
SEMINAR ON SELF-HEALING SYSTEMS 1

Recovery-Oriented Computing: Main
Techniques of Building Multitier Dependability

Yi Ding

Abstract—Frequent freezes and crashes on current

systems bring tremendously heavy loads to the system
administration, directly resulting in an undesirable
increase on the total cost of ownership (TCO). Obviously, it
is time to broaden the long lasting performance-dominated
research focus, which has neglected other aspects of
computing such as dependability, availability and stability.
Deeming that software bugs, hardware faults and operator
errors are facts to be coped with, not problems to be solved,
Recovery Oriented Computing (ROC) concentrates on
building systems that recover fast when a fault does occur,
instead of aiming for systems that never fail. To reach high
dependability in the Internet service environment, ROC
implements two building blocks for recovery, microreboot
and system-level undo, which have proven effective in
handling failures. A suitable benchmarking method is
developed to quantify the impact of these effects on the
system dependability.

Index Terms—Microreboot, undo/redo, benchmarking

I. INTRODUCTION
n spite of the ever-improving design on hardware and
software, computer systems still crash or freeze frequently.

Web sites seem to become unavailable when we most need
their services. Human operators regularly bring disorders to the
systems they administer. Apparently, system administration
constitutes a major part of total cost of ownership, with a large
fraction of this cost going to recovering and managing failures.
A detailed survey for cluster-based services with respect to
total cost of ownership (TCO) [3] implies that the
TCO/Purchase ratios are from 3.6 to 18.5 as shown in Table I.

The survey reminds us a fact that a majority of TCO goes to
either recovering from or preparing against system failures.
Since large portion of system administration is dealing with
failure handling, reducing the costs from failure recovery
reduces the total cost of ownership (TCO) as well. As a joint
research effort of Stanford University and University of
California, Berkeley, Recovery-Oriented Computing (ROC)
group studies techniques of facilitating system to recover from

Yi Ding is a master student at Department of Computer Science, University
of Helsinki (e-mail: yi.ding@cs.helsinki.fi).

inevitable failures. By regarding failures as a fact of life, ROC
group strives on building systems that can recover as fast as
possible, rather than on trying to prevent failures.

To reach a multitier dependability, two techniques are of the
main concern in this paper: microreboot and system level undo.
As a front line recovery, microreboot provides an acceptable
mechanism to achieve high availability at relatively low costs.
On the other hand, system level undo renders a more
comprehensive method for recovering from state-corrupting
failure, and also provides operators a forgiving operation
environment to help address an unfulfilled need that although
system operations play a critical role in maintaining system
dependability, the operators lack powerful tools to help them
do so.

ROC researches are geared mainly toward Internet services
due to the unique challenges presented by them: Google has
more than 100,000 computing nodes subjected to perpetual
evolution; with weekly software updates in common and
various workloads by orders of magnitude over the day, they
are expected to provide stable service on 24/7 within this
dynamic environment. ROC believes that lessons and
experiences learned from Internet can also shed lights on other
computing environments such as smaller network services and
desktops.

In the reminder of this paper, an overview on multitier
dependability design space is given in section II. Section III
provides a description of microreboot prototype and lessons
obtained from the implementation. In section IV, the general
3R model “Rewind, Repair and Replay” for operator undo is
introduced, followed by the integration of generic undo design
with the specific application of an e-mail store. Section V
evaluates the effectiveness of techniques with benchmarking,
and we conclude in section VI.

II. MULTITIER DEPENDABILITY DESIGN SPACE

A. General design space
To define the system availability in terms of the relationship

between mean-time-to-fail (MTTF) and mean-time-to-recover
(MTTR), there is a common formula:

Availability = MTTF / (MTTF + MTTR)
As implied by the formula, there exist two ways of

increasing availability: increase the MTTF to infinity thus
approaching 1/1 (hardly ever fail), or bring down the MTTR
close to zero which means short recovery time. ROC argues

I

SEMINAR ON SELF-HEALING SYSTEMS 2

Operating system/Service Linux/Internet Linux/Collab. Unix/Internet Unix/Collab.
Average number of servers 3.1 4.1 12.2 11.0
Average number of users 1150 4550 7600 4800
HW-SW purchase price $127,650 $159,530 $2,605,771 $1,109,262
3 year Total Cost of $1,020,050 $2,949,026 $9,450,668 $17,426,458
TCO/HW-SW ration 8.0 18.5 3.6 15.7

Table I: Ratio of three tear total cost of ownership to hardware-software purchase price [3].

that it is easier for us today to approach high availability
through reducing MTTR as:

0
lim () 100%

M TTR
availability

→
=

At the same time, it is of equal importance that recovery
should not only be fast but correct as well. To reach of goal of
flawless recovery, Recovery-oriented systems must defend
themselves in depth by adopting multiple layers of recovery.
Two principal axes are proposed to present the design – cost of
recovery and percentage of recoverable failures, as showed in
Figure I: One axis captures the amount of breadth a technique
can achieve in terms of failures it cures; the other axis refers to
the general cost of employing that technique. In a sense, these
axes capture a cost benefit ratio for recovery.

Figure I: Software recovery design space [6].

B. Principles to guide research

Through the research projects done by ROC group [6], four
principles are learned as listed below, to guide further
researches.
1) Safeguarding system state is required by fast recovery:

Recovering a failed system means to bring it back to a point
where the system can function as well as it used to before
failing. The system state, a union of all the data which programs
use to guide their operations, largely determines the capacity of
serving requests, and the cost of recovery depends on how long
it takes to reconstruct the state of the system.

Take the Web server for example, which is a typical stateless
system. When requests come, each individual request does not
require the server to maintain a state on its behalf. Therefore the
system can be rebooted respectively safely, and subsequent
HTTP requests will not notice that server was maintained. On

the other hand, an operating system is a stateful program which
reads and changes states on behalf of the applications it runs.
Discarding the state would bring down the entire system. To
recover from such a problem as one corrupted Windows
registry, usually require us to reinstall the whole operating
system and its corresponding applications again, in order to
recreate a large amount of state. This process might take from
hours to many days.

Most existing dependable systems rely on certain form of
rollback recovery, using state checkpoints or activity logs to
help restore after a failure occurs [4]. Because rollback can be
expensive, the key to fast recovery is to protect the state from
corrupttion by safeguarding it as much as possible from the
program logic. Overall dependability will increase with the
level of separation of data management from application. For
this to be effective, our programs should access the data only
via well-defined interfaces.
2) Fine-grained workloads speed up recovery:

Another factor influencing the system recovery is the
workload. For instance, when rebooting a Web server, the lost
state is the HTTP requests that happened during the interval of
recovery. The stateless nature of HTTP, combined with the
retrying from client side, keeps the correctness across short
term failure. If the system designers can break the workload
into small units independent of each other, then to recover from
failure needs little state reconstruction, thus accelerating the
recovery.
3) Platform recovery is cost-effective:

Two prototypes described in this paper implement recovery
in the platform rather than on the application level. Although it
is harder to reach, this approach might leverage recovery code
across multiple applications including developed and tested
ones, both present and forthcoming.
4) We can’t improve what we can’t measure:

One goal of ROC research is to develop suitable ways to
benchmark the dependability of systems designed by ROC
group. The process of defining such benchmarks teaches us
where the system vulnerable points are, and using them to
guide the future design. An extra benefit of benchmarking
effort is that it can make the recovery techniques more
quantitative and persuasive, thus promoting the prospect of
adopting those methods in real systems.

III. MICROREBOOT – A TECHNIQUE FOR CHEAP RECOVERY
In industry, rebooting is often regarded as a universal cure

for software failures in that it is easy to implement and
automate, and can bring failed applications back to start state
which is a best-tested state [7]. Unfortunately, the recovering

SEMINAR ON SELF-HEALING SYSTEMS 3

process could take a long time if lots of state reconstructions are
needed. What is more, unexpected reboots in a system that is
not crash-safe could even result in data loss.

One major requirement for the front-line defense in building
multitier dependability is to keep both cost and overhead at a
low level with a good possibility to fix the problem, and low
opportunity cost in case it does not work. The technique
designed by ROC – Microreboot [5], renders a refined recovery
mechanism that can restore most of the same failures as full
reboot, but does so an order of magnitude faster thus achieving
an order of magnitude savings in lost work. As microreboot
preserves the advantages of reboot while mitigating the
corresponding drawbacks, ROC group therefore chooses it as a
promising candidate for the front-line recovery in building
multitier dependability.

A. Microreboot design principles
A microboot is the selective crash-restart of only those parts

of a system that trigger the observed failure [5]. It is regarded as
an effective mechanism for system recovery due to the fact that
a small subset of components is often responsible for system
failure. Here we summarize essential parts of microreboot
design.
1) Fine-grain components:

Component-level reboot time depends largely on how long it
takes for the underlying platform to restart a component and
reinitialize it. Thus a microrebootable application aims for
components that are as small as possible in terms of startup time
and program logic. Although the task of partitioning a system
into components is specific and difficult, developers can
benefit a lot from existing component-oriented programming
framework such as J2EE [5].
2) State segregation:

To ensure the recovery correctness, ROC requires that
microrebootable applications should keep all important state in
dedicated state stores located outside the application,
safeguarded behind strong high-level APIs. Besides enabling
the safe microreboot, the complete segregation of data recovery
from application recovery also improves the system robustness.
Because the segregation can shift the burden from application
program writers to the experienced specialists who develop
state stores.
3) Decoupling:

If applications are to tolerate microrebooting, components
should be loosely coupled. The well-defined and well-enforced
boundaries are needed. Direct references, such as pointers are
not allowed. If cross component references are indeed needed,
they must be stored outside the component, either in the
application platform or inside a state store.
4) Retryable requests:

To reintegrate microrebooted components smoothly, inter-
component interactions use timeout. When one component
invokes a currently microrebooting component, it receives a
retry after (t) exception, and the call can be re-issued after the
estimated time t, if it is idempotent [5]. For non-idempotent
calls, rollback could be used. If components transparently
recover requests in this way, we can hide intra-system
component failures and microreboot from end users.

5) Leases:
To improve the reliability of cleaning up after microreboots,

resources in a frequently-microrebooting system should be
leased. In addition to memory and file descriptors, CPU
execution time should also be leased meaning that if a
computing hangs and does not renew its execution lease, it
should be terminated with a microreboot. If requests can carry a
time-to-live (TTL) which indicates how long the request could
be regarded as valid, then stuck requests can be automatically
purged once the TTL expired.

B. Prototype implementation and lessons
ROC group implements the microreboot-approach in JBoss,

an open-source application server written in Java supporting
J2EE's component-based programming framework [5]. The
refined JBoss modification allows selective microrebooting of
small groups of Enterprise Java Beans (EJBs). All applications
store their session state in a dedicated state repository
optimized for fast recovery. A session state must remain persist
between user's login and logout, but is not needed after the
session ends. In this prototype, microreboots recover from a
large category of failures, including deadlock, memory leaks
and corrupted volatile data for which system administrators
usually choose to restart the application.

Microreboots are largely as effective as full reboots but 30
times faster [6]. It not only reduces recovery time but also
minimizes the side-effects on system end users, as shown in
Figure II.

Figure II: Service functionality availability [5].

The graphs illustrate end-user-perceived availability of an

online auction service. The white gap of an interval indicates
that some requests processing during this period eventually fail,
suggesting that site is down. When recovering with
microreboot, end-users are almost unaware of the restoring
process, with close to no visible global down-time.

If a component failure can not be corrected by microreboot,
larger subsets of components are restarted progressively. This
is like navigating upward on the spectrum to find the most
advantageous cost-benefit ratio as shown in Figure I.

Based on the implementation, two lessons are learned.
Firstly, fine-grained recovery requires accurate fault
localization. Concerning the workloads faced by Internet

SEMINAR ON SELF-HEALING SYSTEMS 4

services which often consist of many short-term tasks, by
localizing recovery to a small subset of components,
microreboot minimizes the number of state loss thus yielding a
transparency to end-users for recovering. One challenge we
face is how to identify the location of faults more accurately. To
address it, ROC group built an application-generic fault
detection and localization program – Pinpoint
(http://pinpoint.standford.edu) – which uses statistical learning
techniques to detect and localize application-level faults in
component-based Internet services. Although Pinpoint does
exhibit false positives, the integration of microreboot and
Pinpoint offers higher dependability than ordinary rebooting.

For the second, Microreboot is not a cure-all.
Microrebooting works best on software failures triggered by
so-called “Heisenbug”, which is a computer bug that
disappears or alters its characteristics when it is researched.
Microreboot is also effective against resources leak and
corruption of volatile data structures [6]. Although these fault
classes are important and hard to prevent with existing quality
assurance process, they do not represent all system failures.
Some failure types such as corruption of persistent data and
misconfigurations can hardly be fixed by microrebooting.

IV. UNDO AND REDO

Software bug is not the only culprit for bringing down the
systems; based on the analysis [4] of three large-scale Internet
services, it is found that 1) human error is a major cause of fail-
ures for Internet service systems, 2) configuration errors are the
largest category of operation errors, and 3) operator error is the
largest contributor to mean-time-to-recover (MTTR). The relat-
ed problems include accidental data deletion, improper compo-
nent shutdown and incorrectly performed update. To address
these types of problems, ROC group adds a second line of def-
ense to the multitier dependability based on the Three-R’s undo
pattern.

A. Design of Three-R model:
The model of Three-R [1] includes three fundamental steps

referred as “Rewind, Repair and Replay”. In the first Rewind
step, all system state from application to OS is physically rolled
back to a point before any damage occurred. In the Repair step,
the operator in charge alters the rolled-back system to avoid
reoccurring of problems. Finally, in the Replay step, the
repaired system is rolled forward to the present by selectively
replaying portions of the previously-rewound timeline.

The essence of Three-R’s Undo is that it preserves the time-
line: it restores lost updates and incoming data via replay in a
manner that retains their intent but not the bad results of their
original processing and this is also the property that
distinguishes it from traditional approaches such as backup and
restore.

Three design decisions are important in the Three-R’s undo
model: First one is the choice to perform Rewind physically
and Replay logically. In this approach, “undo” is implemented
by one single operation of restoring a previous snapshot of

system hard state, while “redo” is achieved by re-executing a
sequence of recorded user-level operations. As ROC undo
system makes no assumption about the possible corruption it
might encounter, physical Rewind provides flexibility in the
recovering in that the corrupt state can not escape from
roll-back. On the other hand, logical replay preserves the intent
of user operations without reference to the original corrupted
state together with respecting repairing process. While the
logical replay may increase the complexity of undo system,
ROC group constructs the undo system so that the replay code
is implemented as part of normal system operation, thus
flushing out bugs before replay during an emergency. Another
key decision is that Repair should be as unconstrained as
possible to allow the full flexibility for operator in designing
solutions to repair the system problems. The last one is the fault
model that makes minimal assumptions about the correctness of
undoable application. Although it could limit the possibility of
formal analysis, the fault model is the key to practical recovery
from problems that altered the system operation in unknown
ways, due to the fact that the most confounding and error-prone
problems are the ones that have never been seen before.

B. Implementation in an E-mail store
Comparing with today’s productivity applications where the

undo design is used so commonly, in the administration and
operator environment, it is still virtually unheard of. Trying to
change this situation, ROC group first implements the undo
method on an E-mail store system. The general architecture of
undo system is shown in Figure III.

Figure III. Undo system architecture [2].

The heart of the undo system is the undo manager, which
coordinates the system timeline. The proxy and time-travel
storage layer wrap the service application, capturing and
replaying user requests from above and providing physical
rewind from below.

The service application and its hosting operating system are
left virtually unmodified; the undo system interposes itself both
above and below the service. By keeping the undo system
isolated from the service, this wrapper-based approach
supports the fault model. Below the operating system, a time-

http://pinpoint.standford.edu/

SEMINAR ON SELF-HEALING SYSTEMS 5

Verb Protocol Changes
t t ?

Externalizes state? Async? Description

Deliver SMTP √ √ Delivers a message to the mail store via SMTP
Append IMAP √ Appends a message to a specific IMAP folder

Fetch IMAP √ √ Retrieves headers, messages, or flags from a folder

Store IMAP √ √ Sets flags on a message (e.g., Seen, Deleted)

Copy IMAP √ Copies message to another IMAP folder

List IMAP √ Lists extant IMAP folders

Status IMAP Reports folder status (e.g., message count)

Select IMAP Opens an IMAP folder for use by later commands

Expung IMAP √ √ Purges all messages with Deleted flag set from a folder

Close IMAP √ Performs a silent expunge then deselects the folder

Create IMAP √ Creates a new IMAP folder or hierarchy

Rename IMAP √ Renames an IMAP folder or hierarchy

Delete IMAP √ Deletes an IMAP folder or hierarchy
Table II. Verbs defined for undo e-mail store [2].

travel storage layer provides the ability to physically roll the
system’s hard state back to a desired point. Above the service
application is a proxy which interposes between the application
and end users. The undo system can intercept the incoming user
request stream to record the system timeline and can inject its
own requests to affect replay. The proxy and time-travel
storage layer are coordinated by the undo manager, which
maintains a history of user interactions comprising the system
timeline.

Because the undo manager in the system has no knowledge
of the service and corresponding semantics, to address the
translation problem when application-specific proxy
communicates with undo manager, ROC group proposes the
concept “verb”, which becomes the fundamental construct to
represent events in the system timeline. A verb is an
encapsulation of an end-user interaction with the system – a
record of event causing service state to be changed or
externalized (exposed to an external observer). It contains all
the application-specific information needed to execute or
re-execute user interaction, and at the same time appears to the
undo manager as a generic data type with interfaces that only
exposes information to manage the recording and execution.
Rather than recording the contents of state or the effects of
interactions on state, verb records the intent of user interactions
at the protocol level. The flow of verbs during normal operation
and during Replay is illustrated in Figure IV.

During normal operation, the verb flow follows the solid
black arrows, with verbs created in the proxy and looped
through the undo manager for scheduling and logging. During
replay, verb flow follows the heavy dashed arrow, with verbs
being reconstructed from the timeline log and re-executed via
the proxy.

With the undo system architecture described, we now turn to
the implementation of e-mail store service, which represents a
leaf node in global e-mail network, delivering e-mail via SMTP
and making it available for reading via IMAP [2].
1) Verbs for E-mail

ROC defines 13 verbs for their undoable e-mail system that
together capture important interactions in the IMAP and SMTP
protocols, as listed in Table II. Each e-mail verb is implemented
as a Java class realizing a common verb interface; the verb

Figure IV. Illustration of verb flow [2].

interface is defined by the undo manager and it declares an API
that maps the routines into Java function declarations. All verbs
contain a tag which is a container structure wrapping the
information needed to execute the verb and to check external
consistency. The tag also includes a record of whether the
execution succeeded or failed.

To define verbs for existing protocols like IMAP and SMTP,
it is important to capture the necessary context needed by the
verb replay. For SMTP, the system captures the parameters
passed to each SMTP command and stores them in the verb’s
tag. As to IMAP, in order to be able of replaying IMAP verbs in
situations where repairs have changed the system context, ROC
group defines the notion of an UndoID, which is a
time-invariant name independent of system context and capable
of being translated to IMAP name for verb execution. The
proxy is responsible for converting UndoID with IMAP names
based on current context.
2) E-mail proxy

The e-mail proxy in the system is responsible for
intercepting all SMTP and IMAP traffic directed at the server,
converting it into verbs and interacting with the undo manager.
It accepts connections on SMTP and IMAP ports and
dispatches threads to handle each incoming connection. Each
connection is handled by a thread running in a loop which
decodes each incoming SMTP or IMAP, packages it into a verb

SEMINAR ON SELF-HEALING SYSTEMS 6

and invokes the undo manager to sequence, execute and record
the verb.
3) Time-travel storage layer

At the base of ROC undoable e-mail system is the time travel
storage layer, which provides stable storage for the e-mail
store’s hard state and holds the ability to physically restore
previous versions of target state. The storage layer design aims
at application-neutral, and has neither the knowledge of the
e-mail store, nor any customization to e-mail semantics
4) Undo manager

The undo manager stores system timeline as a linear
append-only verb log. The log is implemented as a BerkeleyDB
database, with each verb assigned a log sequence number (LSN)
which is the fundamental internal representation of time to the
undo manager [2]. The undo manger mediates execution of
verbs during normal operation.

The detailed information related to undoable e-mail store is
discussed in Brown et al [2].

V. SUITABLE DEPENDABILITY BENCHMARKS
A dependability benchmark is made up of a system

specification, a faultload, a workload and a metric [3]. Due to
the fact that no standard existed for benchmarking the
dependability of Internet service which is of the main concern,
ROC develops one through experiment and discussion with
industrial experts.

Action-weighted-throughput [5] is adopted to evaluate
availability, which accounts for user interaction with a
Web-based services as well as different weights of various
operations. ROC assumes that a user session begins with login
operation and ends up with logout or abandonment of the site.
Each session consists of a sequence of actions; each user action
is a sequence of operations; each operation in an action must
succeed if the corresponding user action can be considered
successful. When an operation fails, the entire action fails.

Figure V. Action-weighted-throughput measurement [6].

Figure V shows results of an evaluation for an online auction
site using action-weighted-throughput. Individual operations
are normal HTTP requests and user actions take the form, “Put

$50 bid on X.” ROC injected a sequence of three faults such
wrong data into the system for every 10 minute. As illustrated
by comparing two graphs, microbooting keeps the number of
successful served requests up and failed ones down. Overall,
11,752 requests failed when using restart; at the same time, 233
requests failed when recovering with microreboot.

Action-weighted-throughput takes into account end users,
but it still does not provide quantitative metric for system
administrators. ROC develops a new form of human-aware
dependability benchmark [2] to correlate the cause and
observed effects and applied it to measure the effectiveness of
the system-level undo prototype. ROC benchmarks the
correctness and availability of the e-mail server with and
without the undo recovery mechanism, under two state
corrupted failure scenarios, using 12 student subjects to
perform recovery in 7 case scenarios. As demonstrated in
Figure VI, the number of incorrectly handled messages greatly
decreased in each case with undo/redo. For each of seven
scenarios, the graph plots results of correctness and availability
with and without undo recovery tool

Figure VI. Benchmarking the human administrator component [6].

Besides the implementations of microreboot and
system-level undo, ROC group also tries to improve recovery
predictability and generates a new direction of research to
improve the predictability of system behavior as a whole with
reference at (http://predictable.standford.edu/). To broaden the
undo/redo application space, ROC uses “spheres of undo”
structuring concept to look at providing system-level undo in
more complex systems such as Window-based desktop systems
and distributed services [6]. With the exception of human
errors, ROC finds out a fact that the noticing of an error often
takes longer than to diagnose and repair it, especially when
repair is a low-cost microreboot. Therefore, the research group
regards the fault detection and diagnosis as an open challenge,
which could be a promising direction for continuing the
research to build high dependable systems.

VI. CONCLUSION
To achieve the goal of multitier dependability, two

http://predictable.standford.edu/

SEMINAR ON SELF-HEALING SYSTEMS 7

techniques were designed and illustrated in this paper,
providing a front-line to back-up-line defense in case of failure.
Microreboot, serving as the first-line-of-defense, is driven
primarily by the desire to decrease the mean time to recover
(MTTR) as a way to improve availability. Accepting software
bugs as fact, this cheap reboot-based recovery method provides
us a potential path toward dependable large-scale software. To
extend the recovery coverage to more complex failure types,
system-level undo was proposed. This approach creates a
forgiving environment for system operators to help address the
challenges facing the human operators, who exert a crucial
influence on dependability. Through the adaptation of
specifically designed benchmarking methods which take into
account human operators as well as end users, we evaluated the
prototype implementations of the two techniques at the final
stage. The results showed that the combination of microreboot
and system-level undo yielded promising solutions to complex
problems within the large-scale Internet service environment.

APPENDIX
Source code for ROC undo framework and e-mail proxy is

available at http://roc.cd.berkeley.edu/undo/.

ACKNOWLEDGMENT
Special thanks go to my tutor Ms. Tiina Niklander for being

available when needed with wholehearted supports, to Janne
Metso for pointing out the inconsistency in the draft, and to
Timi and Sabine for reviewing and precious feedback.

REFERENCES
[1] A.B. Brown and D. A. Patterson, “Rewind, Repair, Replay: Three R's to

Dependability,” 10th ACM SIGOPS European Workshop, Saint-Emilion,
France, September 2002, pp. 70-77.

[2] A.B. Brown and D.A. Patterson, “Undo for Operators: Building an
Undoable E-mail Store,” Proc. Usenix Ann. Tech. Conf., Usenix Assoc.,
2003, pp. 1-14.

[3] D. A. Patterson, A. Brown, et al., “Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies,” UC Berkeley TR
UCB//CSD-02-1175. Berkeley, CA, March 2002.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do Internet
services fail, and what can be done about it?” Proc. 4th USENIX Symp.
on Internet Technologies and Systems. March, 2003, pp. 1-16.

[5] G. Candea et al., “Microreboot – A Technique for Cheap Recovery,” Proc.
6th Symp. Operating Systems Design and Implementation (OSDI),
Usenix Assoc., 2004, pp. 31-44.

[6] George Candea, Aaron B. Brown, Armando Fox, and David Patterson,
“Recovery-Oriented Computing: Building Multi-Tier Dependability,”
IEEE Computer, Volume 37, Number 11, November 2004, pp 64-67.

[7] Oppenheimer, D. and D. A. Patterson, “Architecture, operation, and
dependability of large-scale Internet services: three case studies,” IEEE
Internet Computing special issue on Global Deployment of Data Centers,
September/October 2002, pp 41-49.

http://roc.cd.berkeley.edu/undo/

	I. INTRODUCTION
	II. Multitier dependability design space
	A. General design space
	B. Principles to guide research
	III. Microreboot – a technique for cheap recovery
	A. Microreboot design principles
	B. Prototype implementation and lessons

	IV. UNDO AND REDO
	A. Design of Three-R model:
	B. Implementation in an E-mail store

	V. Suitable Dependability Benchmarks
	VI. Conclusion

