen & Oriana Riva 19

Unique input/output (UIO) sequences …

A UIO sequence for a state si is an input/output behaviour
that is not exhibited by any other state:

UIO(si) = (i1/ o1)(i2 / o2)…(ip / op)

UIO sequences are not the same as distinguishing
sequences.

For a test, the input portion of distinguishing sequence is the

same for all states; different states are distinguished by the

distinct output.

For the UIO sequences, the input portion is normally

different for each state.

29.1.2007© Kimmo Raatikainen & Oriana Riva 20

… Unique input/output (UIO) sequences …

When the input part of the UIO sequence for a certain
state s is applied to the FSM, the output sequence is
compared with the expected output sequence.

If they are the same, then the FSM is in state s
Otherwise, the FSM is not in state s

When the input portion of a distinguishing sequence is
applied to the FSM, the outputs contain sufficient
information to decide not only whether the machine is in
state s but also if not s, then which one.

29.1.2007© Kimmo Raatikainen & Oriana Riva 21

… Unique input/output (UIO) sequences

UIO sequences are typically shorter than the
distinguishing sequences or characterizing sequences
since the UIO sequences are a subset of them.

Also, almost all FSMs have UIO sequences unless the
FSM has equivalent states

29.1.2007© Kimmo Raatikainen & Oriana Riva 22

Test sequence generation methods

As implementation can be different from a protocol
standard, conformance testing is needed to confirm the
implementations to its standard.

Testing is carried out by using test sequences.
A test sequence is a list of inputs and expected outputs.

Four formal methods (T-, U-, D- and W- method) have
been presented for generating test sequences for protocol
from a protocol specification.
All four methods assume a Mealy machine model (M) for
protocol entity specifications.

29.1.2007© Kimmo Raatikainen & Oriana Riva 23

Mealy machine

A Mealy machine is an FSM which produces an output
upon each transition

Let M represent a Mealy machine and adopt the following
notation:

M|s ≡ machine M at state s;
M|s(α) ≡ the last output symbol on input string α to M|s;
M|s<α> ≡ the output string on input string α to M|s.

29.1.2007© Kimmo Raatikainen & Oriana Riva 24

Some definitions …

Definition 1: A machine M is minimal if the number of
states of M is less than or equal to the number of states of
M’ for any Mealy machine M’ equivalent to M.

Definition 2: A machine is completely specified if from
each state it has a transition for each input symbol. M is
incompletely specified if it is not completely specified.

Definition 3: A machine M is strongly connected if from
each state pair (si,sj) there is a transition path going from
si to sj.

29.1.2007© Kimmo Raatikainen & Oriana Riva 25

… Some definitions …

Definition 4: A transition table of M is a table consisting
of two subtables: an output subtable and a next-state
subtable, each with rows and columns identified by the
states and input symbols of M, respectively. An entry in
the output (next-state) subtable specifies, corresponding
to a state s and an input symbol A of M, the output (next-
state) of M|s on A.

Definition 5: A test subsequence for M is a sequence of
input symbols for testing either a state or a transition of M.

29.1.2007© Kimmo Raatikainen & Oriana Riva 26

… Some definitions

Definition 6: A test sequence for M is a sequence of input
symbols that can be used in testing conformance of
implementations of M against the specification of M.

Definition 7: A β – sequence for M is a concatenation of
test subsequences for testing all transitions of M.

Definition 8: An optimized test sequence is a test
sequence such that no subsequence of it is completely
contained in any other subsequence.

29.1.2007© Kimmo Raatikainen & Oriana Riva 27

The T-Method …

The T-method assumes a minimal, strongly connected,
and completely specified M.

A test sequence, called a transition-tour sequence can
be generated by simply applying random inputs to a fault-
free M until the machine has traversed every transition at
least once.

However, the sequence generated may contain many
redundant inputs which in turn generate loops in the
transition tour.

29.1.2007© Kimmo Raatikainen & Oriana Riva 28

The U-Method …

The U-method assumes a minimal, strongly connected
and completely specified Mealy machine.

It involves deriving a unique input/output (UIO)
sequence for each state of M.

A UIO sequence for a state of M is an I/O behavior that is
not exhibited by any other state of M.

A UIO sequence can be used to determine whether the
FSM was in a specified start state or not.

29.1.2007© Kimmo Raatikainen & Oriana Riva 29

… The U-Method

However, if the FSM was in some other (error) state, it will
not be possible to determine the identify of that using a
UIO sequence.

Optimized test sequence can be obtained by applying the
Rural Chinese Postman Tour

29.1.2007© Kimmo Raatikainen & Oriana Riva 30

The D-Method

The D-method assumes a Mealy machine which is
minimal, strongly connected, completely specified and
possesses a distinguishing sequence.

An input string x is said to be a distinguishing sequence
of a machine M if the output string produced by M in
response to x is different for each starting state.

The key idea of this method is to compute a distinguishing
sequence (if it exists) for a machine M.

29.1.2007© Kimmo Raatikainen & Oriana Riva 31

The W-Method

The W-method assumes a minimal, strongly connected,
and completely specified Mealy machine.

It involves deriving a characterization set W of the FSM.

A characterization set W for M is a set consisting of input
strings α1, . . . , αk such that the last output symbols
observed from the application of these strings (in a fixed
order) are different at each state of M.

29.1.2007© Kimmo Raatikainen & Oriana Riva 32

Comparison …

A test sequence generated by the T-method can be used
to confirm the existence of transitions but it cannot test the
tail states of the transitions.
Regarding the U-method, a state can be uniquely
identified by observing the output string produced by the
application of the input string from its UIO sequences.
In contrast to an application of the D-method, a state can
be identified by observing distinguishing sequence for a
Mealy machine.
Set W for machine M enables easy identification for each
state of M based on the W-method.

29.1.2007© Kimmo Raatikainen & Oriana Riva 33

… Comparison …

Since most protocols are not completely specified,
conformance is defined at two levels:

weak and strong conformance.

An implementation has strong conformance to the
specification if both generate the same outputs for all
input sequences.
An implementation has weak conformance to a
specification if the implementation has the same
input/output behaviour as the protocol specification
consisting of core edges only.

it has unspecified behavior for the input-state combinations

specified by those non-core edges.

29.1.2007© Kimmo Raatikainen & Oriana Riva 34

… Comparison …

The fault detection capabilities of the weak and strong
conformance test sequences generated can be stated as
follows:

The fault coverage of the weak conformance test sequence

for the U-method is better than the fault coverage of the

weak conformance test sequence for the T-method.

The fault coverage of the strong conformance test sequence

for the U-, D-, and W-methods is better than the fault

coverage of the strong conformance test sequence for the T-

method.

The fault coverage of the strong conformance test sequence

for the U-, D-, and W-methods are the same.

29.1.2007© Kimmo Raatikainen & Oriana Riva 35

Some conclusions …

All of these four methods assume minimal, strongly
connected and fully specified Mealy machine models of
protocol entities.

On the average, the T-method will produce the shortest
test sequence and the W-method the longest test
sequence among the four methods, while D- and U-
methods generate test sequence of comparable lengths.

T-method weak conformance test sequences are able to
detect faults in output labels but not in tail states of
transition edges.

29.1.2007© Kimmo Raatikainen & Oriana Riva 36

… Some conclusions

U-method weak conformance test sequences can detect
both kinds of single faults but not combinations of fault in
some cases.

For strong conformance testing, T-method test sequences
show the same behavior as that method’s weak
conformance counterpart while U-, D- and W-method
test sequences are capable of detecting all kinds of
faults and give the same performance.

29.1.2007© Kimmo Raatikainen & Oriana Riva 37

The UIO method …

Since the 1980s, UIO sequences have been widely used
to ensure that protocols conform to their specification.

Some limitations of the approaches will occur when UIOs
and signatures are not unique in an implementation
because they may not detect erroneous final states in the
implementation

29.1.2007© Kimmo Raatikainen & Oriana Riva 38

… The UIO method …

The UIOv-method has been presented in order to ensure
that these erroneous states are captured.

The use of partially Unique Input/Output (PUIO)
sequences, and a more efficient algorithm for generating
a UIO sequence for any given state have been proposed.

29.1.2007© Kimmo Raatikainen & Oriana Riva 39

... Approaches using UIO sequences

The UIOSs-method

Rural Chinese Postman method

Multiple UIO method

Overlaps method

Multiple UIO and overlaps method

The UIOv-method

Discriminating UIO sequences

29.1.2007© Kimmo Raatikainen & Oriana Riva 40

The UIOSs-method …

In the past, checking experiments were based on the
existence of distinguishing sequences, which are I/O
sequences capable of identifying each of the states in an
FSM.

Only a limited number of FSMs have distinguishing
sequences.

UIOSs were proposed to be used in checking
experiments.
An UIOS for a state is an I/O behavior not exhibited by
any other state.

29.1.2007© Kimmo Raatikainen & Oriana Riva 41

… The UIOSs-method …

The advantages of UIOs are that they are generally
shorter than distinguishing sequences.

In practice, nearly all FSMs have UIOs for each of their
states.

29.1.2007© Kimmo Raatikainen & Oriana Riva 42

… The UIOSs-method

The input sequence of the distinguishing sequences for all
the states in the FSM are identical, but each output
sequence is different and it depends on the state; hence,
states can be identified by outputs they generate.

For UIOSs, the input sequence may be different for
different states so that these states can be identified
according to its inputs as well as its outputs.

If the input sequence happens to be identical for different
states, then each of these states must again produce
different output sequences in order to be distinguishable.

29.1.2007© Kimmo Raatikainen & Oriana Riva 43

Rural Chinese Postman method

The method uses the Rural Chinese Postman (RCP)
problem in graph theory to minimize the transfer
sequence between subsequences.

It opened a new direction for optimization research.
Other optimization methods are basically extensions of this

method.

The RCP problem is NP-complete for the most general
case, but when the edge-induced subgraph G|EC| is
weakly connected, it can be solved in polynomial time.
When G|EC| is not weakly connected, heuristics will have
to be used to find sub-optimal solution.

29.1.2007© Kimmo Raatikainen & Oriana Riva 44

Multiple UIO method …

Multiple UIO sequences are a set of minimal length UIOs
for a state.

It was found that using different UIOs for identifying a
state in different subsequences can reduce the length of
the overall test sequence.

This is because by selecting the appropriate UIOs, the
graph G|EC| can be made closer to symmetry,

the difference of in-degrees and out-degrees for a vertex

may be smaller, thereby fewer edges from E are needed to

augment it.

29.1.2007© Kimmo Raatikainen & Oriana Riva 45

Overlaps method …

The overlapping between subsequences is considered to
further minimize the test sequence.

A single UIO sequence is used.

The idea is that if two subsequences S1 and S2 are
overlapped, then they can be merged with the overlapping
part serving both S1 and S2.

29.1.2007© Kimmo Raatikainen & Oriana Riva 46

… Overlaps method

The problem is how to maximally exploit the overlapping.

There is a technique to transform the problem into a
minimum cost maximum cardinality matching problem in a
bipartite graph.

Some heuristics are then used to connect them.

29.1.2007© Kimmo Raatikainen & Oriana Riva 47

Multiple UIO and overlaps method …

This technique combines multiple UIO sequences and
overlaps to fully exploit the properties of the
subsequences and yield the shortest test sequence.

A machine is called definitely diagnosable if it has no
converging edges

no two edges going into the same state with the same input

output label.

29.1.2007© Kimmo Raatikainen & Oriana Riva 48

… Multiple UIO and overlaps method …

In this case, the test sequence is simply an Euler tour of
the FSM graph G plus the UIO sequence for the last state
of the tour.

The rationale is that for such machines, the test sequence
not only tests each transition but also serves as the
characterizing sequence for each state visited.

29.1.2007© Kimmo Raatikainen & Oriana Riva 49

… Multiple UIO and overlaps method

If converging edges exist, a graph G’ is constructed by
removing the converging edges.
Then a set of disjoint paths in G’ that covers all edges is
completed.
The problem becomes how to join these disjoint paths
and the converging edges such that the total length is
minimal.

UIO sequences are used both for joining the paths and also

identifying the states along the paths.

It turns out that such a problem can be converted to a

maximum cardinality minimum cost matching problem for a

bipartite graph.

29.1.2007© Kimmo Raatikainen & Oriana Riva 50

The UIOv-method

The protocol specification, from which test sequences are
generated, consists of control and data portions.

The control portion is typically modelled as a finite-state

machine, FSM, while the data portion is typically modeled as

program segments in so-called EFSMs.

The UIOv method is extended to handle both control and
data portions.
The UIOv method added a verification procedure in order
to ensure that the UIO sequences are all unique in an
implementation.
The UIOv-method is fully applicable to protocols modeled
by completely specified finite state machines.

29.1.2007© Kimmo Raatikainen & Oriana Riva 51

Discriminating UIO sequences …

This approach is based on the ability of constructing test
subsequences in order to uniquely distinguish edges in
the traversal of the FSM.

This is accomplished by selectively concatenating
additional edges to each test subsequence.

The new test subsequence can distinguish not only the
partial behavior of the original edge under test, but also
the end state of any additional edge.

The process can be iteratively continued to further reduce
the number of tests.

29.1.2007© Kimmo Raatikainen & Oriana Riva 52

… Discriminating UIO sequences …

The main advantages of this approach are that:
The number of subsequences is considerably reduced with

respect to the number of test subsequences required in the

β-approximation.

Multiple edges can be concentrated prior to the execution of

a test subsequence in a β-approximation.

No fault coverage is lost.

29.1.2007© Kimmo Raatikainen & Oriana Riva 53

… Discriminating UIO sequences

Main Results
A discriminating test subsequence can be constructed by

iteratively finding an edge which discriminates the head state

of any edge considered prior to the edge under test.

No fault coverage degradation occurs compared to a test

sequence generated by a traditional UIO method.

29.1.2007© Kimmo Raatikainen & Oriana Riva 54

Test coverage

Several studies have tried to find out how to measure the
goodness of a set of test cases and how to generate or
select test suites with some good coverage measure.

Fundamental problems in conformance testing are:
how to generate a generic (super) test suite to ‘‘fully’’ cover a

given protocol specification within the space and time

resources available,

how to select a subset of test cases from a given generic

test suite to maximize the coverage,

how to determine the coverage of a given test suite, a given

protocol specification or its derived generic (super) test suite.

29.1.2007© Kimmo Raatikainen & Oriana Riva 55

The Multi-level approach …

In the multi-level approach, the key idea is to use a
combination of methods to generate the entire test
sequence.

different portions of the test sequence are generated using

different methods.

The specification graph is split into several disjoint
subgraphs called

basic subgraph,

level 1 subgraph,

level 2 subgraph, etc.

29.1.2007© Kimmo Raatikainen & Oriana Riva 56

… The Multi-level approach …

The basic subgraph is chosen to represent the most
important behavior of the protocol.

Edges of the remaining subgraphs correspond to behavior
given in the specification, but not included in any of the
other subgraphs.

Initially, only edges belonging to the basic subgraph are
checked.

Edges in other subgraphs are checked only if the basic
subgraph is correct.

29.1.2007© Kimmo Raatikainen & Oriana Riva 57

… The Multi-level approach …

The test subsequence for each subgraph is obtained by
applying one of the test generation methods that is most
suitable.

The complete test consists of subjecting the
implementation to the level 0 test, the level 1 test and so
on, in that order.

A level j test can be undertaken only after levels 0 to j-1 are

tested.

Any behaviour that is used in preamble and post-amble
portions of a level j test, should have been verified to be
correct in a lower level test.

29.1.2007© Kimmo Raatikainen & Oriana Riva 58

… The Multi-level approach …

It is mandatory that the level 0 (basic subgraph) test is
successfully checked in an implementation, before higher
level tests are applied.

If an implementation fails in a level 0 test, then it does not
conform to the basic requirements of the specification and
hence higher level tests are not conducted.

if any of the higher level tests fail, the test can continue.

29.1.2007© Kimmo Raatikainen & Oriana Riva 59

… The Multi-level approach

Test sequences generated using this approach have a
high degree of fault coverage and capability to recover
from errors.

The method does not assume the existence of an error-
free reset input to move a protocol finite state machine
from any state to an initial state.

29.1.2007© Kimmo Raatikainen & Oriana Riva 60

The E-method …

Extended transition tour (E-method) is proposed for
generating test sequences for communication protocols
modeled as finite machines.

The principle behind the E-method is to verify that the
behavior corresponding to each incoming edge and
outgoing edge of every state in the implementation, is
similar to that of the specification.

29.1.2007© Kimmo Raatikainen & Oriana Riva 61

… The E-method …

Each state in the FSM is characterized by a set of
transition pairs.

The methods to test the conformance of an implemented
protocol, with respect to its specification, consists of
checking whether the behavior corresponding to all the
transition pairs in the implementation is the same as that
of the specification

29.1.2007© Kimmo Raatikainen & Oriana Riva 62

… The E-method

Test sequences generated using the E-method are
typically much longer than those generated by other
methods but have a better fault coverage.

The E-method can be used
to generate test sequences for protocol FSMs which are

very sparse graphs or

to test certain limited behavior of protocols (subgraphs of a

protocol FSM).

29.1.2007© Kimmo Raatikainen & Oriana Riva 63

Fault models

A software failure is caused by a fault, which is a defect
in the executable software product.

It is important to find out how many faults each module
contains.

Important fault models in protocol testing:
Finite state machines
State machines with input queues
Petri nets

29.1.2007© Kimmo Raatikainen & Oriana Riva 64

Type of faults in finite state machines…

Output fault
The machine provides an output different from the one

specified by the output function.

Transfer fault
The machine enters a different state than that specified by

the transfer function.

29.1.2007© Kimmo Raatikainen & Oriana Riva 65

… Type of faults in finite state machines …

Transfer faults with additional states
In most cases, one assumes that the number of states of the

system is not increased by the presence of faults.

Certain types of errors can only be modeled by additional

states, together with transfer faults which lead to these

additional states.

29.1.2007© Kimmo Raatikainen & Oriana Riva 66

… Type of faults in finite state machines

Additional or missing transitions
In many cases, it is assumed that the finite state machine is

deterministic and completely defined, i.e., for each pair of

present state and input there is exactly one specified

transition.

In the case of incompletely specified machines, no transition

may be specified for a given pair, while in the case on non-

deterministic machines, more than one transition may be

defined.

In these cases, the fault model could include additional

and/or missing transitions.

29.1.2007© Kimmo Raatikainen & Oriana Riva 67

State machines with input queues

In many situations, a system is described in the form of
one or several state machines which are combined with
input queues.

An input event is stored within the queue of the receiving
machine before it is processed by the latter, usually in
FIFO order.

Certain models assume that a given machine may have
several input queues, which correspond to different
sources of input events.

29.1.2007© Kimmo Raatikainen & Oriana Riva 68

The types of faults considered in state
machines with input queues …

Ordering fault
A machine has an ordering fault in relation with its input

queues if the FIFO ordering is not preserved, or if in the

case of multiple input queues, some input event enters a

wrong input queue.

Maximum length fault
A machine has a maximum length fault if the maximum

length implemented is less than the one specified, or if an

input event may get lost while the number of submitted input

events does not overflow the maximum queue length

specified.

29.1.2007© Kimmo Raatikainen & Oriana Riva 69

The types of faults considered in state
machines with input queues

Flow control fault
A machine has a flow control fault if errors of ordering or of

loss occur, but only in case the number of submitted input

events overflows the maximum queue length specified.

29.1.2007© Kimmo Raatikainen & Oriana Riva 70

Petri nets …

A Petri net consists of a number of places, which may
contain zero, one or more tokens, and a number of
output arcs, each connecting the transition with a place.

A transition may fire if all places which are connected by
input arcs contain at least one token

When the transition fires, one token is removed from
these places, and one token is added to those places
which are connected by an output arc.

29.1.2007© Kimmo Raatikainen & Oriana Riva 71

… Petri nets

A single Petri net may be used to model a system of
interconnected finite state machines.

The states of the FSM correspond to certain places of the
Petri net, and each different type of input or output is
modeled by another place which may contain the input or
output event in the form of a token.

The output and transfer faults of an FSM correspond to
the fault of a Petri net where one of the output arcs of the
transition leads to the wrong place.

29.1.2007© Kimmo Raatikainen & Oriana Riva 72

The types of faults considered in Petri net

Input or output arc fault
A transition has an input or output arc fault if one of the input

or output arcs is connected to the wrong place, if an input or

output arc is missing, or if an input or output arc exists in

addition to those specified.

Missing or additional transition
A Petri net has a missing or additional transition if the

number of transitions is not the same as in the specification.

29.1.2007© Kimmo Raatikainen & Oriana Riva 73

Software Environments …

Protocol testing is playing a more and more essential role
it provides a means of enhancing the interoperability and

reliability of communication software

Many software environments for protocol testing have
been developed

They have helped protocol testing to become more efficient,

reliable and flexible

29.1.2007© Kimmo Raatikainen & Oriana Riva 74

… Software Environments

On the next slide there is a list of some of the software
tools for protocol testing

Lai’s survey gives brief introductions of some environments

that are related to protocol testing

In practice, protocol testing without any software tool is
good enough only in tiny examples

29.1.2007© Kimmo Raatikainen & Oriana Riva 75

Some Software Environments for protocol
testing

TESTL
TESTGEN
TESTGEN+: TESTGEN, TESTSEL, TESTVAL
UCB Environment: a test suite generator (TSG), a test
case management system (TCMS), a trace analyzer
(TAN) and a test executor (TEX)
TENT
FAITH
FOREST
CVOPS
PROSITE
SELEXPERT

29.1.2007© Kimmo Raatikainen & Oriana Riva 76

Summary of test sequence generation
methods …

T-method: Uncomplicated

U-method: Involving UIO sequences

D-method: Involving a distinguishing sequence

W-method: Involving a characterization set W

UIOSs-method: Based on UIO sequences

RCP-method: Minimizing the transfer sequence between
subsequences

29.1.2007© Kimmo Raatikainen & Oriana Riva 77

… Summary of test sequence generation
methods …

MUIO (Multiple UIO-method): A set of minimal length
UIOs reducing the length of the overall test sequence,
short test sequences

Overlaps method: Overlapping between subsequences,
reduction in the test sequences length, short test seq.

MUIO with overlapping method: Combining multiple UIO
and overlaps, fully exploring the properties of the
subsequences, shortest test sequences

UIOv-method: All unique in an implementation with a
verification procedure

29.1.2007© Kimmo Raatikainen & Oriana Riva 78

… Summary of test sequence generation
methods …

Discriminating UIO sequences: Based on the ability of
constructing test sequences, uniquely distinguishing
edges in the traversal of the FSM, reducing the number of
test subsequences, no loss fault coverage

Multi-level method: Combining of several methods to
generate the entire test sequence, high degree of fault
coverage and capability to recover from errors

E-method: Characterized by a set of incoming edges and
outgoing edges, good fault coverage

29.1.2007© Kimmo Raatikainen & Oriana Riva 79

Break

29.1.2007© Kimmo Raatikainen & Oriana Riva 80

Integrated System Interoperability
Testing With Applications to VoIP

29.1.2007© Kimmo Raatikainen & Oriana Riva 81

Introduction …

When two or more entities in separate communicating
systems are integrated and need to interact with each
other to perform a certain task the capability to operate as
desired is called interoperability

Products from different vendors or even from the same
vendor often do not interoperate properly

Two main causes of noninteroperation are:
ambiguity of protocol specification, and

vendor’s proprietary extensions.

29.1.2007© Kimmo Raatikainen & Oriana Riva 82

… Introduction …

Interoperability testing is to check the interoperations
among integrated system implementations.

conformance testing that checks the conformance of the

implementation of a protocol to its specification

In conformance testing, the implementation under test is
usually residing in an isolated environment for the tester
to execute the test

29.1.2007© Kimmo Raatikainen & Oriana Riva 83

… Introduction …

In interoperability tests, the implementations are usually
residing in an open environment

the degree of interoperation between implementations

depends not only on the implementations themselves but

also on the environment

The research work on interoperability testing can be
roughly classified into two categories:

general concepts and experiences of interoperability testing,

and

systematic generation of interoperability test suites.

29.1.2007© Kimmo Raatikainen & Oriana Riva 84

… Introduction

Most of the recent research work in this field is related to
interoperability test suite derivation.

One approach for interoperability test generation is to
apply conformance test generation techniques on
composed finite state machines (constructed from several
components systems via a reachability analysis)

Problem: we may not have complete information on all the
interoperating systems.

In VoIP systems, we can model end user behavior and
H.323 protocols, but we do not have a specification of the
communication system
the IP network is too complex to model.

29.1.2007© Kimmo Raatikainen & Oriana Riva 85

The work of Hao et al. …

Motivated by the need to test interoperability of systems
carrying voice calls over the IP network

The VoIP system must be integrated and interoperate with

the existing public switched telephone network (PSTN).

The system behavior is modelled by extended finite state
machines (EFSM).

Based on the experiences of domain experts, a key idea
in developing the coverage criteria is that interoperability
errors are introduced only when the integrated systems
are “interacting” with each other.

29.1.2007© Kimmo Raatikainen & Oriana Riva 86

… The work of Hao et al.

For instance, for VoIP interoperability testing, we only
need information about end users required behaviors and
H.323 interfaces.

The designed the ITIS (Interoperability Testing Intelligent
System) software tool.

Using IT IS, interoperability test cases were generated for:
End users versus the rest of the communication system; and

End users and H.323 versus the rest of the communication

system

29.1.2007© Kimmo Raatikainen & Oriana Riva 87

Interoperability Test Generation …

Interoperability testing is rather complex
there are different models for different applications and

system implementation environments

A common type of interoperability testing is usually
performed on two interconnected implementations from
different vendors (implementations A and B)

29.1.2007© Kimmo Raatikainen & Oriana Riva 88

… Interoperability Test Generation …

In the model of the article, there is an integrated system
consisting of

system components of which we have complete information

(A)

system components of which we don’t have or choose not to

have information (either it is not available or too complex to

model) B

We can only access the systems through the interface
with A.

29.1.2007© Kimmo Raatikainen & Oriana Riva 89

… Interoperability Test Generation

We can apply inputs to A and observe its corresponding
output responses and its interoperations with while they
are interoperating

Note that the output responses of A include its local
outputs as a system component itself and also its
interfaces with B, such as sending messages to and
receiving messages from B.

29.1.2007© Kimmo Raatikainen & Oriana Riva 90

The test architecture based on the
interoperability test model

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 825

29.1.2007© Kimmo Raatikainen & Oriana Riva 91

Integrated VoIP System

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 825

29.1.2007© Kimmo Raatikainen & Oriana Riva 92

Restrictions

Because of the limited controllability and observability in
the test architecture it is a rather intriguing problem for
fault identification.

we do not intend to solve the problem of identifying where

the faults are in the network.

In practice, usually we deploy some traffic sniffers in the
network to record the packet exchange which could be
used at a later time for a manual analysis and diagnosis.

29.1.2007© Kimmo Raatikainen & Oriana Riva 93

Notes …

Interoperability and conformance testing are closely
related but different.

Given a system specification A and an implementation A’,
which is a “black-box”, we want to apply a test to A’ to
conclude whether it conforms to the specification A

A’ is identical to A.

In the interoperability testing, we want to test the
interoperations between the system components A and B

we have complete information and control of A and no

information of B.

29.1.2007© Kimmo Raatikainen & Oriana Riva 94

… Notes

By a rationale similar to the case of conformance testing,
ideally, we want to apply all the possible executable
sequences as tests to A to trigger all the possible
interoperations between A and B

the interoperations which can be controlled and observed by
applying tests to A only.

In general, there are infinitely many such tests.
So we want to reduce the tests to finitely many and minimize
the number of tests yet maintaining the same coverage on
interoperations between A and B, which are triggered by the
tests.
We need to explore the redundancy criteria and use efficient
test generation algorithms.

29.1.2007© Kimmo Raatikainen & Oriana Riva 95

Three states FSM as protocol system A

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 826

Conformance testing:
ac|00, bd|11

Interoperability testing:
ac|00, bd|11, ad|01, bc|10

29.1.2007© Kimmo Raatikainen & Oriana Riva 96

Test Generation Strategy …

We can model the joint-behavior of A and B by an EFSM
and construct its reachability graph, which is a directed
graph or a transition diagram.

The EFSM that covers the joint-behavior of several
system components can be constructed by calculating the
Cartesian product of the EFSMs for these components.

29.1.2007© Kimmo Raatikainen & Oriana Riva 97

… Test Generation Strategy …

When we conduct interoperability testing, we are
concerned only with those failures that occur when the
components of integrated systems are interoperating.

So the coverage criteria of our interoperability test
generation is to test all the possible interoperations of A
with B.

29.1.2007© Kimmo Raatikainen & Oriana Riva 98

… Test Generation Strategy …

Ideally, we want to check every input sequence to A
(scenarios)

Covering all possible execution sequences requires that we

cover all the branches and all the possible paths in the

EFSM.

In general, this is impossible:
transition diagrams often contain cycles and, therefore, will

have infinitely many distinct paths.

29.1.2007© Kimmo Raatikainen & Oriana Riva 99

… Test Generation Strategy

A key idea in developing the test cases is that
interoperability errors will be introduced only when the
gateways are actually talking to each other about a call

we can ignore local activities involved in the protocol (“white”

transitions)

A white transition is purely local and is involved with only
one gateway.

A black transition involves both gateways.

29.1.2007© Kimmo Raatikainen & Oriana Riva 100

Partial call flow of a telephone call

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 826

29.1.2007© Kimmo Raatikainen & Oriana Riva 101

Objectives of interoperability testing

Based on our information about A, we want to construct a
set of non redundant tests such that all the
interoperations of A with B are tested.

Our goals are:
1. Completeness: all the interoperations between the two

systems are tested; and

2. Non-redundancy: all the redundant tests are removed to

minimize the total number of tests

29.1.2007© Kimmo Raatikainen & Oriana Riva 102

An “Exhaustive” Test Set …

To trigger all the interoperations between A and B ideally,
we want to include all the possible tests

all the paths from the initial configuration

In general, there are infinitely many such paths.

From the practical experiences in testing, exercising a
cycle multiple times has the same coverage for
interoperability testing as exercising it once.

29.1.2007© Kimmo Raatikainen & Oriana Riva 103

… An “Exhaustive” Test Set …

Testing a complex cycle (with repeated nodes) is the
same as testing each of its simple cycles (without
repeated nodes)

We only need to test each simple cycle once for the
interoperability testing.

Each path consists of an acyclic path with zero or more
simple cycles attached to it

A set of paths that contains all the acyclic paths, on some
of which all the simple cycles are attached, has the same
coverage as all the paths.

29.1.2007© Kimmo Raatikainen & Oriana Riva 104

… An “Exhaustive” Test Set

In a directed graph, there is a finite number of acyclic
paths and a finite number of simple cycles.

The number of such paths is finite, and they consist of a
test set with a complete coverage.

29.1.2007© Kimmo Raatikainen & Oriana Riva 105

Three steps to generate an exhaustive test set

1. Generate all possible acyclic paths, i.e., paths without
any repeated vertices.

2. Generate all possible simple cycles, i.e., cycles that do
not contain any smaller cycles.

3. “Combine” the paths (from step 1) and simple cycles
(from step 2) to generate the final set of paths.

29.1.2007© Kimmo Raatikainen & Oriana Riva 106

Elaboration of steps 1 and 2

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 827

Directed acyclic graph
DAG

29.1.2007© Kimmo Raatikainen & Oriana Riva 107

Next-transition-tree …

This data structure can be defined for any graph, but in
our case, the graph will always be an SCC.

For any node v, the next-transition-tree T(v) stores all
acyclic paths from v to other vertices in its SCC.

The tree has v as its root.

The children of v are all the nodes in its SCC that have a
direct edge from v.

29.1.2007© Kimmo Raatikainen & Oriana Riva 108

… Next-transition-tree

In general, the children of any node u are all the nodes in
its SCC that have a direct edge from node u.

If a child node has appeared on the path from the root
node v to u, then it is not included in the tree.

Note though that a node may appear multiple times in this
tree but not on a tree path.

29.1.2007© Kimmo Raatikainen & Oriana Riva 109

The next-transition-tree for nodes s3 and s4

© IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004, p. 827

T(s3) T(s4)

29.1.2007© Kimmo Raatikainen & Oriana Riva 110

Generating all acyclic paths and simple cycles
within an SCC

Let T(v) be the next-transition-tree of node in an SCC.

We can easily obtain all the acyclic paths from v and all
the simple cycles containing v.

It is based on the following lemma:
For a next-transition-tree from node v, T(v), each tree path

from v to a node u is an acyclic path in the SCC.

Conversely, for each acyclic path from v to u in the SCC, there

is an identical tree path from v to a node u in T(v).
Furthermore, all the tree paths in T(v) are distinct.

29.1.2007© Kimmo Raatikainen & Oriana Riva 111

Acyclic paths and simple cycles within an SCC

© IEEE/ACM Transactions on Networking,
Vol. 12, No. 5, October 2004, p. 828

29.1.2007© Kimmo Raatikainen & Oriana Riva 112

Test generation using Exhaustive-Coverage

29.1.2007© Kimmo Raatikainen & Oriana Riva 113

Practical Redundancy Criterion …

R1: Proper prefixes are redundant and can be discarded.

R2: Remove all-white test sequences.

R3: Let (u,v) be the first black edge in the test sequence.
Then replace the path from the source node to node u
with the shortest path between the source node and node
u

R4: Let (u,v) be the last black edge in the test sequence.
Then replace the path from node v to the sink node with
the shortest path between node v and the sink node.

29.1.2007© Kimmo Raatikainen & Oriana Riva 114

… Practical Redundancy Criterion

R5: Remove all-white simple cycles.

R6: Generate acyclic paths that consist only of black
edges, except that the prefix from the source node and
the suffix to the sink node is allowed to contain white
edges.

R7: Generate simple cycles consisting only of black
edges.

29.1.2007© Kimmo Raatikainen & Oriana Riva 115

Algorithms for Interoperability Test Generation

Hao et al gives the following algorithms:
Paths-In-DAG (R1)

Exhaustive-Coverage (R1)

Exhaustive-Test (R1 optionally with Chinese Postman Tour)

Complete-Coverage (R1-R4)

Complete-Test (R1-R5)

Basic-Coverage (R1-R6)

Basic-Test (R1-R7)

29.1.2007© Kimmo Raatikainen & Oriana Riva 116

Test Cases for End User VoIP Testing

14414Basic-Test

598116598Complete-Test

950430950
Exhaustive-

Test

Final testsSimple cyclesAcyclic pathsAlgorithms

EFSM: 21 states, 68 transitions, 24 black edges

29.1.2007© Kimmo Raatikainen & Oriana Riva 117

Test Cases for Authorized Phone Call Feature
of VoIP Systems

626Basic-Test

561256Complete-Test

196108196
Exhaustive-

Test

Final testsSimple cyclesAcyclic pathsAlgorithms

29.1.2007© Kimmo Raatikainen & Oriana Riva 118

Test Cases for H.323 Call Signaling

77077Basic-Test

2,20402,204Complete-Test

140,3900140,390
Exhaustive-

Test

Final testsSimple cyclesAcyclic pathsAlgorithms

EFSM: 419 states, 1290 transitions, 27 black edges

0,05%

29.1.2007© Kimmo Raatikainen & Oriana Riva 119

Conclusions …

Heterogeneity is one of the prominent features of
networking systems, and interoperability is ubiquitous and
has become a major hurdle for system reliability and
quality of service.

Interoperability testing is indispensable for the integration
of reactive systems.

Conventional conformance testing techniques do not
apply

We want to test the system interfaces but not to check

implementations versus specifications.

29.1.2007© Kimmo Raatikainen & Oriana Riva 120

… Conclusions

While fully recognized by the industry, integrated system
interoperability testing provides a challenge and
opportunities for researchers to study the essence of the
problem and to invent novel technique for system
interoperability testing and for improving the reliability of
the integrated systems.

29.1.2007© Kimmo Raatikainen & Oriana Riva 121

Testing SDL

29.1.2007© Kimmo Raatikainen & Oriana Riva 122

Testing methods for SDL systems

Testing methods for SDL systems can be classified into
two main groups:

those that intent the totally automated test generation from

the SDL systems specification and

those that provide interactive test generation methods

29.1.2007© Kimmo Raatikainen & Oriana Riva 123

Case study: Inres protocol

The Inres (Initiator-Responder) protocol is connection-
oriented and asymmetric.

The initiator establishes a connection and sends data.

The responder accepts and releases connections, and
receives data.

29.1.2007© Kimmo Raatikainen & Oriana Riva 124

Overview of the Inres protocol and service

© Computer Networks and ISDN Systems 28 (1996) p. 1670

29.1.2007© Kimmo Raatikainen & Oriana Riva 125

Test architecture

The test architecture is a description of the environment
in which the IUT (Implementation Under test) is tested.

There are two possible test architectures for the Inres
protocol.
1. If conformance testing for the three blocks of initiator,

medium and responder is requested, the PCOs (Points of
Control and Observation) are located at the Isapin and
Isapres points, where available PCOs are located directly
above the IUT.

2. If conformance testing for the two blocks of initiator and
medium is requested, the PCOs are located at the Isapin
and at the interaction point between the responder and the
medium block.

29.1.2007© Kimmo Raatikainen & Oriana Riva 126

Test architecture for Inres protocol

© Computer Networks and ISDN Systems 28 (1996) p. 1671

29.1.2007© Kimmo Raatikainen & Oriana Riva 127

Inres initiator test architecture

© Computer Networks and ISDN Systems 28 (1996) p. 1671

29.1.2007© Kimmo Raatikainen & Oriana Riva 128

Automated test generation methods

Some of the automated test generation methods derive
tests directly from the SDL specification.

Others consist of transforming the SDL specification into a
model written in another formalism, from which tests are
generated.

input/output finite state machines (I/O FSMs) are quite

popular as an intermediate model for test generation.

29.1.2007© Kimmo Raatikainen & Oriana Riva 129

Verification of the uniqueness of UIOs

The validity of any method based on UIOs is based on the
fact that the UIOs are unique both in the specification and
in the implementation.

Before applying any method based on these concepts
and in order to improve the coverage of faults, it is
necessary to verify the uniqueness of the identification of
each state.

This procedure insures that each state in the
implementation has an identification and that it is unique

not accepted by any other state in the implementation

29.1.2007© Kimmo Raatikainen & Oriana Riva 130

Conformance

Since the implementation is tested as a black box, the
strongest conformance relation that can be tested is trace
equivalence:

two I/O FSMs are trace equivalent if the two cannot be

distinguished by any sequence of inputs.

To prove trace equivalence it suffices to show that
(a) there is a set of implementation states {p1,p2,…, pn}

respectively isomorphic to the specification states (s1,s2,...,

sn), and

(b) every transition in the specification has a corresponding

isomorphic transition in the implementation.

29.1.2007© Kimmo Raatikainen & Oriana Riva 131

Assumptions for test generation

The purpose of test generation is to produce a sequence
of inputs (and corresponding outputs), called a test
sequence, which can be applied to an implementation to
verify that it correctly implements the specification.
There is a number of necessary assumptions that must
be made in order to make the experiment possible:
1. the I/O FSM specification is strongly connected, so that all

states can be visited;
2. the I/O FSM specification does not have strongly

equivalent states (it is minimized);
3. the I/O FSM specification is deterministic and fully

specified; and
4. the I/O FSM implementation has no more states than the

I/O FSM specification.

29.1.2007© Kimmo Raatikainen & Oriana Riva 132

External and internal events …

To perform tests on the SDL specifications using the
following method, the concept of internal event, denoted
by i, is introduced.

In the generation of global I/O FSMs from the reachable
state graph, the external events having interactions with
the PCOs are separated from the internal events having
no direct interaction with the PCOs.

The internal event is a hidden event between the two
PCOs and is not visible.

29.1.2007© Kimmo Raatikainen & Oriana Riva 133

… External and internal events

Depending on the location of the PCO, distinct global I/O
FSMs containing different internal events can be
obtained.

By applying a bisimulation reduction algorithm to the
global I/O FSM, these internal events are eliminated and a
reference I/O FSM with a small number of states is
obtained.

29.1.2007© Kimmo Raatikainen & Oriana Riva 134

Test sequence generation from the SDL
specification …

Step 1: A state transition graph is generated. From the
state transition graph obtained and the data for the PC0
that interact with the SDL environment, a global I/O FSM
is generated that includes external events and internal
events.

29.1.2007© Kimmo Raatikainen & Oriana Riva 135

… Test sequence generation from the SDL
specification …

Step 2: The global I/O FSM is transformed into the
reference I/O FSM. In this step, the transitions that are
labelled by internal events (for both the input and output
events) and the states between these transitions are
eliminated by application of a reduction algorithm.
However, we maintain those transitions that have an
internal event (as input or output) and an observable
event (as input or output). The preserved internal actions
will be renamed by “null”.

29.1.2007© Kimmo Raatikainen & Oriana Riva 136

… Test sequence generation from the SDL
specification …

Step 3: Some cases of nondeterministic I/O FSMs are
transformed into deterministic FSM using a
determinization algorithm. In this step, we also transform
the I/O FSMs into fully specified I/O FSMs by adding to
each state a looping transition having as an input the
non-specified input and “null” as an output. Note that this
transformation respects the semantics of SDL.

Step 4: The minimization algorithm to eliminate strongly
equivalent states is applied.

29.1.2007© Kimmo Raatikainen & Oriana Riva 137

… Test sequence generation from the SDL
specification …

Step 5: The strong connectivity of the reference I/O FSM
is verified.

Step 6: The UIO sequences are generated for each state.

Step 7: The sequence of tests for verifying the uniqueness
of the identification is generated.

29.1.2007© Kimmo Raatikainen & Oriana Riva 138

… Test sequence generation from the SDL
specification

Step 8: A non-optimized test sequence is then generated,
which tests each transition in the reference I/O FSM
starting from the initial state. An optimal test sequence
can also be obtained, which is a minimum cost tour for the
reference I/O FSM.

Optimization can be obtained using UIO sequences, the

Chinese postman tour or multiple UIOs and overlapping.

