Dynamic upgrade of software

Mika Karlstedt
University of Helsinki

Abstract—Part of any self-healing system must be a mechanism ~ This paper will concentrate on the problems that are en-
that allows the software in the system to be upgraded. Itis siply  countered with the component based approaches, but wall als
not realistic to assume that there would be no bugs in softwar show that the dynamic update can be used without components

nor any need to add new functionality. This paper studies som by showi thod t ¢ deabl ing C
work that has been done in solving the problems related to the y Showing a method to create upgradeable programs using G-

dynamic upgrade (or update) of the software. We assume thate like |anguage. The Chapter Il introduces some of the prOblem
system has to serve the clients while the upgrade is in progss. encountered with the update process. Some chosen solutions
Some of the work is based on the assumption that small amount to these problems are introduced in chapter lIl. The papes en

of downtime is acceptable, while others try to get the upgrad \yith the conclusions and some remarks of what | think are the
finished with no downtime at all. None of the solutions are que
areas where future work should be done.

perfect though, so there is still quite some work to be done.
|. INTRODUCTION II. DIFFICULTIES OF THE UPDATING PROCESS

There are always reasons to update software. Some timeS€omponent based development is an area where the dy-
bugs need to be fixed. Some other time new functionality neegasmic update should work nicely. The basic idea behind the
to be included. Some times the software requires restingturcomponents is, that they are developed by different users
to make maintaining the software easier or improving the different locations to provide different functionadis or
performance. Dynamic update (or upgrade) in this paper meaervices. The users can create new services by combining
a method which allows us to update a running system todifferent components. As the components are independent
newer version of the software while the system is at the sametities, it should be possible to just substitute a compbne
time serving clients. It is acceptable that the users sedl snwith a newer updated version of itself and continue working
decrease in the responsiveness or in the quality of servitte, as normal. Unfortunately the reality is not quite so pretty.
it should never be bad enough to annoy them. A major problem with any update process is that the system

There is at least three ways to achieve this. We can sttt is updated cannot be used while it is updated. While the
the current server and start a new version of the server. Or sgplication code itself is deterministic, the code doesraatt
can use hardware and software redundancy to have more thetl if we change the code in the middle of the execution.
one unit serving the clients. We can then bring them dov&imilarly we cannot change the data structures while they
for the upgrade one at the time, while other units provide tlage used, as the results would be unpredictable. It is dessib
required service to the clients. Or we can dynamically updab update code that is not in execution during the update.
the software itself on-the-fly. Most methods that allow the system to be operational, while

The drawback of the first method is that there is a shdreing updated, require that there are update points where th
period when the system is not responding. If that is accémtalcomponent (or the function or the data structure) is not an us
we have the advantage that this method is the easiestWe can update the component in those points. Whenever the
implement and has the least amount of side-effects asicemponent is next used, it will be the new updated version.
from the small amount of downtime. The drawback of th&he problem is how to find those update points.
second method is that it requires extra resources to prék@e \ersion control is another problem that has not been solved
redundancy, but it provides the only solution with absdiuteadequately. Let us an example to show which kinds of prob-
no downtime if performed correctly. On top of the extrdems we may have. Figure 1 shows a very simple use case.
resources, it is also possibly much more difficult to implaine | have created a componekty Componentersion 1.2 that
If the servers are stateless, then there is only small iseréa uses two other componentSomponent Aversion 1.4 and
complexity. The drawback of the third method is that there Somponent Bversion 2.2. They in turn use the services of
still a small time frame when the server is not really prongli a fourth componenComponent Cversion 0.8. Then a next
service. In some cases the system is able to maintain thersion of theComponent As released, and for some reason
connections and sessions with the clients. On top of thadten tl want to use it. Let us say that it fixes a bug that has been
long run there is a decrease in the service because the dpdateoying me. Unfortunately the bug fix comes with a price;
version suffers a small performance penalty from the updatparts of the interface has changed. Can | just install the new
And lastly it also increases the complexity of the softwaregrsion and continue or do | need to fix my component? If
although parts of that can be hidden from the developer. @ere is no changes to the function calls/method invocation
the positive side it requires no extra resources and shithal thatMy Componentises then | can indeed just install the new
the continuous service even when the service is sessiond.bagsemponent and carry on, but there is no way to know that



lot to do before upgrading software is as easy and reliable as
it should be.

A. Keeping track of different versions

Stuckenholz’s [1] paper is a survey of the State of the Art
in version control. He goes through the methods that differe
systems use to handle the problem using different versions
of the same component. The basic idea behind component
based approaches is that users can replace existing contpone
with new implementations of the same component. If the user
cannot change the component to a newer version, the user is
basically using old non-component based approach, where ne
versions of the libraries require rewriting the applicatir at
least parts of it. We could expect that some of the component
based systems would have invented some way to deal with
the problem, it is after all at the very core of the component
Fig. 1: Simple example of component usage based systems.

Unfortunately there is only two systems in wide use that
have solved even a small part of the problem, one is the

simply by checking the version numbers. Another problefiynamic shared libraries in *nix like operating systemsigsi
arises if the newComponent Arequires a newer version of ELF-binaries and the other is .NET. Unfortunately the only
the Component Cand Component Bon the other hand doespProblem that these systems solve is the problem of keeping
not work with the newer version of theomponent CThere More than one version present at the same time without
should be a way to install both of these components at tAfecting existing applications that use older version.
same time without them interfering with each other? Shared libraries solve the problem in the linking time. The
Most systems have adopted some kind of versioning schefre=-Pinaries are not complete as such. There is the aplicat
that tries to solve parts of the first problem. The scheme&wdfode but for the shared libraries there are only the symbolic
by using multipart version numbers like A.B.C.D. When firsf@mes of the library calls that the binary requires. When the
or second part (A or B) is changed, the API or the interfadinary is executed, the task is delegated to the lihk&he
is also changed. This implies that components implementéer loads the software into the memory and then it resolve
against the older versions do not work anymore. Simple bifsf required or used symbols from the binary and finds the
fixes, that do not alter the interface, change only the third §0'résponding entries from the correct libraries. The dink
fourth part (C or D) of the version number. This works, but igutomatically uses the newest binary compatible version of
some cases it causes the implementer of the client compondfi¢ liorary present and subsititutes the symbolic referendta
to fix their components that do not need fixing. That is manuli]e correct addresses. The linker has to map the requiréd par
work that would be better left to the software, except that ff the library into the address space of the loaded binarg. Th
software exists that could do it. system works quite well and is the oldest working solutiom. S
Redundancy introduces some problems too. Some tin8§ there is no system that could provide any better solution
there exists many different versions of the same componentM'CrOSOft uses similar method in their .NET environment

and we need to keep track of which is the newest version. Tt With some differences as the .NET environment is object

happens especially in cases where components are develdﬁé‘ﬂ“ed and maps more nicely to the component paraigm

by different people in different places. Another problenthiat In the .NET case the object are f:ollected into pac_:kages which
when we start upgrading the redundant copies of the soffwafi® called assemblies. The solution works by adding meta dat
we need to keep track of which copies have been upgra g4he .NET assemblies which is used to qlemde which other
and which have not. And in some cases copies running dtgSemplies need to be loaded. That alone is not enough as the
copies cannot communicate with copies running newer cppi@sssembly can only tell against which assemblies it has been

which makes the situation even trickier. Once again it wouftfveloped. Therefore the new assemblies can replace e cla

be nice to leave the dirty details to a software. There aader of the old assembly with a custom loader that loads the

indeed attempts to solve the problem and | will introduce offWest version instead of the version specified in the asyemb
in chapter 11I-D, Java itself has also a limited support for the versioning by

allowing developers to add meta data to the classes theesselv
The meta data can then be used to decided which class to load.
However the decisions need to be done by the developers.

The chapter Il presented some problems and now is timg__ . . . . . -
. . This is not the same linker that is used in the compilatiorcess
to present '_50|Ut|0n5 to the aforementioned _prObIemS- N‘b_ne O2Note that Windows XP cannot handle more than one versionythared
these solutions solve all the problems and indeed therdlis Sibrary (called DLL).

Component A Component B
ver. 1.4 ver. 2.2

Component C
ver. 0.8

[1l. SOME SOLUTIONS TO CHOSEN PROBLEMS



The language only provides the means to deliver the data buany different developers in different locations. The idea
puts no meaning to the data itself and can therefore make that the custom class loader created the by the projectvesi
decisions based on it. always the newest version of the class so that the developers
do not need to worry about whether they are using the newest
version or older versions.

McCamant and Ernst [6] have developed ways of predictingJava uses byte code to ensure that the code can be run in
whether it is safe to upgrade a component. It is easy to ensargy computer. The machine independent byte code helps with
that the components provide the same interface, but mutie distributed systems because all the computers neecenot b
more difficult to ensure whether the components have the sagmilar. The Java Language Specification introduces a @ince
behavior or in other words whether the two components aoébinary compatibility. Two classes that are binary contpat
functionally equivalent. Their solution works by creatiag can be used interchangeably. Basically two classes areybina
operational abstraction of the components and compariag tompatible if they have the same methods with the same
old and the new version. The solution tries to predict whethimterface. It is possible to introduce new methods and new
the new version would behave correctly. The operationfiélds and maintain backward compatibility. There are quite
abstraction was created using an open source tool Daikonff@w different requirements and restrictions that are htieced
The Daikon analyzes the code to find out all the preconditioirs the Java Language Specification and the interested reader
that must be fulfilled before the component is invoked. Ibalsshould check the specification.
analysis all the post conditions that hold after the compbise =~ The work of Barr and Eisenbach allows one to replace
invoked. Once the operational abstractions has been gmalo one class instance with another binary compatible version.
the next step is figuring out whether the two are compatiblenfortunately there are limits to the modifications we can do
They use reasoning to figure whether the new component filasre want to maintain binary compatibility. It is of course
the same or stronger operational abstraction than therdurreetter than nothing but hardly a satisfying solution. Itrase
version. If it has, then it is acceptable to install the uplgra that Java requires new features if a more advanced replateme
if not, then it is flagged as unsafe operation. algorithm is to be designed.

The advantages of this method, is that is uses automated ) )
tools for analysis and is thus less error prone than manll Automating the update in redundant cluster
inspection. It is also possible to use the method even withou Solarski and Meling [5] tackled the problem of automat-
source code, by using a testing framework for finding oing the upgrade process in clusters. The purpose of having
what the operational abstraction is. The testing framevi®rkredundant hardware is to ensure that there is no downtime,
actually built into Daikon, as it runs the software it anagz but it also means that there is many nodes that need to be
inside a debugger. It can then check the values of any vampgraded. While it is possible to upgrade them manually it
able it deems important before the execution of any specifioon becomes both burdensome and error prone. If the user
function, during the execution and after the execution. @ifpgrades too many replicas at the same time, it is possiate th
course this requires that the Daikon has a suitable test inpie clients find the cluster unavailable. It is also posstble
that it can feed to the application in study. A side effect dbrget to upgrade some node if the upgrade is not automatic.
that is that Daikon takes into account the context where the cases where the nodes use services of other nodes some
component is used. It will only take into account those partarther problems are possible.
of the component that are actually used by the application.Their solution is to create an automated upgrade method.
In other words, if the application uses only a subset of théhey made some simplified assumptions. The upgrade process
methods/functions of the component, then the system chedksa single node is atomic, and while the node is upgrading,
that the used methods/functions behave in the same wayitidoes not serve the clients. Also the newer version careserv
both versions. the clients that require older versions of the server. Aragteh

The drawbacks are that the system cannot always reaunhst also be a way to transform the state of the old version to
a conclusion, in which case the user still needs some otltee new version. Also other possible upgrades do not interfe
methods to validate the usability of the upgrade. Also whemith the upgrade in progress. And lastly the interval betwee
the upgrade is actually fixing a bug, it is effectively changi upgrades is so long, that at every time there is at most two
the behavior of the component thus changing the operatiosaparate versiong and v+1 of the software running in the
abstraction, and the method flags even those as dangermuster. Two versions exist only while the upgrade process i
upgrades. Fortunately the system specifies where the pnobleinning, once it has finished, there is just one version. This
is, so it is usually possible for the person responsible lier t means that it is not possible to upgrade a node from version
upgrading process to find out that the upgrade is safe. v to versionv+2.

The upgrade process starts by multicasting the upgrade
file to every node. The process uses reliable multicast to

Barr and Eisenbach [2] have created a method for ensuriegsure that every node receives a copy of the update. The
that the application always uses the newest version of tee Jarocess is truly distributed, meaning that there is no edinad
class even when the development is distributed and there acele controlling the update, instead every node uses the

B. Predicting upgrade compatibility

C. Automatic loading of the correct classes in Java



same algorithm. The algorithm assumes that the nodes carrdsult is both the executable and prototype and versioraitey d
ordered in a canonical order by some criteria. The algorithithe executable is delivered to a special runtime systengiwhi
divides the nodes into two groups, one group that is runniigin charge of both deploying and upgrading the software.
the old versionv and the other group made of nodes already When a new version is finished, it is delivered to a patch
running the next version+1. The node checks whether it isgenerator, which will receive the prototype and versioning
the first node in the group of not yet upgraded nodes. If it idata produced in the first compilation along with the source
the node knows that it can upgrade itself, which is does lopde. The result is a patch file that is compiled to create a
stopping itself and starting the new version. It then joiaskb dynamic patch, which can be delivered to the runtime system.
to the group and the new state of the server is transferredTioe runtime system installs the patch to the running system
it. without stopping the system.

Part of the upgrade implementation is GCS (Group Com- The compiler uses function indirection to make upgradeable
munication System) that is responsible for reliable makic software. For every function the compiler generates a globa
It is also used to transfer the states of the old nodes to theriable which is a function pointer to the correct function
newly joined nodes. The creator of the upgrade has to cre#tethe first version the pointer is pointed to the first version
a transformation function that can be used to transform lthe @f the function. When a new version is introduced the pointer
state to the new state system used in the upgraded versiofis redirected to the new version. Similarly all data stroesu

The algorithm eases the work of upgrading the cluster whiége wrapped inside an indirection. On top of that a transésrm
requiring only efficient cluster wide IPC and a method téunction is defined that can be used to transform an old versio
represent the state of the node. The cluster wide IPC is nodfathe data type to a new type. It is used during the update
problem as any effective cluster needs it in any case, so f@cess to update the existing data structures to new varsio
only problem is making sure that there is a way to represesd that we can remove all of the old code. In most cases
the state of nodes. The state is naturally application fipecithe creation of the transformation functions is completely
and if the application is stateless, then there is no needwe hautomated. Only in some cases do the implementer need to
a presentation for the state. write some tricky parts manually.

Loops require some additional thought. The task is very

i i RS _ simple if we move all of the loop code inside a function. Then
Itis possible to create application in C-like language th@le can simply change the function pointer to a new version

can be updated while the application is running. Hicks ang the |0op. One of the parameters to the loop function will
colleagues have created two different approaches to sbise ¢ 5 sructure that has pointer to every variable that the loo
problem. The first [7] was called pop corn and the second [g]ction uses. Because the loop function has different escop

was called Ginseng. | will introduce the latter with littleone 1,21 the loop, it is impossible to access any variable that ha
details as it shows how to create upgradable software. Andj4 scope in the loop from the loop function.

any case .the.y did use the lessons learned in the first systeny is not enough to just create the patch or the application,

when designing the next system. , it is also important to find out the points where the updating
Their design for the dynamic software updating (DSU) i§ safe to do. Here we have the same problem as in other

based on principle that the system should satisfy threer@jt .,qag before, it is not safe to modify the code when it is

which are: running. Fortunately, it is often possible to find safe upimg
« DSU should not require extensive modifications to normabints. For example many server applications use an infinite
software implementation. In other words, it should bgop where the server waits for something and then reacts to
possible to concentrate on creating good software and jetThen the loop ends and the server starts the next iterafio
the underlying framework ensure that the software Withe |00p. The end of the loop is a natural point for upgrading.
be upgradable. The programmer needs to tell about those upgrading points by

« DSU should allow all kinds of updates. In other wordgnaking a call to a specific DSWipdate-function, which will

it should be possible to change not only the body fp the upgrading if needed.

the functions, but also the signature of the functions i.e. There are some difficult situations which require manual
the parameters and return values. Finally it must also Bgndling. One of them is the void-pointers. Often the furcti
possible to change the data structures. expects a void-pointer as a parameter which it then casts int

« Thelast requirementis that the updates themselves shogd correct type. If the compiler cannot solve some cases

be easy to write and it should be easy to ensure that thessperly, it creates an error message and leaves the problem
are correct. to the programmer.

First the developers create the application with no eye The method is not quite fool proof as it cannot solve all the
towards the updating. When the application is finished, thgoblems but requires some manual help from the programmer.
source code is compiled with a special compiléfhe end But in general most of the code can be generated automati-

3During the implementation and debug phases the softward wurse cally. The upgrade pro_ces_s Its.e” I.S .Very fast and the initia
compiled with a standard compiler, the special compiler seduonce the overhead for the application is minimal. Unfortunately the
application is ready to be deployed. overhead escalates bigger when more upgrades are installed

E. Dynamic update in C-like languages



The papers did not elaborate on which would be the masperating system K42 using object oriented methods. They
likely reasons for it. My personal idea is that the most fkelcreated a way to do a hot swap on the objects which in practice
reason is poorer memory management, as the unused caliievs the dynamic update of the operating system.
is never released, and it can affect the overall performancelhe use of virtualization solves many of the upgrading
quite substantially in the long run. There is nothing thatildo problems quite elegantly, as the operating system is ndyrea
prevent the system from releasing the unused memory, butirincontrol of the system anymore. Instead the virtualizatio
modern operating systems the situation is not quite so simptystem controls the software and it is therefore possible to
The memory management is based on patmd therefore temporarily stop an instance of the operating system, while
the process can only acquire and release a whole pagdtas upgraded. The upgrade selects a single function to be
a time. If even one byte of the page is used by some algigraded at a time, and upgrades it. Because the virtualizat
function that is still used, then the whole page has to be kdpyer controls also the memory, it is able to control the use o
in memory. A solution could be to implement cleaning patchethe kernel data structure. If the data structures are mddifie
that collect all the used functions into a single block of eodin the upgrade process, the virtualization layer puts write
That would make it possible to release the old blocks. In re@totection on to the memory used by any data structures. Then
life everything is not quite so simple, but that should asteait transform the data from the old structure and copies it to
improve the performance quite drastically in the long run. the new structure. The result is two different copies of the
same data, one used by the old versions and the other used by
the new versions. Whenever there is a change in the data, the
Operating systems have bugs like any other software ajgtualization reacts to it, because the write triggers atewr
therefore need to be updated. But unlike the applicatiofss itprotection exception. It can then do the correct adjustrient
not possible to load a new version of the software into the other data structure. The end result is that both old and
memory and then just transfer the control from one version #w versions can run concurrently and share the same data
the next version. The operating system is by its nature antevehough their representation is a bit different. In time the o
driven software. It waits for events to happen and then sdact yersions will be finished and can be removed from the system.
them. This itself is not a problem, because many server peoce K42 on the other hand treats operating systems as made of
works similarly, but there is always many concurrent execut components or more accurately objects. To help the task of
threads® active. And as there may not be any bookkeepinghgrading the OS, they used the factory pattern for creating
data available we cannot know how many of these threads gy instances of the objects. The factory pattern is oneeof th
active. In general it is not possible to reach a quiescemé stqye|l known programming patterns used in the object oriented
inside the kernel without actually stopping the kernel. Aimd  programming. When it is used, the user does not create new
is true even to any component the kernel might be made ofystances of the objects. Instead a factory is created, whic
Let us study what would happen if we were to upgrade ai4s a method for creating new instances of the class. It helps
operating system kernel. Let us start by upgrading the c®de.jn many ways, first there is only one instance of the factory
we replace the existing code with the new version and transt®) it is much easier to find and upgrade the only instance
the control to the new kernel. What do we do with a kern@f the factory. After the factory is upgraded' new instances
thread Of the Old VerSion that haS iSSUed a d|Sk tl‘anSfel‘Sind)f the new Versions can be Created on the ﬂy The factory iS
waiting for it to finish? Clearly it is active though blockédle  required to keep track of the object instances that it cteate
cannot terminate it, because we do not know what changesje old version of the factory transfers the old versions of
has made to the data structures. If it is not allowed to firtigh tthe ObjeCtS to the new factory’ which can then upgrade every
execution, we have a real risk of corrupting the data strestu existing instance, thus finishing the upgrade process.
of the kernel. We cannot just replace the body of that fumctio There are three kinds of modifications that can be done,
with the new function as then the system would execute '[Bﬁanges that only modify the body of a method, changes that
first half of the old function and the second half of the Ne¥hodify the signature of the method or interface by introdgci
function. We could solve the problem by letting the old codgew methods, parameters or changing the return type of the
exist as long as there are threads running the old versidn, fbthod. The third modifies also the data structures. These ar

all new instances would use the new version. But what do Wge most difficult changes as every instance of the data need
do if the new version changed some kernel data structure likg found and updated on the fly.

Now we have two threads that must share the data Structurgven the existing instances cannot be upgraded if they

but they both use different kinds of structure! There is n&yeagre in use. Therefore the factory upgrades the instance only

way out. _ _ . . when the instance is in quiescent state i.e. not actively in
I came up with two different ways of doing this. Chen [3];se, The mechanism for figuring out when the instance is in

and the team came up with a novel idea of using thuah_zathmiescem state is similar to Read-Copy-Update (RCU) used

and Baumann [4] and colleagues developed an experimefygihe normal Linux kernel. Because it is possible that al th
4The implementations were done in the Linux systems. mStan_CeS cannot be upgraded |mme(_1|ately itis imperaiire t
SThese are really not threads but more like execution tratsidd the OS. there is a method for allowing the old 'nStanc_eS to be USGF' eve

I use the the term thread because | have no better word. through the new factory. Part of the factory implementatfon

F. Updating the operating system



Read-Copy-Update

RCU is a lock free synchronization method. Indirection iguieed
for it to work. Any one is allowed to read the structure anydim
they want. Anyone wanting to write into it, has to first create
copy of the structure. The writer uses the copy for updates an
when it is finished, it changes the pointer to point to the riedi
version. Whoever wants to read the structure after that theeaew
versions and anyone who acquired the pointer before theqoin
changed sees the old version. The old versions need to beveem
some time, for this reason it is forbidden for the any threamhg
the data structure to block. When every CPU has been schidtl
least once there can be no thread using the old version andldhe
version can be removed.

(8]

(=]

a mapping function that is used if the object is still running
the old version. It transforms the parameters of the new
invocation to the parameters that would have been used in
the old invocation. As a result the clients can use the new
invocations and the factory makes sure that old versions see
correct parameters without any effort from the clients part

IV. CONCLUSIONS AND FUTURE WORK

There are different ways to solve the problem of dynamic
update of an application. Unfortunately some of the mosichas
problems have still not been solved. For example different
versioning schemes provide absolutely no real information
about the actual services or interfaces that the components
or modules provide. A more fine grained approach would be
valuable. Only few systems can even handle the simultaneous
existence of different versions of the same component.élher
is no good solution that would ensure that the behavior of the
new version is the same as the old version, unless the code
has been formally specified (which it usually is not).

The situation is easier if we have redundancy to help in the
process. Then we can simply bring a node down and upgrade
it. Then bring the node back up. However this process is error
prone and would benefit from automation. There is some work
in this area but the solutions are not quite finished yet.

One solution is to create methods for creating upgradeable
applications in the C language. That solution is an intergst
even though it may not be exactly required. If we simply
cannot tolerate downtime, then we must have redundancy, and
if we can tolerate small amounts of downtime, we can use
simpler approaches. In any case the current methods require
still some manual intervention from the programmer.

REFERENCES

[1] A. Stuckenholz,Component Evolution and Versioning State of the, Art
ACM SIGSOFT Software Engineering Notes, Vol. 30 issue 1, 2805

[2] Miles Barr and Susan EisenbacBafe Upgrading without Restarting
Proc. of the ICSM'03, pg.129-137, Sep. 2003

[3] Haibo Chen et. allive Updating Operating Systems using Virtualizafion
proc. Virtual Execution Environments, VEE’'06, pg. 35-44nJ2006

[4] Baumann et. alProviding Dynamic Update in an Operating Systeé®noc.
of the USENIX '05, pg. 279-291, Apr. 05

[5] Marcin Solarski and Hein MelingTowards Upgrading Actively Repli-

cated Servers on-the-flProc. of COMPSAC’'02, pg. 1038-1043, Aug.

2002

Stephen McCamant and Michael D. ErnBtedicting Problems Caused

by Component Upgrade®roc. FSE'03, pg. 287-296, Sep. 2003

Michael Hicks, Jonathan T. Moore and Scott NettlBynamic Software

Updating Proc. of PLDI 2001, Vol. 27 issue 6,Jun. 2001

(6]
(7]

lulian Neamtiu et. alPractical Dynamic Software Updating for, ®roc.
PLDI 2006, pg. 72-83, Jun. 2006

[9] Michael D. Ernst et. alThe Daikon system for dynamic detection of likely

invariants, submitted to Science of Computer Programming in June 2006.



