
1

Biology-inspired
self-healing system design

Teemu Kemppainen
University of Helsinki

Department of Computer Science
Seminar on self-healing information systems, spring 2007

Email: teemu.kemppainen@helsinki.fi

Abstract—When engineering self-healing systems, inspiration
can be sought from nature. Biological organisms present proven
self-healing models that have been developed during millions of
years of evolution. In this paper common self-healing properties
found in nature are described. A programming paradigm inspired
by properties of the biological cell is discussed, and a software
architecture for distributed systems based on the model of a
biological ecosystem is presented.

I. I NTRODUCTION

Consider a small scratch or a wound on your fingertip:
without any conscious activity from your part, the cells of
your body are able to heal in a very efficient and clever way.
In response to the wound the deeper skin layer will produce
more connectivity tissue, and after a few days or a week, the
outer cell layer will be healed [1]. The healing process is fully
automatic.

Nature also provides much more radical self-healing pat-
terns. For instance a newt is able to regenerate an entire tail
or leg by converting redundant cells into stem cells that replace
the damaged body part [2].

The development of multi-cellular organisms from one
single egg cell is called morphogenesis. Here, for instance
sea urchins show remarkable self-healing behaviour. The sea
urchin will survive and develop through morphogenesis even
if the other cell dies after the initial division of the egg cell
[1].

Self-healing behaviour can also be found on the level of
biological societies. There are workers, warriors, dronesand
one queen in an ant colony. If the colony is attacked, and most
of the warrior ants are killed, some workers compensate for
the loss by taking over the role of a warrior [1].

Clearly, nature has developed during millions of years of
evolution extremely efficient and proven methods for self-
healing. When designing self-healing information systems,
inspiration and design guidelines can be sought from these
natural phenomena that even our own everyday existence
depend on.

In this paper we will first present in section II a gener-
alization of some self-healing properties found by observing
nature. One recent programming paradigm called the cell
based programming paradigm is presented in section III with
a sample algorithm of a self-healing sphere programmed using
the paradigm in subsection III-B. A programming platform for

distributed services with a biological ecosystem as a model, is
discussed in section IV. The paper is summarized in section
V.

II. SELF-HEALING PROPERTIES IN NATURE

In biological organisms many properties that contribute to
self-healing can be found. By observing how nature achieves
this desired self-healing behaviour and extracting general de-
sign patterns from these observations, and then implementing
these patterns in computer systems, we will achieve self-
healing behaviour according to Fig. 1.

Many observations and generalizations of self-healing prop-
erties found in nature and implemented into self-healing sys-
tems have been described in recent research papers ( [1]–[5]).
The self-healing properties that the cell based programming
model, described in the next chapter, uses, can be summarized
as [1], [2]:

• Environmental awareness: Cells in an organism are envi-
ronmentally aware. The actions of the cells vary depend-
ing on their environmental surroundings. If the chemical
concentration in the nearby environment changes, the cell
may start behaving differently in reaction to the change.
This property also enables inter-cell communication, as
cells can affect the chemical concentration in their shared
environment.

• Adaptation: Cells are adaptive meaning that they can
transform into another role when needed. Different pro-
grams are encoded into the genome of every cell enabling
the cell to perform different functions by executing an
alternative program when required. For instance, cells
around a wound automatically adapt to a new function
in order to compensate for the wounded parts.

• Redundancy: There are multiple cells performing the
same function in the organism. This way failure of
individual cells doesn’t immediately threaten the survival
or development process of the organism. Most organisms
utilize redundancy. Some organisms even have redundant
organs, which are used when the first one fails.

• Decentralization: A very important aspect enabling self-
healing behaviour is decentralization. No central coordi-
nator is needed to command the cells into self-healing
actions. All necessary functionality is built-in into the
DNA found in every individual cell. Cells communicate



2

with nearby cells using a shared environment, and this
way they can to some extent affect each other and
direct each other’s behaviour, but no large scale central
coordination is present.

Fig. 1. Extracting general design patterns by observing nature, and achieving
self-healing behaviour by implementing these patterns in information systems.

III. T HE CELL AS A PROGRAMMING PARADIGM

When designing self-healing systems, one approach is to
look at the function of the cell and design a computer system
thereafter. This approach has been investigated by George et
al [1], [2]. We will here present their cell-based programming
paradigm using a spherical structure as an example, and then
explore a distributed file service programmed using the same
set of ideas.

A. Modelling the function of a cell

The computerized modelling of a cell is an ongoing research
topic with its roots in the works of John von Neumann [6].
The basic self-healing behaviour of a cell is a more recent
area of research. Simple self-healing structures of cells can be
modelled on a computer as George et al. have shown [1]. In
order to achieve this, we first need to decide which properties
are needed for the cell.

In essence, the cell in George’s model needs to provide
three functions in order to be utilizable in self-healing systems.
Firstly, a cell needs to be able to replicate bydivision, where
one cell transforms into two. This way damaged or died cells
can be replaced, and complex structures can be autonomously
built starting with just one stem cell.

Secondly, cells need to be able tocommunicate with
their surroundings. They need to be able to sense chemical
substances around them, and also be able to emit chemicals to
their environment. A function where a cell spreads a chemical
omnidirectionally out to its surroundings is calleddiffusion.
The spreading of a chemical in a particular direction is called
emission.

Thirdly, cells need to be able to take certainactions based
upon the chemicals they sense – or do not sense – around them.
For instance, if a neighbouring cell dies, it ceases to diffuse

chemicals. This way nearby cells notice its death and can take
necessary action, like replicate to fill the functionality of the
dead cell. These actions are triggered by the DNA encoded
program that every cell carry. A certain chemical balance
triggers a certain gene and makes the cell act purposefully.

Using these basic functions, it is possible to build struc-
tures with self-healing functionality. Multiple unreliable cells,
running an identical program, can organize and collaborate
without a central coordinator.

B. The sphere program

Fig. 2 presents a program that builds a self-healing sphere
based on the three basic properties described earlier. The
sphere, depicted in Fig. 3, will regenerate no matter how many
body cells are killed as long as the center cell stays alive
[1]. The structure is of course simple and might not have too
many real-world applications, but still quite well illustrates the
concept of biological programming.

We will now describe the program in Fig. 2. To begin with
notice that the program contains code forcenter and body
cells. We will first describe the code for the center cell. In the
sphere structure, there is one center cell and many body cells.
The cells communicate by emitting and diffusing chemicals
called alive and radius. The alive chemical indicates that a
cell is living and theradius chemical controls the size of the
sphere.

The sphere starts with only one center cell. This cell
will emit one unit of thealive chemical in all directions –
(emits (alive, 1)) – and diffuse theradius chemical
(diffuses (radius, 10)) so that the chemical can be
sensed as far as 10 units away. The line

(transitions (alive from dir < 1) ->
(center, body) in dir;

controls the replication of the center cell. The replication
is modelled as a transition. If the center cell senses less than
1 unit of thealive chemical from any directiondir – alive
from dir < 1 – it will transform into two cells, one center
and one body. The new cells will be placed in directiondir,
i.e. in the direction from where the emission of alive was less
than one. These divisions will be taking place for as long as
there is any direction from which the concentration of thealive
chemical is less than one.

The bodycell is even simpler. It will emit one unit of the
alive chemical in all directions – (emits (alive, 1)).
Its transformation condition – ((alive from dir < 1)
& (radius > 1)) – means: if the cell senses less than one
unit of the alive chemical from directiondir and more than
one unit of theradius chemical, it will transform into two
daughter cells, both of type body, in directiondir. Remember,
the center cell diffuses theradiuschemical in such a way that
it can be sensed within 10 units distance. Thus an autonomous,
self-healing sphere with radius 10 will be built, accordingto
Fig. 3. The structure will rebuild no matter how many body
cells are killed. There is no single coordinator.

Notice, however, that in this simple program used mainly
to illustrate the cell based programming principle, there is a



3

Fig. 2. The code for a cell producing a self-healing sphere [1].

Fig. 3. The growth of the self-healing sphere [1].

single point of failure: the structure won’t survive the death
of the centercell. This can be avoided with a more complex
program with one more state and three more transitional rules
[1].

C. Case study: a file service

Conceptually, the equivalent of a “cell” in a computer
system is a “process”, or a “node” in a distributed system.
The ”diffusion” and ”emission” of chemicals corresponds to
message passing between nodes. Using these generalizations
and the basic ideas from the sphere program, where each
cell carry an identical program with certain environmental
conditions (messages) activating particular purposeful features,
even more useful applications can be built. As a case, let’s
consider a simple distributed wireless peer-to-peer file service,
DWFS [1].

In DWFS, each node carry the same program. The DWFS
system supports requesting and publishing files. New nodes
can join and existing nodes can leave at any time. The system
survives death of nodes and broken connections. There is no
coordinator and the system, designed for wireless connections,
functions on the application layer.

File request is depicted in Fig. 4 (a). The node requesting
a file ”diffuses” a requestchemical with the file identifier to
nodes nearby, and a node containing the requested file will
send it. A node that does not carry the requested file simply
ignores the request.

File publication is depicted in Fig. 4 (b). Here, two chemi-
cals are used: theinhibit andreplicatechemical. When a file is
published, these chemicals are piggybacked with the file. The
replicatechemical is spread wider than theinhibit chemical, as
shown in Fig. 4 (b). A node receiving thereplicatechemical,
but not theinhibit chemical, will replicate the file further by
sending it to neighbouring nodes piggybacked with the two
chemicals exactly like the original publisher did. In this way,
the files are quickly spread across the network to multiple
nodes.

Fault tolerance is achieved as follows. Nodes periodically
broadcast the files they hold along with the two chemicals,
as was the case with file publication. Nodes receiving the
replicate but not theinhibit chemical will replicate the file.
Death of nodes is noticed by the lack of these transmissions.
A node that previously was in the area of a dead node’s
inhibit chemical, will now receive thereplicatechemical from



4

Fig. 4. (a) File request and (b) File publication in DWFS [1].

another node, and will subsequently start replicating the file,
consequently replacing the dead node.

Properties from biological organisms have thus been imple-
mented in DWFS to achieve a fault-tolerant and distributed
file sharing service.

IV. A N ECOSYSTEM AS AN ARCHITECTURAL STYLE

In this section, we will discuss a biologically inspired
networking application architecture that achieves self-healing
behaviour by modelling an ecosystem. In order to make the
SymbioticSphere [5] architecture, depicted in Fig. 5 under-
standable, we will first briefly describe the Bio-Networking
Architecture ( [3], [4]), upon which SymbioticSphere is built.

The concept of the Bio-Networking Architecture was first
introduced in 2001 [3] and has been revised in 2005 [4]. The
inspiration to this model has been dwelled from many natural
phenomena, including the bee and ant colonies.

The bee colony present remarkable scalability, decentraliza-
tion and autonomy. The entire hive of the bees is built without
a central coordinator. Every bee purposefully does its partin
building the hive consisting of hexagonal cells. Later, bees
autonomically adapt to low surplus of honey in the hive. If
the honey surplus falls too low, many bees adapt the role of
a food gatherer and leave the hive to collect food. When the
honey level is high, bees remain in the hive to rest.

The function of the bee colony is collectively achieved
without a single coordinator, as every bee has a built-in
program that guides its actions through different stages ofthe
life of the hive. Also, the colony can easily survive the death
of individual bees.

A. The Bio-Networking Architecture: platforms and cyber-
entities

The Bio-Networking architecture consists of two compo-
nents: middleware platforms and cyber-entities (CEs). The
middleware platforms run above the operating system of a
host computer and provide cyber-entities with an operating
environment the CEs need. Cyber-entities, in turn, provide
application services to human users or other cyber entities[3].

The modelling of energy flow is central to the Bio-
Networking Architecture. Users of the CEs services are re-
quired to pay energy in exchange for the service they receive.
CEs, in turn, pay energy to the platform for the services they
need. The energy flow, thus, reminds of the food chain in
biology.

Another important factor gained by the modelling of energy
flow is the idea of natural selection. If CEs or platforms don’t
receive enough energy, i.e. their services are not needed, they
will die. On the other hand, if they gather large amounts of
energy, i.e their services are used excessively, they will live
on and in response to very high energy levels, even replicate.

Thus, the supply of services that are needed a lot will grow
in response to large demand, whereas the supply of services
that are not that much needed will fall.

The idea here is, that the CEs residing on a certain platform
provide some service, for instance a web server service. If
the web server is used a lot, the CEs will replicate and even
migrate onto other platforms. Thus the capacity of the web
server will rise in response to increased demand, resultingin
better throughput. If, on the other hand, demand is low, also
the supply will shortly adapt thereafter.

Self-healing properties can be attained, too. For instance,
CEs can monitor the amount of colleagues they have. If the
amount drops too low, for instance when many CEs die or



5

Fig. 5. The ecosystem of SymbioticSphere [5].

crash, the remaining CEs will autonomously replicate in order
to guarantee continuity of the service [3].

B. The SymbioticSphere ecosystem

In SymbioticSphere [5], both the Cyber-entity and the
middleware platform components are modelled as biological
species. They are considered to live in symbiosis in a shared
ecosystem. As in the Bio-Networking Architecture, the basis
of self-healing functions is achieved by modelling the energy
flow.

In SymbioticSphere the cyber-entities are now calledagents.
Users, who can be both human users or other software
components, pay agents in exchange for application services.
The agent can provide services such as web server services or
file services. The agents in turn run onplatforms, using their
services, and pay energy in exchange. In the SymbioticSphere
model, 10% of the energy gained from users will in time be
given to the platforms.

This will lead to an ecosystem with a symbiotic relationship
between two species, where both species will thrive or fail
hand-in-hand. If there is a lot of demand for the services the
agents provide, the agents will gain a lot of energy, which in
turn means that also the platforms will gain a lot of energy, as
the platform gains 10% of the share. Now both species will
replicate, and the supply of the service is increased as a result
of demand. Now the user will experience better throughput
and accessibility. If a host, platform or agent fails or crashes,
it will quickly be replaced in result of increased traffic to the
other agents, who will consequently replicate.

On the other hand, if the services are not needed, the energy
level of the agents will fall and, ultimately, as a result of
starvation, the agents will die. This leads to reduced energy
feed to the platforms, and they, too, will starve and die. Should
the need of services begin to rise, the supply would again start
to grow and shortly be up to meet the demand.

The function of SymbioticSphere is depicted in Fig. 5. Here,
the ultimate source of all energy, the sun, is represented bythe

User. Users use services that the agents provide, and in return
give agents energy. Agents can also use each others services,
and hence trade energy with each other. In order to function,
agents need the resources of the platform components, and
in return for those resources they give platforms energy.
Platforms run on host computers on a network. The energy
used by platforms is considered to be evaporated.

C. Design principles in SymbioticSphere

Now, let’s look at the design principles behind Symbiotic-
Sphere [5]. They are all extracted from observing what prop-
erties of natural phenomena contribute to nature’s effective
self-healing.

• Decentralization: firstly, SymbioticSphere is decentral-
ized. This is how a single point of failure, or a per-
formance bottleneck, is avoided. There is no central
coordinator controlling or delegating the functions of the
agents or platforms. All decisions and actions are taken
on the level of individual components.

• Autonomy: secondly, SymbioticSphere is autonomous.
The agents and platforms monitor their environment and
autonomously make decisions based on what is happen-
ing around them. Decentralization and autonomy together
are the base properties that make building of large-
scale autonomous networked services possible. These two
properties are also common to those of the cell based
programming paradigm presented in section II.

• Natural selection: the third important principle of Symbi-
oticSphere is that of natural selection. This property is not
modelled in the cell based paradigm. Natural selection
is modelled using the concept ofenergy. Users give
agents energy in exchange for services, and agents give
energy to platforms in return for using their operating
environment. A high amount of stored energy triggers the
replication function of an agent, whereas lack of energy
leads to starvation and, ultimately, death. Consequently,a
process of natural selection is achieved by the modelling



6

of energy flow. Unused agents and, subsequently, their
underlying platforms, will starve due to lack of energy,
whereas popular services gain a lot of energy and will
replicate.
A property related to natural selection not implemented
in SymbioticSphere is that of evolution. Even though it
is not implemented, even this function is modelled in
the Bio-Networking Architecture [3] upon which Symbi-
oticSphere originally is built. CEs contain functions and
bodies. Bodies of a web CE can contain, for instance,
a individual web page (HTML file). When two CEs
reproduce sexually, their common baby will come to
contain the bodies ofboth parents, i.e. two web pages.
In the Bio-Networking Architecture, CEs are also able to
reproduce asexually. Reproduced this way, the baby CE
will contain the web page of its parent. The baby CE will
also be given some of the energy of its parent(s).

• Emergence: this is the property of platforms to move
towards healthier host computers, and the property of
agents to move toward platforms whose resource avail-
ability is high. This is how the SymbioticSphere architec-
ture responds to dynamical changes in the environment,
for instance to sudden bursts of requests.

• Symbiosis: finally, by symbiosis we mean the cooperation
of the components, agents and platform. Recall that
they are modelled as different species living in a shared
ecosystem in symbiosis. They operate for mutual benefit
and they both need each other to survive. This property is
used in SymbioticSphere to provide adaptive behaviour.

V. CONCLUSION

We have now explored two different biology-inspired ap-
proaches to designing self-healing systems. The first one was
the cell-based programming paradigm. Here, software pro-
cesses are considered cells. All cells carry identical programs,
corresponding to the genome and DNA of biological cells, that
contain instructions on how to react to certain changes in the
environment and how to affect the environment by diffusing
and emitting chemicals.

We considered a spherical self-healing structure, consisting
of one center cell and multiple body cells, that was based on a
few simple message passing rules and replication conditions.
The structure would survive the death of any amount of body
cells and completely heal without any intervention or central
coordination. This illustrated the cell based programming
model.

Our second example was a software architecture inspired
by a biological ecosystem. By modelling the energy flow,
corresponding to the food chain, and two species living in
symbiosis, self-healing and adaptive network applications can
be built. Large scalable systems, that would self-adapt to
increased demand of services by increasing capacity, could
be designed using this concept. As an example of an actual
implementation of this architectural model we considered the
SymbioticSphere.

Notice also some common design principles between the
biological programming model and that of SymbioticSphere.

Where the former is a cell based programming paradigm
and the latter a software architecture, both have in common
the concept of decentralization and autonomy. Individual pro-
grams – cells or components – contain the necessary pro-
gramming for different environmental conditions. Purposeful
decisions of which program to use in any particular situation
is done on the level of individual cells/components. Thus the
need of a central coordinator is avoided. This way of thinking
naturally suits best the needs of networked and distributed
systems.

REFERENCES

[1] S. George, D. Evans, and S. Marchette, “A biological programming model
for self-healing,” inSSRS ‘03: Proceedings of the 2003 ACM workshop
on Survivable and self-regenerative systems. New York, NY, USA: ACM
Press, 2003, pp. 72–81.

[2] S. George, D. Evans, and L. Davidson, “A biologically inspired program-
ming model for self-healing systems,” inWOSS ‘02: Proceedings of the
first workshop on Self-healing systems. New York, NY, USA: ACM
Press, 2002, pp. 102–104.

[3] M. Wang and T. Suda, “The bio-networking architecture: abiologi-
cally inspired approach to the design of scalable, adaptive, and surviv-
able/available network applications,” inProceedings of the 2001 Sympo-
sium on Applications and the Internet. IEEE, 2001, pp. 43–53.

[4] J. Suzuki and T. Suda, “A middleware platform for a biologically inspired
network architecture supporting autonomous and adaptive applications,”
IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 249–260, Feb. 2005.

[5] P. Champrasert and J. Suzuki, “Symbioticsphere: A biologically-inspired
autonomic architecture for self-adaptive and self-healing server farms,”
in WOWMOM ‘06: Proceedings of the 2006 International Symposium on
on World of Wireless, Mobile and Multimedia Networks. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 469–474.

[6] J. V. Neumann,Theory of Self-Reproducing Automata, A. W. Burks, Ed.
Champaign, IL, USA: University of Illinois Press, 1966.


