Self-Optimization in Autonomic Systems

Marko Kankaanniemi
Department of Computer Science
University of Helsinki
Email: marko.kankaanniemi@cs.helsinki.fi

Abstract—Autonomic computing is a research area that ex- in the fields of biology and economics we can find ideas that
tends to numerous different fields of science. We describe o can be used in the development of autonomic systems. The
autonomic computing can be used to overcome many problems a5 \world with its complex social systems can serve as an
the IT industry is facing today. Autonomic computing systens . . .
are, by definition, self-configuring, self-healing, self-ptimizing example of.a huge autonomlp system comprising a my“a‘?'
and self-protecting. We show some examples of existing sgets Of autonomic elements. Possible advances in the autonomic
that have these self-* capabiliies. We look at what utility computing research might also contribute something vdduab
functions are and how they can be used in self-optimization. to other fields as well, so everyone may benefit in the end. The
We describe a two-level architecture for self-optimizatio in @ iarm autonomic system is actually motivated by the human

data center scenario. The architecture is flexible and suityery t - t that kes the heart beat
different kinds of applications. It supports fair resource allocation autonomic nervous system that, €.g., makes the heart bea

in a system where there can be very heterogeneous applicatio involuntarily. The human body is a great example of the kind
using shared resources. of autonomicity we should strive for. Humans can breathe
without conscious effort, wounds on their skin usually heal
by themselves and their muscles work in coordination to
Autonomic computing has become a significant researphoduce many kinds of movement. Just like using human-like
area since IBM launched its initiative in 2001 [1]. Computeintelligence as a goal in artificial intelligence, we can tse
systems are becoming so complex to manage that it is thrataole human body as a near-perfect example of an autonomic
tling their development. It seems clear that the only way tystem.
overcome this complexity is to make the systems manageSimple examples of the self-* properties can be found in
themselves. Highly skilled human administrators usuatigtc software that is already widely in use. For example, modern
a lot more than the systems themselves, and people with tigerating systems such as Ubuntu Linux [3] and Mac OS X [4]
right kind of expertise are often hard to find. Human errare able to configure themselves without almost any input fro
is the largest single source of failure in computer systenthe user at installation time, which is a major improvement
accounting for more than 40% of failures according to somieom the operating systems of the early 1990s. It used tode th
sources [2]. This may suggest that human administrators aese that the administrator had to specify detailed inftiona
often not as competent as they should be, and even those wabout the computer to the operating system’s installerh suc
are, will make errors. Errors can be very difficult for humanas the geometry of the hard disk and the IRQs used by the
to locate and fix, and the process can be very time-consumidgvices attached to the computer. Likewise, when new dgvice
The way forward is to make computers do all the loware attached to a system that is already installed, the tipgra
level management and to have humans only specify the higlystems usually detect and configure them autonomically.
level policies that represent the business requirementieof Operating systems are also self-protective in some ways. Fo
enterprise. When only the autonomic system itself has tovkn@xample, the OS kernel with the assistance of the CPU makes
the fine details of its configuration, it is easier for humasure that low-level hardware access is protected from user-
operators to learn how to administer it and configuratioanrsrr level processes and that the processes are protected fakm ea
are less likely. Even in the case of an error, an autononuther.
system can heal itself. Internet routing is a good example of an existing self-
The four major capabilities that an autonomic computingptimizing system. IP packets usually find their way to the
system must possess are self-configuration, self-hea@ify, right destination via the optimal (or near-optimal) pattowd
optimization and self-protection. Ganek and Corbi [1] didier ever, true self-optimization is mostly only found insideastar
self-* capabilities as well but some of them can be thoughetwork segments that use the Routing Information Protocol
of as sub-capabilities of the four listed here. For examale,(RIP) [5] or the Open Shortest Path First protocol (OSPF) [6]
self-optimizing system has to be, in some ways, self-tunirigr internal routing, since the Border Gateway Protocol BG
and self-adaptive. In this paper we concentrate on the sdif} (which is used for routing across larger network segmsent
optimizing property. requires a lot of configuration from human administrators.
Designing truly autonomic computing systems is a hudgouters using RIP and OSPF, on the other hand, can usually
challenge to the research community and it will require expébuild routing tables entirely by themselves. In case of oekw
tise from many fields. E.g., by studying the existing researoutages, routers can relatively quickly update their rayti

I. INTRODUCTION

tables so that packets can go via a different route. This medrigher-level optimizer does not need to know details of the
that IP networks are also self-healing, which is no coingéee components at the lowest level of the autonomic system.
Packet switching networks were largely motivated by thednee
for a communications system that co_uld not be brpught dov#) Utility Functions
by a nuclear war [8], which was a serious concern in the 1960s))
as the relationship between the United States and the Sovielf W& want computer systems to improve their performance
Union was very tense at the time. This meant that the netwd?¥ Self-optimization, the systems need to have some kind of
had to be designed with a capability for self-healing. Altgb rules that they can follow. A naive solution would be to speci
there are examples of systems that implement differentskin@ Set of situation-action rules for all situations that canuo.
of self-* properties, the fully autonomic systems that thé would be a very bad strategy in the case of autonomic
research aims for are still a thing of the future. systems as it would require the human administrator to go
The remainder of the paper is organized as follows. IR0 Very low-level details, and, in many cases, the list of
Section 2 we look at self-optimization in general and haJ¥!€s would probably never be quite complete. This kind of
a look at utility functions and other approaches that cowd f€€d for low-level configuration does not meet the objestive
used for implementing self-optimization. In Section 3 weegi S€t for autonomic computing systems since one of the main
a more detailed description of a specific kind of architeztuf€duirements is that humans should only need to specify the
that can be used in a self-optimizing system. In Section 4 \@@Propriate high-level business policies that the autdéaom
briefly describe a prototype implementation of the archiger Systems follow [1].

presented in the previous section. Finally, in Section 5ue s Another approach would be to use goal policies that divide
up the article. the states of the system into desirable and undesirable ones

That would definitely be a better approach than the one
1. SELE-OPTIMIZATION described above but it would not be very good for optimizatio
o because when the system has reached a desirable state, it
Optimization means "an act, process, or methodology @iouid not try to improve its performance anymore. What we

making something (as a design, system, or decision) as ful¥eq is a method that continuously aims for better perfor-
perfect, functional, or effective as possible” as defined Qygnce.

Merriam-Webster's Online Dictionary [9]. In other words,
optimization means finding the most effective ways to
things.

The third approach is the use of utility functions. With il
dRmctions we can calculate the utility (i.e., business &alu
of even completely different kinds of systems in a common
currency. In the modern society all goods and services are
A. A General View assigned some monetary value that can be used to compare

Usually when we talk about optimizing computer program#hem with each other in terms of how valuable they are
we mean optimization at the source code level as done by thetheir owners. This is exactly what utility functions are
programmer. This is a very typical part of writing softwareysed for in autonomic computing. We can specify high-level
although it has become a bit less of an issue as computeusiness rules that a utility function uses to evaluate theng
have become faster. Optimizing programs in the small scatate’s business value. When we have calculated the utility
by writing certain operations in the Assembly language, farf different Autonomic Environments in a single autonomic
example, is rarely necessary these days but optimizatithrein system, we can calculate their sum, which is the utility & th
large scale is just as important as always. This means that endire autonomic system. The goal of self-optimizationas t
still have to find and implement effective algorithms. Effee maximize the utility of the entire system at all times.
algorithms are important in stand-alone programs but theyThe use of utility-based resource allocation in computer
are even more important when we talk about the algorithrsgstems goes all the way back to 1968 when Sutherland [10]
that components in distributed systems use to interact wiphesented a futures market in which the users could bid for
each other. Ineffective algorithms in distributed systemsy computer time based on their own utility functions. Back
cause network congestion and they can disturb other userst@n there was a PDP-1 server at Harvard University which
the network, which can be a lot more serious concern tharas shared among students and faculty members. They were
ineffective operation of the system itself. assigned differents amounts of virtual currency (called)ye

A self-optimizing system is one that dynamically optimizeaccording to the importance of their projects. The userslavou
the operation of its own components while it is runningeserve computer time for the future and they would regagn th
The optimizing component can be an agent that is separgém as soon as they had used the reserved time. A user could
from the component that is being optimized: the optimizerot bid more than he could afford so the users with the most
just continuously adjusts the control parameters thatsses. yen had the advantage. More recently utility functions have
to other components. Typically the optimizer has to hauseen chosen as the approach for self-optimization in many
intimate knowledge of the components being optimized boases [11] [12] [13]. Traditionally utility functions haveeen
optimization can be done on different levels as we willsed in the fields of microeconomics and artificial intelfige.
demonstrate in the following sections of this article. Thi microeconomics utility functions are, e.g., used to nitlde

TABLE |
R/is;’,i”ce AN EXAMPLE OF A RESOURCELEVEL UTILITY FUNCTION..
roiter

UV U,(R) CPUs || RAM (GB) Utility

1 1 12

Application ——— Application —— 2 1 25
Manager U,(S, D) Manager 3 1 44.2

1 2 19.4

E E/ 2 2 39.1

Servers Router Servers 3 2 65
Application Environment 1 Application Environment 2 1 3 40.3
2 3 44.7

Fig. 1. Data Center Architecture [15, Figure 1]. 3 3 8

way a single consumer tries to gain happiness by purchasiigmper of CPUs and/ is the amount of memory allocated.
goods and services. 3 _ S By sending the resource-level utility function the Apptica

The use of action, goal and utility function policies in auto\janager basically tells the Resource Arbiter how important
nomic systems has been studied in more detail by Kephart apek for it to gain resources. As time passes, the importance
Walsh in a paper titled An Artificial Intelligence Perspeeti 5y change and, as a result, the resource allocations change
on Autonomic Computing Policies [14]. accordingly. Traditionally many computer systems havenbee
lIl. Two-LEVEL SYSTEM OF INDEPENDENTAUTONOMIc PUilt with a lot of excessive power just to enable them to sur-

ELEMENTS vive peaks in demand. However, dynamic resource allocation

Walsh L 1151 show h ity £ . b alrovides our system with great flexibility and helps us not to
alsh et al. [15] show how utility functions can be use(<o computing power.

effectively in autonomic systems by means of a data centerE mpan N inle cluster of computer
scenario. They present a two-level system of independent 9., @ company can use a singie ciuster ol computers

interacting agents, which are generally called autonorhic o running a wet_)s_lte f(_)r Its c_ustomers and a database for
ements its business administration unit so that the customers have

a higher priority. Self-optimization guarantees that faes
A. Overall Architecture heavy database transactions made by the company’s employee

The architecture consists of a single Resource Arbit}é’rj" not slow down the website jf there are customers using
and a number of Autonomic Environments. Each Autonomit Research shows that the typical user will tolerate attmos
Environment consists of an Application Manager, a routet a—10 seconds of delay when loading a website [16]. After
servers as depicted in Figure 1. The Resource Arbiter and ffFOMing er_Jstr’ategI with the delay, the user may well move
Application Managers both do resource allocation at thein o (© @ competitor's site. Clearly it is very beneficial to have a
respective levels. The Resource Arbiter is not concemedtabﬂex'ble opt|m|zat|on architecture that b_oth prevents.omﬂrs
the internal workings of the Application Environments, itlp oM having to suffer long delays and is cost-effective sat th
allocates resources according to the data it receives fhem fN€ excessive computing power is used for something useful
Application Managers. even when it is not needed for serving customers.

The Resource Arbiter is quite a genera| piece of software inlt is the JAOb of the Resource Arbiter to maximize the gIobaI
this architecture. Even if we introduce entirely new kinds ditility -, Ui(R;) by distributing the system’s resources in a
Application Environments to the data center, we will notévaway that produces the optimal result. In a systenmmofu-
to alter the Resource Arbiter component in any way becau§@omic Environments, the resource allocation is of thenfor
it only expects to receive resource-level utility funcoinom R* = (R1, R, ..., R,) whered_,(R;) = R. R indicates the
the Application Managers. The resource-level utility ftioe total quantities of resources available. The Resourcetébi
U;(R;), which is sent to the Resource Arbiter, is basicallperiodically recomputeR* so thaty_; U;(R;) yields a utility
a table that maps the possible resource allocations to th@$r high as possible. This is generally an NP-hard discrete
utilities. R; is a vector that specifies the resources allocatégsource allocation problem. There is a variety of standard
to the environment. Its components specify each individuaPptimization algorithms that can be used to solve it. One way
resource, such as the number of servers allocated etc. AsisafP use mixed-integer programming [17].
illustrative example, Table | presents a possible resoelaevs In order for the Resource Arbiter to dynamically allocate
utility function in an autonomic system where CPUs and RANMesources, the Application Managers send in new resource-
are the only resources controlled by the Resource Arbitéavel utility functions when they decide that there is enoug
CPUs can only be allocated in whole units and memory caeason to do so, i.e., when the utility function has changed
only be allocated in pieces of 1 GB. In this example, theonsiderably. The Resource Arbiter may also request the
resource vectoR,; is of the form (N, M) where N is the Application Managers send new data.

B. Application Manager ' Resource '
Arbiter

The Application Managers are at the lower level of the
architecture. They have to be well aware of the details df the Application Environment UR) \
own Application Environments since they must be able to do Application Manager
low-level tuning of control parameters. The Applicationvien o Uity
ronments in a single autonomic system can be very different F?)?e"éili’er;’@ulawr
from each other with respect to the kind of applications they .
are running. Their respective utility functions are usednap
the Application Environment’s state into a common currency

The state of a system can be described as a vector of
attributes, such as the number of CPUs, the amount of memory,
and the amount of network bandwidth the system has been
allocated.

The utility function for environment; is of the form S,D Eouter
Ui(S;,D;) whereS; is the service level vector ihandD); is

S D ﬁ
the demand vector i The components of these vectors can K Servers 4 /
be, e.g., the average response time and the average thrgughp

for multiple different user classes. The goal of the entire . o
Fig. 2. The modules and data flow in an Application ManagemiSyls:

?Utonom'c system 'S.FO Commua"y optimi2e,; Ui(_Sia Di_)* S = service level/service model) = demand,D’ = predicted demandC
i.e., the sum of the utility functions of all Autonomic Engir- = control parametersR; = current resource level/ = utility function [15,

ments, so that most resources are given to those enviroemé&fure 2I.
that need them the most. On the other hand, the goal of a single
Application Manageri is to optimizeU;(S;, D;) while it is
given a fixed amount of resources. The Application Managegrvers and a router. The Resource Arbiter is the only compo-
can only use the resources that the Resource Arbiter Heght outside the Application Environment. Of course theee a
allocated to it, so it will have to decide how to use thosether Application Environments as well but we do not have
resources as effectively as possible. This is done by audiustto pay attention to them here since they only interact with th
the control parameters of the application in question. b1, fa Resource Arbiter and not directly with each other.
the Application Manager can do its own small-scale reseurce As we have already described earlier, the Application Man-
allocation for different transaction classes at this le¥el., ager sends the resource-level utility function to the Resou
some users can be given priority in certain operations. Arbiter. Next we will describe how the Application Manager
This is exactly why it is beneficial to have a two-leveis able to construct the function.
architecture instead of a centralized one where the ResourcThe Data Aggregator module receives a continual flow of
Arbiter would do all the work. The Resource Arbiter wouldaw measurement data from the servers and the router. This
have to be updated every time a new Application Environmeincludes the service dafhand the demand daid. The Data
is introduced to the system, and it would have to be aware Afgregator uses some method to aggregate the data into a
all the details. The resulting software would be quite #dat more suitable form. It can, e.g., calculate their averadees
compared to the one needed in the two-level architectumser a suitable time window.
Different types of optimization require different time & The Data Aggregator sends the refined demBndo the
which is also neatly handled by the two-level architectlite Demand Forecaster whose job is to provide an estimate of
Application Managers can do optimization on a time scale ¢fe average demand in the future. The Demand Forecaster,
seconds or anything that is suitable for them. The Resouipeturn, passes the predicted demabd on to the Utility
Arbiter typically works on a time scale of minutes. Calculator. The forecasting is necessary because the deman
Figure 2 shows the inner composition of an Applicationan suddenly peak for a relatively short period of time. It
Manager and some surrounding components. The figure illis-hardly a good idea to do reallocation of resources among
trates how information flows inside the Application Managettifferent Application Environments just because the dednan
and how it flows between the Application Manager and théses (or lowers, for that matter) considerably for a brief
external components. The area with a darker backgroumsment in time. The shifting of resources can be a time-
represents the Application Manager. The rectangular &bjeconsuming operation and doing it unnecessarily may only
inside it are its modules and the cylindrical objects reg@nés lower the system’s performance. The Demand Forecaster has
the knowledge that the Manager maintains. Since we aretake historical observed demaidl into account when it
concentrating on a single Application Manager here, we willecides on the estimated future demdapd
abandon theé subscripts at this point. In addition to sending the demanD to the Demand
The area inside the rounded rectangle represents the Applirecaster, the Data Aggregator also sends the refined deman
cation Environment, which contains the Application ManmageD and the refined service levd to the Modeler module.

it to Figure 2, we can see the similarities. The measuring
phase is represented by the router and the servers sending
measured service and demand data to the Data Aggregator
and the Aggregator passing the refined measurement data on
to the other modules. The Controller and the Utility Caltota
make decisions based on the measured data by computing the
appropriate control parameters and the resource-levidly uti
function. Resource allocation is partly done by the Coidgrol
as it sends the control parameters to the router and therserve
and partly by the Resource Arbiter when it makes decisions
based on the resource-level utility functions it receivesrf
the Application Managers.

IV. PROTOTYPESYSTEM

Fig. 3. Control loop.

Walsh et al. present a prototype implementation of their
)) __architecture running on a cluster of four servers [15]. One
The Modeler’s task is to build a mod8(C, R, D), which is ot the servers is dedicated to the Resource Arbiter and
basically a function that maps a set of control paramet&ra 5 Application Managers, and the other three are used as
resource leveR and a demand levdD into the service level ggoyrces. The servers are running Red Hat Enterprise Linux
that will be acquired with the specified conditions. Advanced Server and the resource servers have WebSphere
The Modeler gets the control parametérsrom the Con- ang DB2 installed. First one of the two different servicestth
troller module. The Controller continually adjusts the toh o system is running is a simulation of a web-based eleictron
parameters that it a!so sends to the router and. the _servers,[rgding platform requiring high availability and the sedame
can be seen from Figure 2, the Controller receives input fro@ 5 patch process with no need for fast responsiveness. The
many directions. It receives the demabd the service model ee servers are the only resources that the system has and
S, the current resource lev&®, and the service-level utility ey are allocated in whole units to the different Applioati
function U(S, D) as input and uses the data to determingnyironments. The main idea is that when the web server
the suitable control paramete€s for the current situation. g getting only few hits per time unit, it is allocated maybe
More formally we can say that the Controller aims to find thgmy one server and the batch process gets two, but when the
control parameter€ so thatU(S(C, R, D), D), whereR: gemand rises the Resource Arbiter allocates more servers fo
is the current resource level, yields its maximum value. Thge web server.
control parameters may include configuration options fer th | o prototype system is implemented using Unity [18], a

actual application the servers are running or differentl&in gonera) software architecture for autonomic computing sys

of settings for the servers’ operating systems. The conti@l,s geveloped at IBM Research. The whole framework is
parameters can contain basically anything because they MBten in Java.

application-specific and not restricted by the architextur
The Utility Calculator is the module that actually genesate,
the resource-level utility functiod/(R) that is sent to the : :
. . . rocessA2. In this systenS, D andR are all single-valued,
Resource Arbiter. It receives the predicted dem@d the P y 9

ice-level utility function’(S. D d th . q Iso we can use a scalar notation instedd:D and R. The
service-level utility functionl/(S, D) and the service mo € service-level utility function forAl is defined solely in terms

S(C,R,D) as input. The resource-level utility function Sof the average response tinSe of the customer requests. This

calculated with the formula means that the demand is ignoredibyin this implementation

~ . N oy for the purpose of simplification, i.el{1(S1, D1) = U1(S1).

UR)=U(S(C",R, D), D) (1) The customer demanB); is generated by repeated requests

for all possible resource levelR where C* is the optimal for the login web page at a variable rate. Each time the page is

set of control parameters for the resource IeRelNote that accessed, the application makes some random databasesqueri

the optimal control parameters may be different for différe and displays some information to the client to simulate & rea

resource levels, which means that the optimal control parantrading platform. To realistically simulate periodic anairsty

ters must be recomputed for all possible resource levelso Alweb traffic, a time-series model developed by Squillantd.et a

we must use the predicted demahd, which was received [19] is used to reset the demand generated by the transaktion

from the Demand Forecaster, instead of the current demamarkload every~ 5 seconds.

D. Al uses a simple system performance model
The behavior of an Application Manager fits well into &,(Cy,R;,D;) and the service-level utility function

general concept of autonomic computing called the contrBl (S;) to estimate the resource-level utility functidih(Rl)

loop [1], which is illustrated in Figure 3. If we comparefor each possible number of serveks, i.e., 1, 2 and 3. We

We call the Application Environment running the web
erverAl, and the Application Environment running the batch

are able to simplifyS;(Cq, R1, D1) to S1(R1,D1) because [10] I. Sutherland, “A futures market in computer tim&dmmunications of
the control parameters of the servers are held constant. the ACM vol. 11, no. 6, pp. 449-451, 1968.

Bef doi th . . t . O{éf.] W. Wang and B. Li, “Market-based self-optimization fautonomic
efore doing the main experiment, a perrormance mo service overlay networks,Selected Areas in Communications, |IEEE

was obtained by measuring the average response time at eachJournal on vol. 23, no. 12, pp. 2320-2332, 2005.

of several values ab; for 1, 2, and 3 servers. Each data poir{tlz] T. Kelly, “Utility-directed allocation,”First Workshop on Algorithms and
. ., Architectures for Self-Managing Systerpp. 2003-115, 2003.

was sampled for 15 minutes so that there were enoth mate['i@f R. Das, |. Whalley, and J. Kephart, “Utility-based edlbration among

to calculate averages over several hundred to a few thousand autonomous agents for resource allocation in data cehrsceedings

transactions, and all non-sampled points were generated by of the fifth international joint conference on Autonomougrdg and

linear interpolation. Again, for simplification, the Denthn [14] multiagent systemp, 1572-1579, 2006.
Forecaster simply returns the current demand.

The Application Environmen#2, which is running the
batch process, is really simple. The service leSglis mea-
sured solely in terms of the number of serv&sallocated to
A2. The utility function is a simple increasing linear funetio 6]
The values returned by the utility function for the Appliceat
EnvironmentA2 are notably lower than those returned by the
utility function for A1, which means that the batch process 87
given lower priority. 18]

The test runs of the prototype system have been promising.
A detailed walk-through of a single test run can be found i
the original paper [15] with a number of graphs describirg t
state of the system as it operates.

[15]

19]

[20]
V. CONCLUSION

Utility functions provide a good way to hide the internal
complexities of different applications when comparingithe
utility with each other. There needs to be an easy way for
human administrators to specify high-level instructiomsthe
construction of utility functions. Human administratossially
know which systems are the most business-critical under
certain circumstances. If an autonomic computing systesn ha
similar information on the importance of different apptioas
it is running, it can to well-informed decisions of resource
allocation under varying conditions on behalf of humans.

The two-level optimization architecture described here
seems to be usable but it will still require further studyimbe
prototype implementation is quite simple compared to wheat t
architecture is capable of. The architecture has beendurth
studied by the same group that introduced it in a more recent
paper [20]. In the paper they compare a queueing-theoretic
performance model and model-free reinforcement learning a
methodologies for estimating the utility of resources.

REFERENCES

[1] A. Ganek and T. Corbi, “The dawning of the autonomic cotm era,”
IBM Systems Journalol. 42, no. 1, pp. 5-18, 2003.

[2] D. Patterson, “A new focus for a new century: availabiind maintain-

ability performance,’Keynote speech at USENIX FAST, Janu&@02.

[3] Ubuntu Linux. Canonical Ltd. [Online]. Available:
http://www.ubuntu.com/
[4] Mac oS X. Apple Inc. [Online]. Available:

http://www.apple.com/macosx/

G. Malkin, “Routing Information Protocol RIP version Znternet
Engineering Task Force,” November 1998. RFC-2453, Teclp. Re
J. Moy, “RFC2328: OSPF Version 2[hternet RFCs1998.

Y. Rekhter, T. Li, and S. Hares, “RFC 4271, A Border Gatgwaotocol
4 (BGP-4),” 2006.

J. Abbate,Inventing the Internet MIT Press, 1999.

Optimization. Merriam-Webster's Online Dictionary. Ofline].
Available: http://www.m-w.com/dictionary/optimizatio

(5]

6]
(7]

(8]
El

J. Kephart and W. Walsh, “An artificial intelligence ppective on
autonomic computing policies,Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE maé&onal
Workshop onpp. 3-12, 2004.

W. Walsh, G. Tesauro, J. Kephart, and R. Das, “Utilityndtions in
autonomic systemsAutonomic Computing, 2004. Proceedings. Inter-
national Conference qrpp. 70-77, 2004.

D. Galletta, R. Henry, S. McCoy, and P. Polak, “Web sitdagls: How
tolerant are usersournal of the Association for Information Systems
vol. 5, no. 1, pp. 1-28, 2004.

G. Nemhauser and L. Wolselnteger and combinatorial optimization
Wiley-Interscience New York, NY, USA, 1988.

D. Chess, A. Segal, I. Whalley, and S. White, “Unity: erpnces with a
prototype autonomic computing system\itonomic Computing, 2004.
Proceedings. International Conference, @p. 140-147, 2004.

M. Squillante, D. Yao, and L. Zhang, “Internet trac: eicity, tail be-
havior and performance implications3ystem Performance Evaluation:
Methodologies and Applications. CRC Press, Auglisg9.

G. Tesauro, R. Das, W. Walsh, and J. Kephart, “UtilityaEtion-Driven
Resource Allocation in Autonomic Systemgiutonomic Computing,
2005. ICAC 2005. Proceedings. Second International Cenfs on
pp. 342-343, 2005.

