
12345679-0000 1

Abstract— Genetic algorithms and swarm intelligence are

artificial intelligence techniques that are inspired by the way

living things evolve and co- operate. Genetic algorithms aim to

solve problems by breeding better solutions from a parent set of

candidate solutions. Swarm intelligence aims to emerge

intelligence from a swarm of simple agents. There are some

experimental frameworks for self- evolving network services

that utilize the ideas of biologically inspired artificial

intelligence methods. In these frameworks services are provided

by autonomous agents that can adapt, evolve and collaborate

with other agents

Index Terms— network services, genetic algorithms, swarm

intelligence, self-healing

I. INTRODUCTION

Computing services have become more and more

distributed and decentralized during the last couple of

decades. Most of the everyday services used by ordinary

consumers are available in the Internet. For example,

nowadays there are very few people that do not reserve airline

tickets or buy books online.

Often the network of clients and servers that is visible to

the user is only a façade. The most successful web stores, such

as Amazon and Dell, do not have things like traditional

inventories at all. Their key to success has been in

implementing a virtual supply chain that is in essence a

globally distributed information system for handling orders

and deliveries.

The increased importance and usage of networked services

has posed several new challenges. In the old mainframe

systems, the amount of simultaneous users and their usage

patterns were steady and known in advance. Internet has

changed most of this. Nowadays users can quickly move from

using one service to another and usage patterns can change

rapidly as fads come and go. For example, a few years ago

Internet poker was just invented and only few players played

online. Today the amount of online poker players is measured

in hundreds of thousands, in Finland only.

It is also important to remember that even though software

development today is easier than in 1960’s, the software

deployed on network servers has become increasingly

complex. Most of development is done on some kind of

framework, such as J2EE. When most of the low level

operations are hidden behind the framework, it is very easy to

dramatically change the way the application consumes

resources. Opening a network socket or storing an object in a

cache can be very resource intensive, but in most of the

modern frameworks these happen automatically.

In this article I discuss how networked services can be

modeled as biological entities that learn, evolve and adapt to

their environment. In the second chapter I discuss genetic

algorithms and swarm intelligence, biologically inspired

Self Evolving Services

Eero Kaukonen

12345679-0000 2

problem-solving methods. In the second chapter I present an

experimental framework for evolving network services. In the

fourth chapter I discuss some open issues and directions for

future research.

II. BIOLOGICALLY INSPIRED PROBLEM SOLVING

A. Genetic Algorithms

Genetic algorithms [3] are a family of methods inspired by

biology. Generally they work by breeding better solutions to a

problem from a pool of inferior candidate solutions. They

have been successfully applied to various optimization and

constraint satisfaction problems. One classic example of a

classic constraint satisfaction problem that can be solved is

the knapsack problem, where various objects of different sizes

must be packed into the knapsack while wasting as much

space as possible. In real life the knapsack could be a sea

container and the objects could be different cargo items that

are packed into the container.

The standard operators used in genetic algorithms resemble

the natural behavior of genes in living things. Most important

part of a genetic algorithm is the fitness function. It gives

each member of the population a fitness value that measures

the ‘goodness’ of the individual solution. Only the fittest

candidates are allowed to reproduce. A genetic algorithm thus

aims to maximize the fitness of the solution.

Producing a new set of potential solutions from the fittest

candidates from the previous round can be done by

recombining the genes of two parent solutions into a new

child solution. In this process random mutations may happen.

A generic genetic algorithm can be presented in pseudo-code

as follows:

One good example of a problem that can be solved by

genetic algorithms is the classic traveling salesman problem

(TSP), where a salesman has to visit n cities while

minimizing the distance traveled. The routes the salesman

can choose are limited by the availability of roads between the

cities.

In a genetic algorithm for TSP, the genes are different

routes and fitness function is the distance traveled.

Connecting sequences from old genes can create new sets of

genes. For example, one parent route could be (A, B, C, D, E,

F) and another parent route could be (C, A, B, D, F, E).

These two could be recombined two produce a new child

route (A, B, C, D, F, E). If (A, B, C, D) is shorter than (C, A,

B, D) and (F, E) is shorter than (E, F), the child route is

better than either of the parent routes.

It is easy to see that if the new generation is created from

the shortest routes of the old generation, the average length of

the routes should converge towards the optimal solution.

However, it should be noted that genetic algorithms are not

guaranteed to yield optimal results. Usually the fitness

function and the algorithm itself have several parameters that

have to be fine tuned to get good enough results. As in real

life evolution, accidence plays a big part in genetic

algorithms. It is not always the fittest that survive.

geneticAlgorithm
{
 t = 0;
create initial population P(t);
evaluate P(t);
until (done)
{
t = t + 1;
select fittest from P(t-1) to
P(t);
recombine P(t);
mutate P(t);
evaluate P(t);

 }
}

12345679-0000 3

B. Swarm intelligence

Swarm intelligence is one of the latest and hottest research

topics in artificial intelligence [4]. It is a well-known fact,

that individual insects such as bees and ants are not very

smart. However, together they manage to solve complex

problems such as building a nest or finding the shortest route

to food.

A classic example of swarm intelligence is the way some

ant species find the shortest route to food sources. Individual

ants start their search for food in a pretty random fashion and

their ability to figure out the shortest route is naturally quite

limited. However, they leave traces incense that other ants

can smell behind them when they travel towards the food

source. Even though the ants do not know the concept of a

map, they can follow the traces left by other ants. As the ants

generally tend to follow the strongest smell and as the sell of

the traces gets weaker as time passes by, eventually the route

they select will be closer and closer to the optimal route.

The general idea of the ant algorithm for route finding is

called ant colony optimization [4]. It has been successfully

applied to practical problems such as packet routing in a

network that does not have a static structure. There have also

been some promising experiments with swarms of simple

robots. For example, spider-like robots walk and climb much

better if each leg is controlled by a simple, autonomous agent

than if all the legs are controlled in a centralized manner.

C. Organic Network Services Today

It is easy to find examples of swarm like behavior in real

life network services. Grid computing is an obvious example,

but also services that are deployed on the same physical

machine are often modeled as independent logical servers

that collaborate to get the assigned tasks done. For example,

J2EE servers are usually divided to different layers, such as

static web, dynamic web, application and database layers.

These layers usually consist of multiple logical or physical

servers to achieve better fault tolerance and easier

optimization.

Most attempts to evolve executable code with genetic

algorithms have not yielded useful results. However, on an

average application server there are plenty of configuration

parameters that can have an enormous effect on performance,

for example:

- The JVM memory management configuration. If

garbage collection and heap sizes are incorrectly

configured, very large amounts of processor time

might be wasted.

- Execution threads. If there is not enough of them,

processor time and memory might go to waste but if

there is too many of them, high load may crash the

server.

- Connections to database and other external resources.

If there is not enough connections external computing

resources available, execution threads might spend

long times waiting for them.

Usually these parameters have to be hand tuned. As

predicting and simulating actual user behavior can be tricky,

tuning usually happens by trial and error. If services have

tens of thousands concurrent users, errors can become very

costly.

It is clear that there are things in modern network services

that resemble swarms or genes. The biggest problem is that

the intelligence of the swarms is hard coded in the network

topology and system administrators drive the evolution of the

genes by manually tuning them.

12345679-0000 4

III. A FRAMEWORK FOR EVOLVING NETWORK SERVICES

A. Architecture

An experimental framework for self- evolving services built

by Nakano and Suda [1] can be divided into three different

components [Picture 1].

- Platform provides resources required for performing

services, such as memory, CPU time and network

bandwidth. These resources are collectively known

as energy.

- Agents are the entities performing the tasks. They

have to pay in energy for the computing resources

they use. The energy- usage of agents is tracked and

those that consume all of their energy are eliminated

by the platform.

- Users issue tasks for agents. They have to pay in

energy for the services provided by the agents.

The individual agents do not have complete information

about the whole system. They are only aware of local

conditions, such as:

- Request rate: the amount of service requests in a

time period

- Request rate change: how much the request rate

changes

- Population: how many agents there are on the

platform the agent is located

- Resource cost: how much different resources cost in

terms of energy

- Behavior cost: how much different behaviors, such

as reproduction, cost in terms of energy.

The framework is a sandbox where the agents can provide

services, collaborate with each other and evolve. Nakano and

Suda [1] did not implement the

B. Simulated Evolution

The agent’s primary task is providing users with the

service they require. During their lifecycle they can perform

other tasks too, such as reproduction or migration to a new

platform [1]. They can also delegate the service request to

another agent, if they have enough energy. Agents that are

using energy in an inefficient way will eventually run out of it

and be eliminated by the platform. Natural selection is also

applied in the reproduction operation. The most energy

effective agents tend to have more offspring, as they are more

highly valued in the partner selection.

The behavior invocation mechanism is similar to the

method used in artificial neural networks. In neural networks,

a synopsis will send a signal forward, if the sum of incoming

signals is greater than a certain threshold value. In this

framework, the incoming signals are the observations (request

rate etc.) weighted by a set of values wi [Figure 2].

The weights wi are the genes of the agent. In essence, they

Agent User

Platform

pay energy

pay energy
provide resources

provide services

Figure 1: Framework for adaptive services

12345679-0000 5

determine how energy-efficient an agent can be under the

prevailing conditions. In reproduction, the genes of two

agents are combined and a new agent is created from these

genes. The new agent will continue to perform the same task

its parents performed, and its behavior will share some

features with both of its parents. It is easy to see how natural

selection should eliminate inefficient behavior patterns. The

agents should also be able to adapt to new conditions by

reproducing offspring with slightly different behavioral

patterns.

C. Results

Nakano and Suda [1] evaluated their framework by

running a simulation in a grid consisting of 64 virtual nodes,

each one of them representing a virtual platform. Users could

issue tasks to any of the platforms that had living agents.

Their experiments also included special scenarios, such as

failing platforms, platforms with different resource costs and

varying workload. They found that evolving agents had better

performance than the control group of non-evolving agents.

- On platforms with varying resource costs, agents

placed on expensive platforms starved. Evolving

agents were able to migrate out of the expensive

platforms to cheaper ones.

- Evolutionary agents responded better to increasing

workload. On non-evolving platforms the response

time increased when the load increased, whereas on

evolving platforms the agents reproduced more

rapidly and were able to respond to increasing load.

- In case of platform failures, agents that did not have

any evolutionary mechanisms quickly became

extinct. Evolutionary agents were able to reproduce

and eventually migrate back to the failed platform

when it became available again.

IV. FUTURE DIRECTIONS

A. Mobile Web Services

Web services are a WWW based implementation of

service-oriented architecture. In addition to the two parties

of traditional client-server architecture, service oriented

architecture has a third party called service registry. Clients

use the service registry to look up service providers (servers).

The service provider decouples the client from the server,

making the operation of switching to another service provider

easier. This is essential for adaptive systems. If the service

provider and the client are tightly coupled to each other, it is

not possible to switch to another service provider in case of

network failures or other unexpected incidents.

Web services enable the composition of complex tasks from

simpler, atomic services [5]. For example, holiday trip

planning web service could be composed of flight booking,

hotel booking and car rental services.

Thres

hold

i n p u t v a l u e s

output action

Figure 2: Behavior execution mechanism

12345679-0000 6

Orchestration of web services refers to decentralized

execution of a composite task. In web service orchestration,

there is no single process that executes the workflow.

Individual services should be able to coordinate their

execution themselves. If a mobile client had to coordinate the

execution of a complex workflow of remote services,

bandwidth and connectivity issues could be quite serious [5].

Sheng et. al. [5] are proposing a framework for enabling

adaptive composition of web services, especially for mobile

devices. They aim to solve the following issues:

- Need for personalized composition. As opposed to

traditional services, mobile users are more sensitive

to time and space constraints. For example, mobile

pizza ordering service should be able to send orders

to the nearest restaurant, even though the service

user did not know which one it is.

- Limited resources and wide variety of different

handsets. The computing resources on a handset are

very limited compared to traditional client

computers. Different devices also have different

abilities to show graphics or animations and play

sounds. This makes service customization even more

important.

- Robustness. There are many situations in a mobile

environment where the execution of a service could

be interrupted. Also different quality attributes, such

as response time, can vary dramatically. Adaptation

is more important for mobile networks than it is for

traditional services.

In the mobile framework designed by Sheng et. al. the key

idea is to separate the process skeleton from the individual

services. The process template is modeled as state transition

diagram. As in ant colony optimization the responsibility for

executing the process is distributed across the different agents

and services.

B. Task awareness

The framework proposed Nakano and Suda was relatively

simple. In real life problems there are many different services

and different users with different needs. Optimizing only one

quality attribute of the service, such as response time, is often

not enough. For example, if user is downloading a movie she

is going watch later, the response time is not that important

and the user may prefer a better quality format that takes a bit

longer to download. However, if the movie is in a streaming

format and the user wants to watch it immediately, it might

be preferable to decrease the quality of the stream to increase

the response time of the service. In many real life services

there are several, conflicting quality attributes.

Aura framework [2] was developed to address the issue of

varying user preferences. Its goal is to make services aware f

the task they are performing, so that they know which quality

attributes are more important than the others. The Aura

framework consists of three different layers.

Environment is the lowest layer of the framework. It

provides the basic resources for executing tasks. The

resources are traditional network services that can be

configured by the upper layers. It also monitors the quality of

service values.

Environment management layer is responsible for

configuring the environment layer. It monitors user needs and

environment resources and maps the tasks issued by users to

the services provided by the platform. It is also responsible for

finding new service providers if the old ones disappear.

Task management layer is responsible for monitoring user

behavior. It decomposes complex tasks so that they can be

executed by the lower level services. It is also responsible for

tracking the user context and storing partially executed tasks

if their execution is interrupted.

12345679-0000 7

The key context of Aura framework is the utility function.

It maps the user's context and preferences to a utility value

that tells what is best for a certain user in a certain situation.

The framework aims to maximize the utility function for

different users in different situations.

Garlan et. al. [2] present mobile translation as an example

of an service that would benefit from self adaptation. The

mobile translation service consists of three separate services.

Speech recognition service translates speech to text,

translation service translates text in one language into text in

other language and speech-synthesizing service reads the

produced text in correct language.

Initially the whole translation process might run in the

users' mobile phone. As the mobile phones computing

resources are limited, but the cost of transmitting text data is

very low, the translation service might be set up to run on a

remote server. But if the remote server becomes unavailable

or the connection gets severely weaker, there is a risk that the

quality of the service drops into an unacceptable level. Now

the environment management layer might make the decision

to perform the translation on users handheld or switch to an

alternative server, if there is one available.

V. CONCLUSIONS

In this article I discussed the idea of biologically inspired

problem solving, especially swarm intelligence and genetic

algorithms. As they model the aspects that make living things

intelligent, evolving and adaptive, it seems natural that they

could help us to build more robust, survivable and adaptable

network services.

There are some experimental frameworks that utilize the

biologically inspired AI methods. The results show that some

evolution is better than no evolution, but the experimental

frameworks are far away from practical, real life applications.

They resemble the toy problems and solutions that made the

early AI methods so popular in the late 70s and early 80s.

As discussed in chapter IV, real life self- adaptation is

much more complex than sandbox simulations. There are real

practical issues in communicating users' quality requirements

to the computer or taking various changing environmental

attributes into account.

A self-adaptive system that would have any practical value

must consist of multiple layers. The composition of complex

workflows and their execution must be clearly separated from

each other in order to achieve loose coupling between service

providers and clients.

A language for expressing and evaluating user

requirements must be formally defined so that users and

intelligent agents can communicate with each other. The

service descriptions must have some machine-readable

meaning so that autonomous agent can decide which services

can be used to satisfy user requirements. This issue has been

discussed in the context of semantic web, and it is definately

not trivial.

As presented in this article, it is possible to simulate

evolution and swarm intelligence, as well as execute complex

workflows in a distributed manner. The real practical

challenge is putting these two things together to provide a

self-adaptive service that could be used to solve real- life

problems.

REFERENCES

[1] T. Nakano and T. Suda: “Adaptive and Evolvable Network Services”,

GECCO-2004,

[2] D. Garlan, V. Poladian, B. Schmeri, J. Sousa: “Task-based Self-adaption”

WOSS, pp. 54-57, ACM, 2004.

[3] K. de Jong: “Learning with Genetic Algorithms: An Overview”, Machine

Learning, Vol. 3, p. 121, 1988.

[4] P. Tarasewich and P. McMullen: “Swarm Intelligence: Power in

Numbers”, Commun. ACM, 45(8), pp. 62-67, 2002.

[5] Q. Sheng, B. Benetallah, Z. Maamar, M. Dumas, A. Ngu: ”Enabling

Personaized Composition and Adaptive Provisioning of Web Services”

12345679-0000 8

	I. INTRODUCTION
	II. Biologically inspired problem solving
	A. Genetic Algorithms
	B. Swarm intelligence
	C. Organic Network Services Today

	III. A Framework for Evolving network services
	A. Architecture
	B. Simulated Evolution
	C. Results

	IV. Future Directions
	A. Mobile Web Services
	B. Task awareness

	V. Conclusions

