
Self-Optimization in Autonomic Systems
Marko Kankaanniemi

Department of Computer Science
University of Helsinki

Email: marko.kankaanniemi@cs.helsinki.fi

Abstract—Autonomic computing is a research area that ex-
tends to numerous different fields of science. We describe how
autonomic computing can be used to overcome many problems
the IT industry is facing today. Autonomic computing systems
are, by definition, self-configuring, self-healing, self-optimizing
and self-protecting. We show some examples of existing systems
that have these self-* capabilities. We look at what utility
functions are and how they can be used in self-optimization.
We describe a two-level architecture for self-optimization in a
data center scenario. The architecture is flexible and suitsvery
different kinds of applications. It supports fair resource allocation
in a system where there can be very heterogeneous applications
using shared resources.

I. I NTRODUCTION

Autonomic computing has become a significant research
area since IBM launched its initiative in 2001 [1]. Computer
systems are becoming so complex to manage that it is throt-
tling their development. It seems clear that the only way to
overcome this complexity is to make the systems manage
themselves. Highly skilled human administrators usually cost
a lot more than the systems themselves, and people with the
right kind of expertise are often hard to find. Human error
is the largest single source of failure in computer systems,
accounting for more than 40% of failures according to some
sources [2]. This may suggest that human administrators are
often not as competent as they should be, and even those who
are, will make errors. Errors can be very difficult for humans
to locate and fix, and the process can be very time-consuming.

The way forward is to make computers do all the low-
level management and to have humans only specify the high-
level policies that represent the business requirements ofthe
enterprise. When only the autonomic system itself has to know
the fine details of its configuration, it is easier for human
operators to learn how to administer it and configuration errors
are less likely. Even in the case of an error, an autonomic
system can heal itself.

The four major capabilities that an autonomic computing
system must possess are self-configuration, self-healing,self-
optimization and self-protection. Ganek and Corbi [1] listother
self-* capabilities as well but some of them can be thought
of as sub-capabilities of the four listed here. For example,a
self-optimizing system has to be, in some ways, self-tuning
and self-adaptive. In this paper we concentrate on the self-
optimizing property.

Designing truly autonomic computing systems is a huge
challenge to the research community and it will require exper-
tise from many fields. E.g., by studying the existing research

in the fields of biology and economics we can find ideas that
can be used in the development of autonomic systems. The
real world with its complex social systems can serve as an
example of a huge autonomic system comprising a myriad
of autonomic elements. Possible advances in the autonomic
computing research might also contribute something valuable
to other fields as well, so everyone may benefit in the end. The
term autonomic system is actually motivated by the human
autonomic nervous system that, e.g., makes the heart beat
involuntarily. The human body is a great example of the kind
of autonomicity we should strive for. Humans can breathe
without conscious effort, wounds on their skin usually heal
by themselves and their muscles work in coordination to
produce many kinds of movement. Just like using human-like
intelligence as a goal in artificial intelligence, we can usethe
whole human body as a near-perfect example of an autonomic
system.

Simple examples of the self-* properties can be found in
software that is already widely in use. For example, modern
operating systems such as Ubuntu Linux [3] and Mac OS X [4]
are able to configure themselves without almost any input from
the user at installation time, which is a major improvement
from the operating systems of the early 1990s. It used to be the
case that the administrator had to specify detailed information
about the computer to the operating system’s installer, such
as the geometry of the hard disk and the IRQs used by the
devices attached to the computer. Likewise, when new devices
are attached to a system that is already installed, the operating
systems usually detect and configure them autonomically.
Operating systems are also self-protective in some ways. For
example, the OS kernel with the assistance of the CPU makes
sure that low-level hardware access is protected from user-
level processes and that the processes are protected from each
other.

Internet routing is a good example of an existing self-
optimizing system. IP packets usually find their way to the
right destination via the optimal (or near-optimal) path. How-
ever, true self-optimization is mostly only found inside smaller
network segments that use the Routing Information Protocol
(RIP) [5] or the Open Shortest Path First protocol (OSPF) [6]
for internal routing, since the Border Gateway Protocol (BGP)
[7] (which is used for routing across larger network segments)
requires a lot of configuration from human administrators.
Routers using RIP and OSPF, on the other hand, can usually
build routing tables entirely by themselves. In case of network
outages, routers can relatively quickly update their routing



tables so that packets can go via a different route. This means
that IP networks are also self-healing, which is no coindicence.
Packet switching networks were largely motivated by the need
for a communications system that could not be brought down
by a nuclear war [8], which was a serious concern in the 1960s
as the relationship between the United States and the Soviet
Union was very tense at the time. This meant that the network
had to be designed with a capability for self-healing. Although
there are examples of systems that implement different kinds
of self-* properties, the fully autonomic systems that the
research aims for are still a thing of the future.

The remainder of the paper is organized as follows. In
Section 2 we look at self-optimization in general and have
a look at utility functions and other approaches that could be
used for implementing self-optimization. In Section 3 we give
a more detailed description of a specific kind of architecture
that can be used in a self-optimizing system. In Section 4 we
briefly describe a prototype implementation of the architecture
presented in the previous section. Finally, in Section 5 we sum
up the article.

II. SELF-OPTIMIZATION

Optimization means ”an act, process, or methodology of
making something (as a design, system, or decision) as fully
perfect, functional, or effective as possible” as defined by
Merriam-Webster’s Online Dictionary [9]. In other words,
optimization means finding the most effective ways to do
things.

A. A General View

Usually when we talk about optimizing computer programs,
we mean optimization at the source code level as done by the
programmer. This is a very typical part of writing software,
although it has become a bit less of an issue as computers
have become faster. Optimizing programs in the small scale
by writing certain operations in the Assembly language, for
example, is rarely necessary these days but optimization inthe
large scale is just as important as always. This means that we
still have to find and implement effective algorithms. Effective
algorithms are important in stand-alone programs but they
are even more important when we talk about the algorithms
that components in distributed systems use to interact with
each other. Ineffective algorithms in distributed systemsmay
cause network congestion and they can disturb other users of
the network, which can be a lot more serious concern than
ineffective operation of the system itself.

A self-optimizing system is one that dynamically optimizes
the operation of its own components while it is running.
The optimizing component can be an agent that is separate
from the component that is being optimized: the optimizer
just continuously adjusts the control parameters that it passes
to other components. Typically the optimizer has to have
intimate knowledge of the components being optimized but
optimization can be done on different levels as we will
demonstrate in the following sections of this article. The

higher-level optimizer does not need to know details of the
components at the lowest level of the autonomic system.

B. Utility Functions

If we want computer systems to improve their performance
by self-optimization, the systems need to have some kind of
rules that they can follow. A naive solution would be to specify
a set of situation-action rules for all situations that can occur.
It would be a very bad strategy in the case of autonomic
systems as it would require the human administrator to go
into very low-level details, and, in many cases, the list of
rules would probably never be quite complete. This kind of
need for low-level configuration does not meet the objectives
set for autonomic computing systems since one of the main
requirements is that humans should only need to specify the
appropriate high-level business policies that the autonomic
systems follow [1].

Another approach would be to use goal policies that divide
the states of the system into desirable and undesirable ones.
That would definitely be a better approach than the one
described above but it would not be very good for optimization
because when the system has reached a desirable state, it
would not try to improve its performance anymore. What we
need is a method that continuously aims for better perfor-
mance.

The third approach is the use of utility functions. With utility
functions we can calculate the utility (i.e., business value)
of even completely different kinds of systems in a common
currency. In the modern society all goods and services are
assigned some monetary value that can be used to compare
them with each other in terms of how valuable they are
to their owners. This is exactly what utility functions are
used for in autonomic computing. We can specify high-level
business rules that a utility function uses to evaluate the given
state’s business value. When we have calculated the utility
of different Autonomic Environments in a single autonomic
system, we can calculate their sum, which is the utility of the
entire autonomic system. The goal of self-optimization is to
maximize the utility of the entire system at all times.

The use of utility-based resource allocation in computer
systems goes all the way back to 1968 when Sutherland [10]
presented a futures market in which the users could bid for
computer time based on their own utility functions. Back
then there was a PDP-1 server at Harvard University which
was shared among students and faculty members. They were
assigned differents amounts of virtual currency (called yen)
according to the importance of their projects. The users would
reserve computer time for the future and they would regain the
yen as soon as they had used the reserved time. A user could
not bid more than he could afford so the users with the most
yen had the advantage. More recently utility functions have
been chosen as the approach for self-optimization in many
cases [11] [12] [13]. Traditionally utility functions havebeen
used in the fields of microeconomics and artificial intelligence.
In microeconomics utility functions are, e.g., used to model the



U1(R) U2(R)

Resource

Arbiter

Application Environment 1

Router ServersServersServers
ServersServersServers

Application
Manager U1(S, D)U1(S, D)

Application Environment 2

Router
ServersServersServersRouter
ServersServersServers
ServersServersServers

Application
Manager U (S, D)U2(S, D)

Fig. 1. Data Center Architecture [15, Figure 1].

way a single consumer tries to gain happiness by purchasing
goods and services.

The use of action, goal and utility function policies in auto-
nomic systems has been studied in more detail by Kephart and
Walsh in a paper titled An Artificial Intelligence Perspective
on Autonomic Computing Policies [14].

III. T WO-LEVEL SYSTEM OF INDEPENDENTAUTONOMIC

ELEMENTS

Walsh et al. [15] show how utility functions can be used
effectively in autonomic systems by means of a data center
scenario. They present a two-level system of independent,
interacting agents, which are generally called autonomic el-
ements.

A. Overall Architecture

The architecture consists of a single Resource Arbiter
and a number of Autonomic Environments. Each Autonomic
Environment consists of an Application Manager, a router and
servers as depicted in Figure 1. The Resource Arbiter and the
Application Managers both do resource allocation at their own
respective levels. The Resource Arbiter is not concerned about
the internal workings of the Application Environments, it only
allocates resources according to the data it receives from the
Application Managers.

The Resource Arbiter is quite a general piece of software in
this architecture. Even if we introduce entirely new kinds of
Application Environments to the data center, we will not have
to alter the Resource Arbiter component in any way because
it only expects to receive resource-level utility functions from
the Application Managers. The resource-level utility function
Ûi(Ri), which is sent to the Resource Arbiter, is basically
a table that maps the possible resource allocations to their
utilities. Ri is a vector that specifies the resources allocated
to the environmenti. Its components specify each individual
resource, such as the number of servers allocated etc. As an
illustrative example, Table I presents a possible resource-level
utility function in an autonomic system where CPUs and RAM
are the only resources controlled by the Resource Arbiter.
CPUs can only be allocated in whole units and memory can
only be allocated in pieces of 1 GB. In this example, the
resource vectorRi is of the form (N, M) where N is the

TABLE I
AN EXAMPLE OF A RESOURCE-LEVEL UTILITY FUNCTION .

CPUs RAM (GB) Utility

1 1 12

2 1 25

3 1 44.2

1 2 19.4

2 2 39.1

3 2 65

1 3 40.3

2 3 44.7

3 3 78

number of CPUs andM is the amount of memory allocated.
By sending the resource-level utility function the Application
Manager basically tells the Resource Arbiter how important
it is for it to gain resources. As time passes, the importance
may change and, as a result, the resource allocations change
accordingly. Traditionally many computer systems have been
built with a lot of excessive power just to enable them to sur-
vive peaks in demand. However, dynamic resource allocation
provides our system with great flexibility and helps us not to
waste computing power.

E.g., a company can use a single cluster of computers
for running a website for its customers and a database for
its business administration unit so that the customers have
a higher priority. Self-optimization guarantees that possible
heavy database transactions made by the company’s employees
will not slow down the website if there are customers using
it. Research shows that the typical user will tolerate at most
2–10 seconds of delay when loading a website [16]. After
becoming frustrated with the delay, the user may well move
to a competitor’s site. Clearly it is very beneficial to have a
flexible optimization architecture that both prevents customers
from having to suffer long delays and is cost-effective so that
the excessive computing power is used for something useful
even when it is not needed for serving customers.

It is the job of the Resource Arbiter to maximize the global
utility

∑
i
Ûi(Ri) by distributing the system’s resources in a

way that produces the optimal result. In a system ofn Au-
tonomic Environments, the resource allocation is of the form
R

∗ = (R1,R2, . . . ,Rn) where
∑

i
(Ri) = R̄. R̄ indicates the

total quantities of resources available. The Resource Arbiter
periodically recomputesR∗ so that

∑
i
Ûi(Ri) yields a utility

as high as possible. This is generally an NP-hard discrete
resource allocation problem. There is a variety of standard
optimization algorithms that can be used to solve it. One way
is to use mixed-integer programming [17].

In order for the Resource Arbiter to dynamically allocate
resources, the Application Managers send in new resource-
level utility functions when they decide that there is enough
reason to do so, i.e., when the utility function has changed
considerably. The Resource Arbiter may also request the
Application Managers send new data.



B. Application Manager

The Application Managers are at the lower level of the
architecture. They have to be well aware of the details of their
own Application Environments since they must be able to do
low-level tuning of control parameters. The Application Envi-
ronments in a single autonomic system can be very different
from each other with respect to the kind of applications they
are running. Their respective utility functions are used tomap
the Application Environment’s state into a common currency.

The state of a system can be described as a vector of
attributes, such as the number of CPUs, the amount of memory,
and the amount of network bandwidth the system has been
allocated.

The utility function for environmenti is of the form
Ui(Si,Di) whereSi is the service level vector ini andDi is
the demand vector ini. The components of these vectors can
be, e.g., the average response time and the average throughput
for multiple different user classes. The goal of the entire
autonomic system is to continually optimize

∑
i
Ui(Si,Di),

i.e., the sum of the utility functions of all Autonomic Environ-
ments, so that most resources are given to those environments
that need them the most. On the other hand, the goal of a single
Application Manageri is to optimizeUi(Si,Di) while it is
given a fixed amount of resources. The Application Manager
can only use the resources that the Resource Arbiter has
allocated to it, so it will have to decide how to use those
resources as effectively as possible. This is done by adjusting
the control parameters of the application in question. In fact,
the Application Manager can do its own small-scale resource-
allocation for different transaction classes at this level. E.g.,
some users can be given priority in certain operations.

This is exactly why it is beneficial to have a two-level
architecture instead of a centralized one where the Resource
Arbiter would do all the work. The Resource Arbiter would
have to be updated every time a new Application Environment
is introduced to the system, and it would have to be aware of
all the details. The resulting software would be quite bloated
compared to the one needed in the two-level architecture.
Different types of optimization require different time scales,
which is also neatly handled by the two-level architecture.The
Application Managers can do optimization on a time scale of
seconds or anything that is suitable for them. The Resource
Arbiter typically works on a time scale of minutes.

Figure 2 shows the inner composition of an Application
Manager and some surrounding components. The figure illus-
trates how information flows inside the Application Manager
and how it flows between the Application Manager and the
external components. The area with a darker background
represents the Application Manager. The rectangular objects
inside it are its modules and the cylindrical objects represent
the knowledge that the Manager maintains. Since we are
concentrating on a single Application Manager here, we will
abandon thei subscripts at this point.

The area inside the rounded rectangle represents the Appli-
cation Environment, which contains the Application Manager,

Utility

Calculator

S, D

Application Manager

Data
Aggregator

S, D

Application Environment

Demand
Forecaster

D

D'

Controller

U(R)

C

S, D

Modeler

Router

ServersServersServers
ServersServersServers

Resource
Arbiter

RtS(C, R, D)S(C, R, D)

(U S, D)

Fig. 2. The modules and data flow in an Application Manager. Symbols:
S = service level/service model,D = demand,D′ = predicted demand,C
= control parameters,Rt = current resource level,U = utility function [15,
Figure 2].

servers and a router. The Resource Arbiter is the only compo-
nent outside the Application Environment. Of course there are
other Application Environments as well but we do not have
to pay attention to them here since they only interact with the
Resource Arbiter and not directly with each other.

As we have already described earlier, the Application Man-
ager sends the resource-level utility function to the Resource
Arbiter. Next we will describe how the Application Manager
is able to construct the function.

The Data Aggregator module receives a continual flow of
raw measurement data from the servers and the router. This
includes the service dataS and the demand dataD. The Data
Aggregator uses some method to aggregate the data into a
more suitable form. It can, e.g., calculate their average values
over a suitable time window.

The Data Aggregator sends the refined demandD to the
Demand Forecaster whose job is to provide an estimate of
the average demand in the future. The Demand Forecaster,
in turn, passes the predicted demandD

′ on to the Utility
Calculator. The forecasting is necessary because the demand
can suddenly peak for a relatively short period of time. It
is hardly a good idea to do reallocation of resources among
different Application Environments just because the demand
rises (or lowers, for that matter) considerably for a brief
moment in time. The shifting of resources can be a time-
consuming operation and doing it unnecessarily may only
lower the system’s performance. The Demand Forecaster has
to take historical observed demandD into account when it
decides on the estimated future demandD

′.
In addition to sending the demandD to the Demand

Forecaster, the Data Aggregator also sends the refined demand
D and the refined service levelS to the Modeler module.



Decide

Control

Resource

Measure

Fig. 3. Control loop.

The Modeler’s task is to build a modelS(C,R,D), which is
basically a function that maps a set of control parametersC, a
resource levelR and a demand levelD into the service level
that will be acquired with the specified conditions.

The Modeler gets the control parametersC from the Con-
troller module. The Controller continually adjusts the control
parameters that it also sends to the router and the servers. As
can be seen from Figure 2, the Controller receives input from
many directions. It receives the demandD, the service model
S, the current resource levelRt and the service-level utility
function U(S,D) as input and uses the data to determine
the suitable control parametersC for the current situation.
More formally we can say that the Controller aims to find the
control parametersC so thatU(S(C,Rt,D),D), whereRt

is the current resource level, yields its maximum value. The
control parameters may include configuration options for the
actual application the servers are running or different kinds
of settings for the servers’ operating systems. The control
parameters can contain basically anything because they are
application-specific and not restricted by the architecture.

The Utility Calculator is the module that actually generates
the resource-level utility function̂U(R) that is sent to the
Resource Arbiter. It receives the predicted demandD

′, the
service-level utility functionU(S,D) and the service model
S(C,R,D) as input. The resource-level utility function is
calculated with the formula

Û(R) = U(S(C∗,R,D′),D′) (1)

for all possible resource levelsR where C
∗ is the optimal

set of control parameters for the resource levelR. Note that
the optimal control parameters may be different for different
resource levels, which means that the optimal control parame-
ters must be recomputed for all possible resource levels. Also
we must use the predicted demandD

′, which was received
from the Demand Forecaster, instead of the current demand
D.

The behavior of an Application Manager fits well into a
general concept of autonomic computing called the control
loop [1], which is illustrated in Figure 3. If we compare

it to Figure 2, we can see the similarities. The measuring
phase is represented by the router and the servers sending
measured service and demand data to the Data Aggregator
and the Aggregator passing the refined measurement data on
to the other modules. The Controller and the Utility Calculator
make decisions based on the measured data by computing the
appropriate control parameters and the resource-level utility
function. Resource allocation is partly done by the Controller
as it sends the control parameters to the router and the servers,
and partly by the Resource Arbiter when it makes decisions
based on the resource-level utility functions it receives from
the Application Managers.

IV. PROTOTYPESYSTEM

Walsh et al. present a prototype implementation of their
architecture running on a cluster of four servers [15]. One
of the servers is dedicated to the Resource Arbiter and
two Application Managers, and the other three are used as
resources. The servers are running Red Hat Enterprise Linux
Advanced Server and the resource servers have WebSphere
and DB2 installed. First one of the two different services that
the system is running is a simulation of a web-based electronic
trading platform requiring high availability and the second one
is a batch process with no need for fast responsiveness. The
three servers are the only resources that the system has and
they are allocated in whole units to the different Application
Environments. The main idea is that when the web server
is getting only few hits per time unit, it is allocated maybe
only one server and the batch process gets two, but when the
demand rises the Resource Arbiter allocates more servers for
the web server.

The prototype system is implemented using Unity [18], a
general software architecture for autonomic computing sys-
tems developed at IBM Research. The whole framework is
written in Java.

We call the Application Environment running the web
serverA1, and the Application Environment running the batch
processA2. In this systemS, D andR are all single-valued,
so we can use a scalar notation instead:S, D and R. The
service-level utility function forA1 is defined solely in terms
of the average response timeS1 of the customer requests. This
means that the demand is ignored byU1 in this implementation
for the purpose of simplification, i.e.,U1(S1, D1) = U1(S1).

The customer demandD1 is generated by repeated requests
for the login web page at a variable rate. Each time the page is
accessed, the application makes some random database queries
and displays some information to the client to simulate a real
trading platform. To realistically simulate periodic and bursty
web traffic, a time-series model developed by Squillante et al.
[19] is used to reset the demand generated by the transactional
workload every∼ 5 seconds.

A1 uses a simple system performance model
S1(C1, R1, D1) and the service-level utility function
U1(S1) to estimate the resource-level utility function̂U1(R1)
for each possible number of serversR1, i.e., 1, 2 and 3. We



are able to simplifyS1(C1, R1, D1) to S1(R1, D1) because
the control parameters of the servers are held constant.

Before doing the main experiment, a performance model
was obtained by measuring the average response time at each
of several values ofD1 for 1, 2, and 3 servers. Each data point
was sampled for 15 minutes so that there were enough material
to calculate averages over several hundred to a few thousand
transactions, and all non-sampled points were generated by
linear interpolation. Again, for simplification, the Demand
Forecaster simply returns the current demand.

The Application EnvironmentA2, which is running the
batch process, is really simple. The service levelS2 is mea-
sured solely in terms of the number of serversR2 allocated to
A2. The utility function is a simple increasing linear function.
The values returned by the utility function for the Application
EnvironmentA2 are notably lower than those returned by the
utility function for A1, which means that the batch process is
given lower priority.

The test runs of the prototype system have been promising.
A detailed walk-through of a single test run can be found in
the original paper [15] with a number of graphs describing the
state of the system as it operates.

V. CONCLUSION

Utility functions provide a good way to hide the internal
complexities of different applications when comparing their
utility with each other. There needs to be an easy way for
human administrators to specify high-level instructions for the
construction of utility functions. Human administrators usually
know which systems are the most business-critical under
certain circumstances. If an autonomic computing system has
similar information on the importance of different applications
it is running, it can to well-informed decisions of resource
allocation under varying conditions on behalf of humans.

The two-level optimization architecture described here
seems to be usable but it will still require further studying. The
prototype implementation is quite simple compared to what the
architecture is capable of. The architecture has been further
studied by the same group that introduced it in a more recent
paper [20]. In the paper they compare a queueing-theoretic
performance model and model-free reinforcement learning as
methodologies for estimating the utility of resources.

REFERENCES

[1] A. Ganek and T. Corbi, “The dawning of the autonomic computing era,”
IBM Systems Journal, vol. 42, no. 1, pp. 5–18, 2003.

[2] D. Patterson, “A new focus for a new century: availability and maintain-
ability performance,”Keynote speech at USENIX FAST, January, 2002.

[3] Ubuntu Linux. Canonical Ltd. [Online]. Available:
http://www.ubuntu.com/

[4] Mac OS X. Apple Inc. [Online]. Available:
http://www.apple.com/macosx/

[5] G. Malkin, “Routing Information Protocol RIP version 2.Internet
Engineering Task Force,” November 1998. RFC-2453, Tech. Rep.

[6] J. Moy, “RFC2328: OSPF Version 2,”Internet RFCs, 1998.
[7] Y. Rekhter, T. Li, and S. Hares, “RFC 4271, A Border Gateway Protocol

4 (BGP-4),” 2006.
[8] J. Abbate,Inventing the Internet. MIT Press, 1999.
[9] Optimization. Merriam-Webster’s Online Dictionary. [Online].

Available: http://www.m-w.com/dictionary/optimization

[10] I. Sutherland, “A futures market in computer time,”Communications of
the ACM, vol. 11, no. 6, pp. 449–451, 1968.

[11] W. Wang and B. Li, “Market-based self-optimization forautonomic
service overlay networks,”Selected Areas in Communications, IEEE
Journal on, vol. 23, no. 12, pp. 2320–2332, 2005.

[12] T. Kelly, “Utility-directed allocation,”First Workshop on Algorithms and
Architectures for Self-Managing Systems, pp. 2003–115, 2003.

[13] R. Das, I. Whalley, and J. Kephart, “Utility-based collaboration among
autonomous agents for resource allocation in data centers,” Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems, pp. 1572–1579, 2006.

[14] J. Kephart and W. Walsh, “An artificial intelligence perspective on
autonomic computing policies,”Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE International
Workshop on, pp. 3–12, 2004.

[15] W. Walsh, G. Tesauro, J. Kephart, and R. Das, “Utility functions in
autonomic systems,”Autonomic Computing, 2004. Proceedings. Inter-
national Conference on, pp. 70–77, 2004.

[16] D. Galletta, R. Henry, S. McCoy, and P. Polak, “Web site delays: How
tolerant are users?”Journal of the Association for Information Systems,
vol. 5, no. 1, pp. 1–28, 2004.

[17] G. Nemhauser and L. Wolsey,Integer and combinatorial optimization.
Wiley-Interscience New York, NY, USA, 1988.

[18] D. Chess, A. Segal, I. Whalley, and S. White, “Unity: experiences with a
prototype autonomic computing system,”Autonomic Computing, 2004.
Proceedings. International Conference on, pp. 140–147, 2004.

[19] M. Squillante, D. Yao, and L. Zhang, “Internet trac: Periodicity, tail be-
havior and performance implications,”System Performance Evaluation:
Methodologies and Applications. CRC Press, August, 1999.

[20] G. Tesauro, R. Das, W. Walsh, and J. Kephart, “Utility-Function-Driven
Resource Allocation in Autonomic Systems,”Autonomic Computing,
2005. ICAC 2005. Proceedings. Second International Conference on,
pp. 342–343, 2005.


