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Abstract—Frequent freezes and crashes on current 

systems bring tremendously heavy loads to the system 
administration, directly resulting in an undesirable 
increase on the total cost of ownership (TCO). Obviously, it 
is time to broaden the long lasting performance-dominated 
research focus, which has neglected other aspects of 
computing such as dependability, availability and stability. 
Deeming that software bugs, hardware faults and operator 
errors are facts to be coped with, not problems to be solved, 
Recovery Oriented Computing (ROC) concentrates on 
building systems that recover fast when a fault does occur, 
instead of aiming for systems that never fail. To reach high 
dependability in the Internet service environment, ROC 
implements two building blocks for recovery, microreboot 
and system-level undo, which have proven effective in 
handling failures. A suitable benchmarking method is 
developed to quantify the impact of these effects on the 
system dependability. 
 

Index Terms—Microreboot, undo/redo, benchmarking  
 

I. INTRODUCTION 
n spite of the ever-improving design on hardware and 
software, computer systems still crash or freeze frequently. 

Web sites seem to become unavailable when we most need 
their services. Human operators regularly bring disorders to the 
systems they administer. Apparently, system administration 
constitutes a major part of total cost of ownership, with a large 
fraction of this cost going to recovering and managing failures. 
A detailed survey for cluster-based services with respect to 
total cost of ownership (TCO) [3] implies that the 
TCO/Purchase ratios are from 3.6 to 18.5 as shown in Table I. 

The survey reminds us a fact that a majority of TCO goes to 
either recovering from or preparing against system failures. 
Since large portion of system administration is dealing with 
failure handling, reducing the costs from failure recovery 
reduces the total cost of ownership (TCO) as well. As a joint 
research effort of Stanford University and University of 
California, Berkeley, Recovery-Oriented Computing (ROC) 
group studies techniques of facilitating system to recover from 
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inevitable failures. By regarding failures as a fact of life, ROC 
group strives on building systems that can recover as fast as 
possible, rather than on trying to prevent failures.  

To reach a multitier dependability, two techniques are of the 
main concern in this paper: microreboot and system level undo. 
As a front line recovery, microreboot provides an acceptable 
mechanism to achieve high availability at relatively low costs. 
On the other hand, system level undo renders a more 
comprehensive method for recovering from state-corrupting 
failure, and also provides operators a forgiving operation 
environment to help address an unfulfilled need that although 
system operations play a critical role in maintaining system 
dependability, the operators lack powerful tools to help them 
do so.  

ROC researches are geared mainly toward Internet services 
due to the unique challenges presented by them: Google has 
more than 100,000 computing nodes subjected to perpetual 
evolution; with weekly software updates in common and 
various workloads by orders of magnitude over the day, they 
are expected to provide stable service on 24/7 within this 
dynamic environment. ROC believes that lessons and 
experiences learned from Internet can also shed lights on other 
computing environments such as smaller network services and 
desktops.  

In the reminder of this paper, an overview on multitier 
dependability design space is given in section II. Section III 
provides a description of microreboot prototype and lessons 
obtained from the implementation. In section IV, the general 
3R model “Rewind, Repair and Replay” for operator undo is 
introduced, followed by the integration of generic undo design 
with the specific application of an e-mail store. Section V 
evaluates the effectiveness of techniques with benchmarking, 
and we conclude in section VI.  

 

II. MULTITIER DEPENDABILITY DESIGN SPACE 

A. General design space 
To define the system availability in terms of the relationship 

between mean-time-to-fail (MTTF) and mean-time-to-recover 
(MTTR), there is a common formula: 

Availability = MTTF / (MTTF + MTTR) 
As implied by the formula, there exist two ways of 

increasing availability: increase the MTTF to infinity thus 
approaching 1/1 (hardly ever fail), or bring down the MTTR 
close to zero which means short recovery time. ROC argues 

I 
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Operating system/Service  Linux/Internet Linux/Collab. Unix/Internet Unix/Collab.
Average number of servers 3.1 4.1 12.2 11.0
Average number of users 1150 4550 7600 4800
HW-SW purchase price $127,650 $159,530 $2,605,771 $1,109,262
3 year Total Cost of $1,020,050 $2,949,026 $9,450,668 $17,426,458
TCO/HW-SW ration 8.0 18.5 3.6 15.7

Table I: Ratio of three tear total cost of ownership to hardware-software purchase price [3]. 
 

that it is easier for us today to approach high availability 
through reducing MTTR as: 

0
lim ( ) 100%

M TTR
availability

→
=  

At the same time, it is of equal importance that recovery 
should not only be fast but correct as well. To reach of goal of 
flawless recovery, Recovery-oriented systems must defend 
themselves in depth by adopting multiple layers of recovery. 
Two principal axes are proposed to present the design – cost of 
recovery and percentage of recoverable failures, as showed in 
Figure I: One axis captures the amount of breadth a technique 
can achieve in terms of failures it cures; the other axis refers to 
the general cost of employing that technique. In a sense, these 
axes capture a cost benefit ratio for recovery. 

 

 
Figure I: Software recovery design space [6]. 

 
B. Principles to guide research 

Through the research projects done by ROC group [6], four 
principles are learned as listed below, to guide further 
researches.  
1) Safeguarding system state is required by fast recovery: 

Recovering a failed system means to bring it back to a point 
where the system can function as well as it used to before 
failing. The system state, a union of all the data which programs 
use to guide their operations, largely determines the capacity of 
serving requests, and the cost of recovery depends on how long 
it takes to reconstruct the state of the system. 

Take the Web server for example, which is a typical stateless 
system. When requests come, each individual request does not 
require the server to maintain a state on its behalf. Therefore the 
system can be rebooted respectively safely, and subsequent 
HTTP requests will not notice that server was maintained. On 

the other hand, an operating system is a stateful program which 
reads and changes states on behalf of the applications it runs. 
Discarding the state would bring down the entire system. To 
recover from such a problem as one corrupted Windows 
registry, usually require us to reinstall the whole operating 
system and its corresponding applications again, in order to 
recreate a large amount of state. This process might take from 
hours to many days. 

Most existing dependable systems rely on certain form of 
rollback recovery, using state checkpoints or activity logs to 
help restore after a failure occurs [4]. Because rollback can be 
expensive, the key to fast recovery is to protect the state from 
corrupttion by safeguarding it as much as possible from the 
program logic. Overall dependability will increase with the 
level of separation of data management from application. For 
this to be effective, our programs should access the data only 
via well-defined interfaces.    
2) Fine-grained workloads speed up recovery: 

Another factor influencing the system recovery is the 
workload. For instance, when rebooting a Web server, the lost 
state is the HTTP requests that happened during the interval of 
recovery. The stateless nature of HTTP, combined with the 
retrying from client side, keeps the correctness across short 
term failure. If the system designers can break the workload 
into small units independent of each other, then to recover from 
failure needs little state reconstruction, thus accelerating the 
recovery. 
3) Platform recovery is cost-effective: 

Two prototypes described in this paper implement recovery 
in the platform rather than on the application level. Although it 
is harder to reach, this approach might leverage recovery code 
across multiple applications including developed and tested 
ones, both present and forthcoming. 
4) We can’t improve what we can’t measure: 

One goal of ROC research is to develop suitable ways to 
benchmark the dependability of systems designed by ROC 
group. The process of defining such benchmarks teaches us 
where the system vulnerable points are, and using them to 
guide the future design. An extra benefit of benchmarking 
effort is that it can make the recovery techniques more 
quantitative and persuasive, thus promoting the prospect of 
adopting those methods in real systems. 

 

III. MICROREBOOT – A TECHNIQUE FOR CHEAP RECOVERY 
In industry, rebooting is often regarded as a universal cure 

for software failures in that it is easy to implement and 
automate, and can bring failed applications back to start state 
which is a best-tested state [7]. Unfortunately, the recovering 
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process could take a long time if lots of state reconstructions are 
needed. What is more, unexpected reboots in a system that is 
not crash-safe could even result in data loss. 

One major requirement for the front-line defense in building 
multitier dependability is to keep both cost and overhead at a 
low level with a good possibility to fix the problem, and low 
opportunity cost in case it does not work. The technique 
designed by ROC – Microreboot [5], renders a refined recovery 
mechanism that can restore most of the same failures as full 
reboot, but does so an order of magnitude faster thus achieving 
an order of magnitude savings in lost work. As microreboot 
preserves the advantages of reboot while mitigating the 
corresponding drawbacks, ROC group therefore chooses it as a 
promising candidate for the front-line recovery in building 
multitier dependability. 

A. Microreboot design principles 
A microboot is the selective crash-restart of only those parts 

of a system that trigger the observed failure [5]. It is regarded as 
an effective mechanism for system recovery due to the fact that 
a small subset of components is often responsible for system 
failure. Here we summarize essential parts of microreboot 
design.  
1) Fine-grain components: 

Component-level reboot time depends largely on how long it 
takes for the underlying platform to restart a component and 
reinitialize it. Thus a microrebootable application aims for 
components that are as small as possible in terms of startup time 
and program logic. Although the task of partitioning a system 
into components is specific and difficult, developers can 
benefit a lot from existing component-oriented programming 
framework such as J2EE [5]. 
2) State segregation:  

To ensure the recovery correctness, ROC requires that 
microrebootable applications should keep all important state in 
dedicated state stores located outside the application, 
safeguarded behind strong high-level APIs. Besides enabling 
the safe microreboot, the complete segregation of data recovery 
from application recovery also improves the system robustness. 
Because the segregation can shift the burden from application 
program writers to the experienced specialists who develop 
state stores. 
3) Decoupling: 

If applications are to tolerate microrebooting, components 
should be loosely coupled. The well-defined and well-enforced 
boundaries are needed. Direct references, such as pointers are 
not allowed. If cross component references are indeed needed, 
they must be stored outside the component, either in the 
application platform or inside a state store. 
4) Retryable requests: 

To reintegrate microrebooted components smoothly, inter- 
component interactions use timeout. When one component 
invokes a currently microrebooting component, it receives a 
retry after (t) exception, and the call can be re-issued after the 
estimated time t, if it is idempotent [5]. For non-idempotent 
calls, rollback could be used. If components transparently 
recover requests in this way, we can hide intra-system 
component failures and microreboot from end users. 

5) Leases: 
To improve the reliability of cleaning up after microreboots, 

resources in a frequently-microrebooting system should be 
leased. In addition to memory and file descriptors, CPU 
execution time should also be leased meaning that if a 
computing hangs and does not renew its execution lease, it 
should be terminated with a microreboot. If requests can carry a 
time-to-live (TTL) which indicates how long the request could 
be regarded as valid, then stuck requests can be automatically 
purged once the TTL expired. 

B.  Prototype implementation and lessons 
ROC group implements the microreboot-approach in JBoss, 

an open-source application server written in Java supporting 
J2EE's component-based programming framework [5]. The 
refined JBoss modification allows selective microrebooting of 
small groups of Enterprise Java Beans (EJBs). All applications 
store their session state in a dedicated state repository 
optimized for fast recovery. A session state must remain persist 
between user's login and logout, but is not needed after the 
session ends. In this prototype, microreboots recover from a 
large category of failures, including deadlock, memory leaks 
and corrupted volatile data for which system administrators 
usually choose to restart the application. 

Microreboots are largely as effective as full reboots but 30 
times faster [6]. It not only reduces recovery time but also 
minimizes the side-effects on system end users, as shown in 
Figure II.  

 
Figure II: Service functionality availability [5]. 

 
The graphs illustrate end-user-perceived availability of an 

online auction service. The white gap of an interval indicates 
that some requests processing during this period eventually fail, 
suggesting that site is down. When recovering with 
microreboot, end-users are almost unaware of the restoring 
process, with close to no visible global down-time. 

If a component failure can not be corrected by microreboot, 
larger subsets of components are restarted progressively. This 
is like navigating upward on the spectrum to find the most 
advantageous cost-benefit ratio as shown in Figure I. 

Based on the implementation, two lessons are learned. 
Firstly, fine-grained recovery requires accurate fault 
localization. Concerning the workloads faced by Internet 
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services which often consist of many short-term tasks, by 
localizing recovery to a small subset of components, 
microreboot minimizes the number of state loss thus yielding a 
transparency to end-users for recovering. One challenge we 
face is how to identify the location of faults more accurately. To 
address it, ROC group built an application-generic fault 
detection and localization program – Pinpoint 
(http://pinpoint.standford.edu) – which uses statistical learning 
techniques to detect and localize application-level faults in 
component-based Internet services. Although Pinpoint does 
exhibit false positives, the integration of microreboot and 
Pinpoint offers higher dependability than ordinary rebooting.   

For the second, Microreboot is not a cure-all. 
Microrebooting works best on software failures triggered by 
so-called “Heisenbug”, which is a computer bug that 
disappears or alters its characteristics when it is researched. 
Microreboot is also effective against resources leak and 
corruption of volatile data structures [6]. Although these fault 
classes are important and hard to prevent with existing quality 
assurance process, they do not represent all system failures. 
Some failure types such as corruption of persistent data and 
misconfigurations can hardly be fixed by microrebooting.  
 

IV. UNDO AND REDO 

Software bug is not the only culprit for bringing down the 
systems; based on the analysis [4] of three large-scale Internet 
services, it is found that 1) human error is a major cause of fail- 
ures for Internet service systems, 2) configuration errors are the 
largest category of operation errors, and 3) operator error is the 
largest contributor to mean-time-to-recover (MTTR). The relat- 
ed problems include accidental data deletion, improper compo- 
nent shutdown and incorrectly performed update. To address 
these types of problems, ROC group adds a second line of def- 
ense to the multitier dependability based on the Three-R’s undo 
pattern. 

A. Design of Three-R model: 
The model of Three-R [1] includes three fundamental steps 

referred as “Rewind, Repair and Replay”. In the first Rewind 
step, all system state from application to OS is physically rolled 
back to a point before any damage occurred. In the Repair step, 
the operator in charge alters the rolled-back system to avoid 
reoccurring of problems. Finally, in the Replay step, the 
repaired system is rolled forward to the present by selectively 
replaying portions of the previously-rewound timeline. 

The essence of Three-R’s Undo is that it preserves the time- 
line: it restores lost updates and incoming data via replay in a 
manner that retains their intent but not the bad results of their 
original processing and this is also the property that 
distinguishes it from traditional approaches such as backup and 
restore. 

Three design decisions are important in the Three-R’s undo 
model: First one is the choice to perform Rewind physically 
and Replay logically. In this approach, “undo” is implemented 
by one single operation of restoring a previous snapshot of 

system hard state, while “redo” is achieved by re-executing a 
sequence of recorded user-level operations. As ROC undo 
system makes no assumption about the possible corruption it 
might encounter, physical Rewind provides flexibility in the 
recovering in that the corrupt state can not escape from 
roll-back. On the other hand, logical replay preserves the intent 
of user operations without reference to the original corrupted 
state together with respecting repairing process. While the 
logical replay may increase the complexity of undo system, 
ROC group constructs the undo system so that the replay code 
is implemented as part of normal system operation, thus 
flushing out bugs before replay during an emergency. Another 
key decision is that Repair should be as unconstrained as 
possible to allow the full flexibility for operator in designing 
solutions to repair the system problems. The last one is the fault 
model that makes minimal assumptions about the correctness of 
undoable application. Although it could limit the possibility of 
formal analysis, the fault model is the key to practical recovery 
from problems that altered the system operation in unknown 
ways, due to the fact that the most confounding and error-prone 
problems are the ones that have never been seen before.  

B. Implementation in an E-mail store 
Comparing with today’s productivity applications where the 

undo design is used so commonly, in the administration and 
operator environment, it is still virtually unheard of. Trying to 
change this situation, ROC group first implements the undo 
method on an E-mail store system. The general architecture of 
undo system is shown in Figure III. 

 

  
Figure III. Undo system architecture [2]. 
 

The heart of the undo system is the undo manager, which 
coordinates the system timeline. The proxy and time-travel 
storage layer wrap the service application, capturing and 
replaying user requests from above and providing physical 
rewind from below. 

The service application and its hosting operating system are 
left virtually unmodified; the undo system interposes itself both 
above and below the service. By keeping the undo system 
isolated from the service, this wrapper-based approach 
supports the fault model. Below the operating system, a time-

http://pinpoint.standford.edu/
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Verb Protocol Changes 
t t ?

Externalizes state? Async? Description 

Deliver SMTP √  √ Delivers a message to the mail store via SMTP 
Append IMAP √   Appends a message to a specific IMAP folder 

Fetch IMAP √ √  Retrieves headers, messages, or flags from a folder 

Store IMAP √ √  Sets flags on a message (e.g., Seen, Deleted) 

Copy IMAP √   Copies message to another IMAP folder 

List IMAP  √  Lists extant IMAP folders 

Status IMAP    Reports folder status (e.g., message count) 

Select IMAP    Opens an IMAP folder for use by later commands 

Expung IMAP √ √  Purges all messages with Deleted flag set from a folder 

Close IMAP √   Performs a silent expunge then deselects the folder 

Create IMAP √   Creates a new IMAP folder or hierarchy 

Rename IMAP √   Renames an IMAP folder or hierarchy 

Delete IMAP √   Deletes an IMAP folder or hierarchy 
Table II. Verbs defined for undo e-mail store [2]. 

travel storage layer provides the ability to physically roll the 
system’s hard state back to a desired point. Above the service 
application is a proxy which interposes between the application 
and end users. The undo system can intercept the incoming user 
request stream to record the system timeline and can inject its 
own requests to affect replay. The proxy and time-travel 
storage layer are coordinated by the undo manager, which 
maintains a history of user interactions comprising the system 
timeline. 

Because the undo manager in the system has no knowledge 
of the service and corresponding semantics, to address the 
translation problem when application-specific proxy 
communicates with undo manager, ROC group proposes the 
concept “verb”, which becomes the fundamental construct to 
represent events in the system timeline. A verb is an 
encapsulation of an end-user interaction with the system – a 
record of event causing service state to be changed or 
externalized (exposed to an external observer). It contains all 
the application-specific information needed to execute or 
re-execute user interaction, and at the same time appears to the 
undo manager as a generic data type with interfaces that only 
exposes information to manage the recording and execution. 
Rather than recording the contents of state or the effects of 
interactions on state, verb records the intent of user interactions 
at the protocol level. The flow of verbs during normal operation 
and during Replay is illustrated in Figure IV. 

During normal operation, the verb flow follows the solid 
black arrows, with verbs created in the proxy and looped 
through the undo manager for scheduling and logging. During 
replay, verb flow follows the heavy dashed arrow, with verbs 
being reconstructed from the timeline log and re-executed via 
the proxy. 

With the undo system architecture described, we now turn to 
the implementation of e-mail store service, which represents a 
leaf node in global e-mail network, delivering e-mail via SMTP 
and making it available for reading via IMAP [2]. 
1) Verbs for E-mail 

ROC defines 13 verbs for their undoable e-mail system that 
together capture important interactions in the IMAP and SMTP 
protocols, as listed in Table II. Each e-mail verb is implemented 
as a Java class realizing a common verb interface; the verb 

 

 
Figure IV. Illustration of verb flow [2]. 
 
interface is defined by the undo manager and it declares an API 
that maps the routines into Java function declarations. All verbs 
contain a tag which is a container structure wrapping the 
information needed to execute the verb and to check external 
consistency. The tag also includes a record of whether the 
execution succeeded or failed. 

To define verbs for existing protocols like IMAP and SMTP, 
it is important to capture the necessary context needed by the 
verb replay. For SMTP, the system captures the parameters 
passed to each SMTP command and stores them in the verb’s 
tag. As to IMAP, in order to be able of replaying IMAP verbs in 
situations where repairs have changed the system context, ROC 
group defines the notion of an UndoID, which is a 
time-invariant name independent of system context and capable 
of being translated to IMAP name for verb execution. The 
proxy is responsible for converting UndoID with IMAP names 
based on current context. 
2) E-mail proxy 

The e-mail proxy in the system is responsible for 
intercepting all SMTP and IMAP traffic directed at the server, 
converting it into verbs and interacting with the undo manager. 
It accepts connections on SMTP and IMAP ports and 
dispatches threads to handle each incoming connection. Each 
connection is handled by a thread running in a loop which 
decodes each incoming SMTP or IMAP, packages it into a verb 
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and invokes the undo manager to sequence, execute and record 
the verb.   
3) Time-travel storage layer 

At the base of ROC undoable e-mail system is the time travel 
storage layer, which provides stable storage for the e-mail 
store’s hard state and holds the ability to physically restore 
previous versions of target state. The storage layer design aims 
at application-neutral, and has neither the knowledge of the 
e-mail store, nor any customization to e-mail semantics  
4) Undo manager 

The undo manager stores system timeline as a linear 
append-only verb log. The log is implemented as a BerkeleyDB 
database, with each verb assigned a log sequence number (LSN) 
which is the fundamental internal representation of time to the 
undo manager [2]. The undo manger mediates execution of 
verbs during normal operation. 

The detailed information related to undoable e-mail store is 
discussed in Brown et al [2]. 

 

V. SUITABLE DEPENDABILITY BENCHMARKS 
A dependability benchmark is made up of a system 

specification, a faultload, a workload and a metric [3]. Due to 
the fact that no standard existed for benchmarking the 
dependability of Internet service which is of the main concern, 
ROC develops one through experiment and discussion with 
industrial experts. 

Action-weighted-throughput [5] is adopted to evaluate 
availability, which accounts for user interaction with a 
Web-based services as well as different weights of various 
operations. ROC assumes that a user session begins with login 
operation and ends up with logout or abandonment of the site. 
Each session consists of a sequence of actions; each user action 
is a sequence of operations; each operation in an action must 
succeed if the corresponding user action can be considered 
successful. When an operation fails, the entire action fails. 

 

 
Figure V. Action-weighted-throughput measurement [6]. 
 

Figure V shows results of an evaluation for an online auction 
site using action-weighted-throughput. Individual operations 
are normal HTTP requests and user actions take the form, “Put 

$50 bid on X.” ROC injected a sequence of three faults such 
wrong data into the system for every 10 minute. As illustrated 
by comparing two graphs, microbooting keeps the number of 
successful served requests up and failed ones down. Overall, 
11,752 requests failed when using restart; at the same time, 233 
requests failed when recovering with microreboot. 

Action-weighted-throughput takes into account end users, 
but it still does not provide quantitative metric for system 
administrators. ROC develops a new form of human-aware 
dependability benchmark [2] to correlate the cause and 
observed effects and applied it to measure the effectiveness of 
the system-level undo prototype. ROC benchmarks the 
correctness and availability of the e-mail server with and 
without the undo recovery mechanism, under two state 
corrupted failure scenarios, using 12 student subjects to 
perform recovery in 7 case scenarios. As demonstrated in 
Figure VI, the number of incorrectly handled messages greatly 
decreased in each case with undo/redo. For each of seven 
scenarios, the graph plots results of correctness and availability 
with and without undo recovery tool 

 

 
Figure VI. Benchmarking the human administrator component [6]. 
 

Besides the implementations of microreboot and 
system-level undo, ROC group also tries to improve recovery 
predictability and generates a new direction of research to 
improve the predictability of system behavior as a whole with 
reference at (http://predictable.standford.edu/). To broaden the 
undo/redo application space, ROC uses “spheres of undo” 
structuring concept to look at providing system-level undo in 
more complex systems such as Window-based desktop systems 
and distributed services [6]. With the exception of human 
errors, ROC finds out a fact that the noticing of an error often 
takes longer than to diagnose and repair it, especially when 
repair is a low-cost microreboot. Therefore, the research group 
regards the fault detection and diagnosis as an open challenge, 
which could be a promising direction for continuing the 
research to build high dependable systems. 

 

VI. CONCLUSION 
To achieve the goal of multitier dependability, two 

http://predictable.standford.edu/
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techniques were designed and illustrated in this paper, 
providing a front-line to back-up-line defense in case of failure. 
Microreboot, serving as the first-line-of-defense, is driven 
primarily by the desire to decrease the mean time to recover 
(MTTR) as a way to improve availability. Accepting software 
bugs as fact, this cheap reboot-based recovery method provides 
us a potential path toward dependable large-scale software. To 
extend the recovery coverage to more complex failure types, 
system-level undo was proposed. This approach creates a 
forgiving environment for system operators to help address the 
challenges facing the human operators, who exert a crucial 
influence on dependability. Through the adaptation of 
specifically designed benchmarking methods which take into 
account human operators as well as end users, we evaluated the 
prototype implementations of the two techniques at the final 
stage. The results showed that the combination of microreboot 
and system-level undo yielded promising solutions to complex 
problems within the large-scale Internet service environment. 

APPENDIX 
Source code for ROC undo framework and e-mail proxy is 

available at http://roc.cd.berkeley.edu/undo/. 
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