
Dynamic upgrade of software
Mika Karlstedt

University of Helsinki

Abstract—Part of any self-healing system must be a mechanism
that allows the software in the system to be upgraded. It is simply
not realistic to assume that there would be no bugs in software
nor any need to add new functionality. This paper studies some
work that has been done in solving the problems related to the
dynamic upgrade (or update) of the software. We assume that the
system has to serve the clients while the upgrade is in progress.
Some of the work is based on the assumption that small amount
of downtime is acceptable, while others try to get the upgrade
finished with no downtime at all. None of the solutions are quite
perfect though, so there is still quite some work to be done.

I. I NTRODUCTION

There are always reasons to update software. Some times
bugs need to be fixed. Some other time new functionality needs
to be included. Some times the software requires restructuring
to make maintaining the software easier or improving the
performance. Dynamic update (or upgrade) in this paper means
a method which allows us to update a running system to a
newer version of the software while the system is at the same
time serving clients. It is acceptable that the users see small
decrease in the responsiveness or in the quality of service,but
it should never be bad enough to annoy them.

There is at least three ways to achieve this. We can stop
the current server and start a new version of the server. Or we
can use hardware and software redundancy to have more than
one unit serving the clients. We can then bring them down
for the upgrade one at the time, while other units provide the
required service to the clients. Or we can dynamically update
the software itself on-the-fly.

The drawback of the first method is that there is a short
period when the system is not responding. If that is acceptable,
we have the advantage that this method is the easiest to
implement and has the least amount of side-effects aside
from the small amount of downtime. The drawback of the
second method is that it requires extra resources to providethe
redundancy, but it provides the only solution with absolutely
no downtime if performed correctly. On top of the extra
resources, it is also possibly much more difficult to implement.
If the servers are stateless, then there is only small increase in
complexity. The drawback of the third method is that there is
still a small time frame when the server is not really providing
service. In some cases the system is able to maintain the
connections and sessions with the clients. On top of that in the
long run there is a decrease in the service because the updated
version suffers a small performance penalty from the updates.
And lastly it also increases the complexity of the software,
although parts of that can be hidden from the developer. On
the positive side it requires no extra resources and still allows
the continuous service even when the service is session based.

This paper will concentrate on the problems that are en-
countered with the component based approaches, but will also
show that the dynamic update can be used without components
by showing a method to create upgradeable programs using C-
like language. The chapter II introduces some of the problems
encountered with the update process. Some chosen solutions
to these problems are introduced in chapter III. The paper ends
with the conclusions and some remarks of what I think are the
areas where future work should be done.

II. D IFFICULTIES OF THE UPDATING PROCESS

Component based development is an area where the dy-
namic update should work nicely. The basic idea behind the
components is, that they are developed by different users
in different locations to provide different functionalities or
services. The users can create new services by combining
different components. As the components are independent
entities, it should be possible to just substitute a component
with a newer updated version of itself and continue working
as normal. Unfortunately the reality is not quite so pretty.

A major problem with any update process is that the system
that is updated cannot be used while it is updated. While the
application code itself is deterministic, the code does notreact
well if we change the code in the middle of the execution.
Similarly we cannot change the data structures while they
are used, as the results would be unpredictable. It is possible
to update code that is not in execution during the update.
Most methods that allow the system to be operational, while
being updated, require that there are update points where the
component (or the function or the data structure) is not in use.
We can update the component in those points. Whenever the
component is next used, it will be the new updated version.
The problem is how to find those update points.

Version control is another problem that has not been solved
adequately. Let us an example to show which kinds of prob-
lems we may have. Figure 1 shows a very simple use case.
I have created a componentMy Componentversion 1.2 that
uses two other componentsComponent Aversion 1.4 and
Component Bversion 2.2. They in turn use the services of
a fourth componentComponent Cversion 0.8. Then a next
version of theComponent Ais released, and for some reason
I want to use it. Let us say that it fixes a bug that has been
annoying me. Unfortunately the bug fix comes with a price;
parts of the interface has changed. Can I just install the new
version and continue or do I need to fix my component? If
there is no changes to the function calls/method invocations
thatMy Componentuses then I can indeed just install the new
component and carry on, but there is no way to know that



Fig. 1: Simple example of component usage

simply by checking the version numbers. Another problem
arises if the newComponent Arequires a newer version of
the Component Cand Component Bon the other hand does
not work with the newer version of theComponent C. There
should be a way to install both of these components at the
same time without them interfering with each other?

Most systems have adopted some kind of versioning scheme
that tries to solve parts of the first problem. The schemes work
by using multipart version numbers like A.B.C.D. When first
or second part (A or B) is changed, the API or the interface
is also changed. This implies that components implemented
against the older versions do not work anymore. Simple bug
fixes, that do not alter the interface, change only the third or
fourth part (C or D) of the version number. This works, but in
some cases it causes the implementer of the client components
to fix their components that do not need fixing. That is manual
work that would be better left to the software, except that no
software exists that could do it.

Redundancy introduces some problems too. Some times
there exists many different versions of the same component,
and we need to keep track of which is the newest version. That
happens especially in cases where components are developed
by different people in different places. Another problem isthat
when we start upgrading the redundant copies of the software,
we need to keep track of which copies have been upgraded
and which have not. And in some cases copies running old
copies cannot communicate with copies running newer copies,
which makes the situation even trickier. Once again it would
be nice to leave the dirty details to a software. There are
indeed attempts to solve the problem and I will introduce one
in chapter III-D.

III. SOME SOLUTIONS TO CHOSEN PROBLEMS

The chapter II presented some problems and now is time
to present solutions to the aforementioned problems. None of
these solutions solve all the problems and indeed there is still

lot to do before upgrading software is as easy and reliable as
it should be.

A. Keeping track of different versions

Stuckenholz’s [1] paper is a survey of the State of the Art
in version control. He goes through the methods that different
systems use to handle the problem using different versions
of the same component. The basic idea behind component
based approaches is that users can replace existing components
with new implementations of the same component. If the user
cannot change the component to a newer version, the user is
basically using old non-component based approach, where new
versions of the libraries require rewriting the application or at
least parts of it. We could expect that some of the component
based systems would have invented some way to deal with
the problem, it is after all at the very core of the component
based systems.

Unfortunately there is only two systems in wide use that
have solved even a small part of the problem, one is the
dynamic shared libraries in *nix like operating systems using
ELF-binaries and the other is .NET. Unfortunately the only
problem that these systems solve is the problem of keeping
more than one version present at the same time without
affecting existing applications that use older version.

Shared libraries solve the problem in the linking time. The
ELF-binaries are not complete as such. There is the application
code but for the shared libraries there are only the symbolic
names of the library calls that the binary requires. When the
binary is executed, the task is delegated to the linker1. The
linker loads the software into the memory and then it resolves
the required or used symbols from the binary and finds the
corresponding entries from the correct libraries. The linker
automatically uses the newest binary compatible version of
the library present and substitutes the symbolic references with
the correct addresses. The linker has to map the required part
of the library into the address space of the loaded binary. The
system works quite well and is the oldest working solution. So
far there is no system that could provide any better solution.

Microsoft uses similar method in their .NET environment
but with some differences as the .NET environment is object
oriented and maps more nicely to the component paradigm2.
In the .NET case the object are collected into packages which
are called assemblies. The solution works by adding meta data
to the .NET assemblies which is used to decide which other
assemblies need to be loaded. That alone is not enough as the
assembly can only tell against which assemblies it has been
developed. Therefore the new assemblies can replace the class
loader of the old assembly with a custom loader that loads the
newest version instead of the version specified in the assembly.

Java itself has also a limited support for the versioning by
allowing developers to add meta data to the classes themselves.
The meta data can then be used to decided which class to load.
However the decisions need to be done by the developers.

1This is not the same linker that is used in the compilation process
2Note that Windows XP cannot handle more than one version of any shared

library (called DLL).



The language only provides the means to deliver the data but
puts no meaning to the data itself and can therefore make no
decisions based on it.

B. Predicting upgrade compatibility

McCamant and Ernst [6] have developed ways of predicting
whether it is safe to upgrade a component. It is easy to ensure
that the components provide the same interface, but much
more difficult to ensure whether the components have the same
behavior or in other words whether the two components are
functionally equivalent. Their solution works by creatingan
operational abstraction of the components and comparing the
old and the new version. The solution tries to predict whether
the new version would behave correctly. The operational
abstraction was created using an open source tool Daikon[9].
The Daikon analyzes the code to find out all the preconditions
that must be fulfilled before the component is invoked. It also
analysis all the post conditions that hold after the component is
invoked. Once the operational abstractions has been developed,
the next step is figuring out whether the two are compatible.
They use reasoning to figure whether the new component has
the same or stronger operational abstraction than the current
version. If it has, then it is acceptable to install the upgrade,
if not, then it is flagged as unsafe operation.

The advantages of this method, is that is uses automated
tools for analysis and is thus less error prone than manual
inspection. It is also possible to use the method even without
source code, by using a testing framework for finding out
what the operational abstraction is. The testing frameworkis
actually built into Daikon, as it runs the software it analyzes
inside a debugger. It can then check the values of any vari-
able it deems important before the execution of any specific
function, during the execution and after the execution. Of
course this requires that the Daikon has a suitable test input
that it can feed to the application in study. A side effect of
that is that Daikon takes into account the context where the
component is used. It will only take into account those parts
of the component that are actually used by the application.
In other words, if the application uses only a subset of the
methods/functions of the component, then the system checks
that the used methods/functions behave in the same way in
both versions.

The drawbacks are that the system cannot always reach
a conclusion, in which case the user still needs some other
methods to validate the usability of the upgrade. Also when
the upgrade is actually fixing a bug, it is effectively changing
the behavior of the component thus changing the operational
abstraction, and the method flags even those as dangerous
upgrades. Fortunately the system specifies where the problem
is, so it is usually possible for the person responsible for the
upgrading process to find out that the upgrade is safe.

C. Automatic loading of the correct classes in Java

Barr and Eisenbach [2] have created a method for ensuring
that the application always uses the newest version of the Java
class even when the development is distributed and there are

many different developers in different locations. The ideais
that the custom class loader created the by the project retrieves
always the newest version of the class so that the developers
do not need to worry about whether they are using the newest
version or older versions.

Java uses byte code to ensure that the code can be run in
any computer. The machine independent byte code helps with
the distributed systems because all the computers need not be
similar. The Java Language Specification introduces a concept
of binary compatibility. Two classes that are binary compatible
can be used interchangeably. Basically two classes are binary
compatible if they have the same methods with the same
interface. It is possible to introduce new methods and new
fields and maintain backward compatibility. There are quite
few different requirements and restrictions that are introduced
in the Java Language Specification and the interested reader
should check the specification.

The work of Barr and Eisenbach allows one to replace
one class instance with another binary compatible version.
Unfortunately there are limits to the modifications we can do,
if we want to maintain binary compatibility. It is of course
better than nothing but hardly a satisfying solution. It seems
that Java requires new features if a more advanced replacement
algorithm is to be designed.

D. Automating the update in redundant cluster

Solarski and Meling [5] tackled the problem of automat-
ing the upgrade process in clusters. The purpose of having
redundant hardware is to ensure that there is no downtime,
but it also means that there is many nodes that need to be
upgraded. While it is possible to upgrade them manually it
soon becomes both burdensome and error prone. If the user
upgrades too many replicas at the same time, it is possible that
the clients find the cluster unavailable. It is also possibleto
forget to upgrade some node if the upgrade is not automatic.
In cases where the nodes use services of other nodes some
further problems are possible.

Their solution is to create an automated upgrade method.
They made some simplified assumptions. The upgrade process
of a single node is atomic, and while the node is upgrading,
it does not serve the clients. Also the newer version can serve
the clients that require older versions of the server. And there
must also be a way to transform the state of the old version to
the new version. Also other possible upgrades do not interfere
with the upgrade in progress. And lastly the interval between
upgrades is so long, that at every time there is at most two
separate versionsv and v+1 of the software running in the
cluster. Two versions exist only while the upgrade process is
running, once it has finished, there is just one version. This
means that it is not possible to upgrade a node from version
v to versionv+2.

The upgrade process starts by multicasting the upgrade
file to every node. The process uses reliable multicast to
ensure that every node receives a copy of the update. The
process is truly distributed, meaning that there is no centralized
node controlling the update, instead every node uses the



same algorithm. The algorithm assumes that the nodes can be
ordered in a canonical order by some criteria. The algorithm
divides the nodes into two groups, one group that is running
the old versionv and the other group made of nodes already
running the next versionv+1. The node checks whether it is
the first node in the group of not yet upgraded nodes. If it is,
the node knows that it can upgrade itself, which is does by
stopping itself and starting the new version. It then joins back
to the group and the new state of the server is transferred to
it.

Part of the upgrade implementation is GCS (Group Com-
munication System) that is responsible for reliable multicast.
It is also used to transfer the states of the old nodes to the
newly joined nodes. The creator of the upgrade has to create
a transformation function that can be used to transform the old
state to the new state system used in the upgraded version.

The algorithm eases the work of upgrading the cluster while
requiring only efficient cluster wide IPC and a method to
represent the state of the node. The cluster wide IPC is not a
problem as any effective cluster needs it in any case, so the
only problem is making sure that there is a way to represent
the state of nodes. The state is naturally application specific,
and if the application is stateless, then there is no need to have
a presentation for the state.

E. Dynamic update in C-like languages

It is possible to create application in C-like language that
can be updated while the application is running. Hicks and
colleagues have created two different approaches to solve this
problem. The first [7] was called pop corn and the second [8]
was called Ginseng. I will introduce the latter with little more
details as it shows how to create upgradable software. And in
any case they did use the lessons learned in the first system
when designing the next system.

Their design for the dynamic software updating (DSU) is
based on principle that the system should satisfy three criteria,
which are:

• DSU should not require extensive modifications to normal
software implementation. In other words, it should be
possible to concentrate on creating good software and let
the underlying framework ensure that the software will
be upgradable.

• DSU should allow all kinds of updates. In other words
it should be possible to change not only the body of
the functions, but also the signature of the functions i.e.
the parameters and return values. Finally it must also be
possible to change the data structures.

• The last requirement is that the updates themselves should
be easy to write and it should be easy to ensure that they
are correct.

First the developers create the application with no eye
towards the updating. When the application is finished, the
source code is compiled with a special compiler3. The end

3During the implementation and debug phases the software is of course
compiled with a standard compiler, the special compiler is used once the
application is ready to be deployed.

result is both the executable and prototype and versioning data.
The executable is delivered to a special runtime system, which
is in charge of both deploying and upgrading the software.

When a new version is finished, it is delivered to a patch
generator, which will receive the prototype and versioning
data produced in the first compilation along with the source
code. The result is a patch file that is compiled to create a
dynamic patch, which can be delivered to the runtime system.
The runtime system installs the patch to the running system
without stopping the system.

The compiler uses function indirection to make upgradeable
software. For every function the compiler generates a global
variable which is a function pointer to the correct function.
In the first version the pointer is pointed to the first version
of the function. When a new version is introduced the pointer
is redirected to the new version. Similarly all data structures
are wrapped inside an indirection. On top of that a transformer
function is defined that can be used to transform an old version
of the data type to a new type. It is used during the update
process to update the existing data structures to new versions
so that we can remove all of the old code. In most cases
the creation of the transformation functions is completely
automated. Only in some cases do the implementer need to
write some tricky parts manually.

Loops require some additional thought. The task is very
simple if we move all of the loop code inside a function. Then
we can simply change the function pointer to a new version
of the loop. One of the parameters to the loop function will
be a structure that has pointer to every variable that the loop
function uses. Because the loop function has different scope
than the loop, it is impossible to access any variable that has
local scope in the loop from the loop function.

It is not enough to just create the patch or the application,
it is also important to find out the points where the updating
is safe to do. Here we have the same problem as in other
cases before, it is not safe to modify the code when it is
running. Fortunately, it is often possible to find safe upgrading
points. For example many server applications use an infinite
loop where the server waits for something and then reacts to
it. Then the loop ends and the server starts the next iteration of
the loop. The end of the loop is a natural point for upgrading.
The programmer needs to tell about those upgrading points by
making a call to a specific DSUupdate-function, which will
do the upgrading if needed.

There are some difficult situations which require manual
handling. One of them is the void-pointers. Often the function
expects a void-pointer as a parameter which it then casts into
the correct type. If the compiler cannot solve some cases
properly, it creates an error message and leaves the problem
to the programmer.

The method is not quite fool proof as it cannot solve all the
problems but requires some manual help from the programmer.
But in general most of the code can be generated automati-
cally. The upgrade process itself is very fast and the initial
overhead for the application is minimal. Unfortunately the
overhead escalates bigger when more upgrades are installed.



The papers did not elaborate on which would be the most
likely reasons for it. My personal idea is that the most likely
reason is poorer memory management, as the unused code
is never released, and it can affect the overall performance
quite substantially in the long run. There is nothing that would
prevent the system from releasing the unused memory, but in
modern operating systems the situation is not quite so simple.
The memory management is based on paging4 and therefore
the process can only acquire and release a whole page at
a time. If even one byte of the page is used by some old
function that is still used, then the whole page has to be kept
in memory. A solution could be to implement cleaning patches,
that collect all the used functions into a single block of code.
That would make it possible to release the old blocks. In real
life everything is not quite so simple, but that should at least
improve the performance quite drastically in the long run.

F. Updating the operating system

Operating systems have bugs like any other software and
therefore need to be updated. But unlike the applications itis
not possible to load a new version of the software into the
memory and then just transfer the control from one version to
the next version. The operating system is by its nature an event
driven software. It waits for events to happen and then reacts to
them. This itself is not a problem, because many server process
works similarly, but there is always many concurrent execution
threads5 active. And as there may not be any bookkeeping
data available we cannot know how many of these threads are
active. In general it is not possible to reach a quiescent state
inside the kernel without actually stopping the kernel. Andthis
is true even to any component the kernel might be made of.

Let us study what would happen if we were to upgrade an
operating system kernel. Let us start by upgrading the code.So
we replace the existing code with the new version and transfer
the control to the new kernel. What do we do with a kernel
thread of the old version that has issued a disk transfer and is
waiting for it to finish? Clearly it is active though blocked.We
cannot terminate it, because we do not know what changes it
has made to the data structures. If it is not allowed to finish the
execution, we have a real risk of corrupting the data structures
of the kernel. We cannot just replace the body of that function
with the new function as then the system would execute the
first half of the old function and the second half of the new
function. We could solve the problem by letting the old code
exist as long as there are threads running the old version, but
all new instances would use the new version. But what do we
do if the new version changed some kernel data structure like.
Now we have two threads that must share the data structure
but they both use different kinds of structure! There is no easy
way out.

I came up with two different ways of doing this. Chen [3]
and the team came up with a novel idea of using virtualization
and Baumann [4] and colleagues developed an experimental

4The implementations were done in the Linux systems.
5These are really not threads but more like execution traces inside the OS.

I use the the term thread because I have no better word.

operating system K42 using object oriented methods. They
created a way to do a hot swap on the objects which in practice
allows the dynamic update of the operating system.

The use of virtualization solves many of the upgrading
problems quite elegantly, as the operating system is not really
in control of the system anymore. Instead the virtualization
system controls the software and it is therefore possible to
temporarily stop an instance of the operating system, while
it is upgraded. The upgrade selects a single function to be
upgraded at a time, and upgrades it. Because the virtualization
layer controls also the memory, it is able to control the use of
the kernel data structure. If the data structures are modified
in the upgrade process, the virtualization layer puts write
protection on to the memory used by any data structures. Then
it transform the data from the old structure and copies it to
the new structure. The result is two different copies of the
same data, one used by the old versions and the other used by
the new versions. Whenever there is a change in the data, the
virtualization reacts to it, because the write triggers a write
protection exception. It can then do the correct adjustmentto
the other data structure. The end result is that both old and
new versions can run concurrently and share the same data
though their representation is a bit different. In time the old
versions will be finished and can be removed from the system.

K42 on the other hand treats operating systems as made of
components or more accurately objects. To help the task of
upgrading the OS, they used the factory pattern for creating
new instances of the objects. The factory pattern is one of the
well known programming patterns used in the object oriented
programming. When it is used, the user does not create new
instances of the objects. Instead a factory is created, which
has a method for creating new instances of the class. It helps
in many ways, first there is only one instance of the factory
so it is much easier to find and upgrade the only instance
of the factory. After the factory is upgraded, new instances
of the new versions can be created on the fly. The factory is
required to keep track of the object instances that it created.
The old version of the factory transfers the old versions of
the objects to the new factory, which can then upgrade every
existing instance, thus finishing the upgrade process.

There are three kinds of modifications that can be done,
changes that only modify the body of a method, changes that
modify the signature of the method or interface by introducing
new methods, parameters or changing the return type of the
method. The third modifies also the data structures. These are
the most difficult changes as every instance of the data need
to found and updated on the fly.

Even the existing instances cannot be upgraded if they
are in use. Therefore the factory upgrades the instance only
when the instance is in quiescent state i.e. not actively in
use. The mechanism for figuring out when the instance is in
quiescent state is similar to Read-Copy-Update (RCU) used
in the normal Linux kernel. Because it is possible that all the
instances cannot be upgraded immediately it is imperative that
there is a method for allowing the old instances to be used even
through the new factory. Part of the factory implementationis



Read-Copy-Update
RCU is a lock free synchronization method. Indirection is required
for it to work. Any one is allowed to read the structure any time
they want. Anyone wanting to write into it, has to first createa
copy of the structure. The writer uses the copy for updates and
when it is finished, it changes the pointer to point to the modified
version. Whoever wants to read the structure after that seesthe new
versions and anyone who acquired the pointer before the pointer
changed sees the old version. The old versions need to be removed
some time, for this reason it is forbidden for the any thread using
the data structure to block. When every CPU has been scheduled at
least once there can be no thread using the old version and theold
version can be removed.

a mapping function that is used if the object is still running
the old version. It transforms the parameters of the new
invocation to the parameters that would have been used in
the old invocation. As a result the clients can use the new
invocations and the factory makes sure that old versions see
correct parameters without any effort from the clients part.

IV. CONCLUSIONS AND FUTURE WORK

There are different ways to solve the problem of dynamic
update of an application. Unfortunately some of the most basic
problems have still not been solved. For example different
versioning schemes provide absolutely no real information
about the actual services or interfaces that the components
or modules provide. A more fine grained approach would be
valuable. Only few systems can even handle the simultaneous
existence of different versions of the same component. There
is no good solution that would ensure that the behavior of the
new version is the same as the old version, unless the code
has been formally specified (which it usually is not).

The situation is easier if we have redundancy to help in the
process. Then we can simply bring a node down and upgrade
it. Then bring the node back up. However this process is error
prone and would benefit from automation. There is some work
in this area but the solutions are not quite finished yet.

One solution is to create methods for creating upgradeable
applications in the C language. That solution is an interesting
even though it may not be exactly required. If we simply
cannot tolerate downtime, then we must have redundancy, and
if we can tolerate small amounts of downtime, we can use
simpler approaches. In any case the current methods require
still some manual intervention from the programmer.

REFERENCES

[1] A. Stuckenholz,Component Evolution and Versioning State of the Art,
ACM SIGSOFT Software Engineering Notes, Vol. 30 issue 1, Jan. 2005

[2] Miles Barr and Susan Eisenbach,Safe Upgrading without Restarting,
Proc. of the ICSM’03, pg.129-137, Sep. 2003

[3] Haibo Chen et. al,Live Updating Operating Systems using Virtualization,
proc. Virtual Execution Environments, VEE’06, pg. 35-44, Jun. 2006

[4] Baumann et. al,Providing Dynamic Update in an Operating System, Proc.
of the USENIX ’05, pg. 279-291, Apr. 05

[5] Marcin Solarski and Hein Meling,Towards Upgrading Actively Repli-
cated Servers on-the-fly, Proc. of COMPSAC’02, pg. 1038-1043, Aug.
2002

[6] Stephen McCamant and Michael D. Ernst,Predicting Problems Caused
by Component Upgrades, Proc. FSE’03, pg. 287-296, Sep. 2003

[7] Michael Hicks, Jonathan T. Moore and Scott Nettles,Dynamic Software
Updating, Proc. of PLDI 2001, Vol. 27 issue 6,Jun. 2001

[8] Iulian Neamtiu et. al,Practical Dynamic Software Updating for C, Proc.
PLDI 2006, pg. 72-83, Jun. 2006

[9] Michael D. Ernst et. al,The Daikon system for dynamic detection of likely
invariants, submitted to Science of Computer Programming in June 2006.


