
How to Prevent Failure of the Healing Mechanism
in Self-Healing Systems

Janne Metso
Department of Computer Science

University of Helsinki, Finland
Email: Janne.Metso@cs.Helsinki.FI

Abstract— Self-healing systems tackle the issue of ever in-
creasing complexity of software and its management. Self-
healing systems provide solutions for the software systemsto
manage themselves and recover from errors. There are multiple
approaches to self-healing systems ranging from agent based
solutions to frameworks. The self-healing process is usually
enclosed into a separate layer or components in the system. The
separate layer does system diagnosis and repair actions on the
system. This layer can fail just as the application layer.

In this paper I take a look into the problem of self healing layer
failures. I will present two systems and discuss their differences
and weak points. There is a couple of possibilities to improve
the reliability of the healing layer. These are computational
verification and common fault tolerance techniques. To minimise
the possibility of failures on self-healing systems, either of these
techniques can be used.

I. I NTRODUCTION

Companies are more and more reliant on different types of
software systems on their day-to-day activities. At the same
time the systems used by these companies are more and more
complex. This means that the companies need to have more
and more staff to deal with possible problems in the systems.
Self-healing systems try to answer the issue by providing
software systems that are able to self diagnose the problem
and correct it without the need of human assistance.

While self-healing systems are developed to ensure that the
software keeps working, increasing attention must be directed
towards ensuring that the healing functions are reliable and do
not malfunction. The challenge with self-healing functionality
is that it is usually complex and needs sophisticated services
in order to work effectively. Companies dependability on
software requires that the self-healing parts of the software
works flawlessly. Performing a wrong or faulty healing mea-
sure could have critical consequences and render the system
useless.

Self-healing systems are usually divided in two layers, an
application layer and a healing layer. On the application layer
are the software components that provide services such as web
server et cetera. On the healing layer are the software com-
ponents that are responsible for the steps during the healing
process. The self-aware systems use sensors on the application
layer to keep track of how well they are functioning. The
healing layer gathers the sensor information and infers what
actions are needed to heal the system if any.

Quite common approach to self-healing systems is to have
a multi step procedure to detect any possible problems and

decide what to do about it. One example of this kind of step
based approach is presented in [6]. The steps include monitor-
ing, translation, analysis, diagnosis, and feedback. Monitoring
follows the state of the system and reports if anything is out
of the ordinary. Translation is used to create an understanding
of the situation and after that it is analyzed to see what really
is wrong. After diagnosing the fault, it is fixed and feedbackis
required to determine if the action was correct or not. For the
purposes of this paper, any of these steps is equally important
and a failure in any of them can be just as disastrous. For
example, a failure in monitoring will cause the self-healing
system to fail to notice problems while incorrect analysis of
the situation may result in incorrect healing attempt.

This paper is organised as follows. First we will introduce
two example approaches to self-healing systems. In sectionIII
we briefly compare the systems to each other and analyse the
weaknesses in their self-healing mechanisms. Then we discuss
how the robustness of the self-healing layer could be improved.
The issues are discussed in the light of previously presented
systems. Finally there are conclusions.

II. T WO APPROACHES TOSELF-HEALING

There are multiple available approaches to building and
designing a self-healing system. Two of them are presented
here. One of the approaches is to use multi-agent systems
and the other approach is a framework based approach. These
approaches serve as examples and provide basis for further
analysis and discussion in the following sections.

Multi-agent systems are built from a number of software
components which have a clear operational goal. An integral
part of the multi-agent systems is a rewarding system that is
based on achieving goals. This provides an important feedback
loop that can also be used in a self-healing environment.
Agents are capable of communicating with each other and
they are used in for example distributed decision making.

A framework is a set of generic support services which
support a certain type of activities. Self-healing framework
describes a set of services to help building of self-healing
systems. The support services are generic in the sense of being
able to support any self-healing system.

The multi-agent and framework approaches are different
from each other in how they are designed and how they
support the self-healing process. The multi-agent system is
designed to be a separate system that can easily be added to

1



Fig. 1. System architecture for the multi-agent based self-healing system [6].

run alongside existing system. The multi-agent solution does
not need any special modifications to the existing system.
The framework based approach is designed to be used in
event based systems, where the system is built from set of
components. The components should be easily detachable
from each other in order for the framework to do self-healing
on the system.

A. Multi-agent based context aware self-healing system

The multi-agent based system [6], [7] is a proposal to build a
self-healing system based on scanning log output of necessary
components, such as web servers. The goal is to determine
possible problems from the log output. As the name suggests
the system is built from multiple agents which cooperate to
achieve self-healing of the system. This kind of approach
should result in a low demand for system resources.

The architecture is divided into two layers, as show in
Fig. 1. The layers are the server layer and the healing layer.
The server layer is responsible of monitoring the behaviour
of the servers and the healing layer is responsible for deci-
sion making. On the healing layer are the following agent
components: Diagnosis Agent, Decision Agent, and Searching
Agent. Various databases and repositories provide supporting
data and functionalities for the previously mentioned agents.
Monitoring Agent, Component Agent, and System Agent are
located on the server layer. In addition to these agents there is
a Code Cache which is used in emergency healing situations.
Code repository provides available healing methods. Symptom
and policy databases provide information about nature of
server failures and how they should be dealt with.

The self-healing process of the multi-agent is based on a se-
quence of steps [6]. The healing process includes the following
steps: monitoring, filtering and translation, analysis, diagnosis,
and decision and feedback. Monitoring Agent is responsible
for following the logs that are generated by services (Step 1
in Fig. 1). If the size of any of the logs change the Monitoring
Agent notifies the Component Agent (Step 2). In cases where
the monitored piece of software does not generate log entries
system event viewer is monitored for relevant events. After
receiving notification from the Monitoring Agent the Com-
ponent Agent extracts required logs. The logs are processed
for certain keywords that indicate problems in the software
component. These keywords includenot, error, reject, andfail.
If any of these keywords are found the events are transformed
into Common Base Event (CBE) format.

System Agent is responsible for receiving (Step 3in Fig. 1)
and analysing the CBE formatted events. When it receives
an event it gathers relevant system resource information such
as CPU, memory, process and job schedule information. A
specific module inside the System Agent, Adaptation module,
is responsible for determining which is the best healing
method. The decision is based on threshold values, which
represent policies (Step 4). Under emergency circumstances,
which are dictated by the policies, System agent executes the
selected healing method right after the adaptation module has
decided on it (Step 4a). Otherwise the available data is sent to
Diagnosis agent (Step 4b). Diagnosis agent is responsible for
diagnosing the problem with the help of Symptoms DB (Step
5). To achieve this it analyzes the CBE log, resource infor-
mation, and the dependencies between components. Decision

2



Agent determines which healing method is correct (Step 6a)
based on the information analyzed by the Diagnosis Agent.
The Decision agent also uses a Policy DB (Step 7) and
Code Repository (Step 8) to make the decision. Finally the
selected healing method is executed by System Agent (Step
10). After executing the method System Agent sends feedback
information to Diagnosis Agent.

When the system cannot heal itself Searching Agent is used
to find suitable information (Step 6bin Fig. 1) which can be
used to resolve the problem. The Searching Agent uses com-
mon search engines such as Google1 (Step 6b.1) to find this
information. Code Repository holds the available self-healing
mechanisms. The Code Cache in Fig. 1 is used by the System
Agent to achieve rapid healing in emergency situations [6].
The healing is quicker because multiple analysing steps are
skipped during the healing process.

Park et al [6], [7] have created an implementation of the pre-
viously described system. The implementation of multi-agent
system was compared with Adaptive Services Framework by
CISCO2 and IBM3 [2]. During the comparison process it was
found that the multi-agent based approach uses significantly
less system resources [6], [7]. System performance of the
multi-agent system was also determined very good and the
time required to self-healing is less than the competitor takes.
During the measurements it was also found that, since the
system only has one monitoring agent which monitors all
logs and thus only one process in memory for monitoring
purposes, the system was very scalable in terms of followed
software components [7]. Memory usage of the multi-agent
system stays on a nearly constant level no matter how many
server level components are simultaneously monitored.

B. Framework based self-healing

The framework based approach proposed by Dashofy et
al [4] is focused on describing the architecture and planned
repairs in it. The framework extensively uses architecture
descriptions to present the current situation and how it should
be changed in order to be repaired. The main environment of
the framework are event driven systems which are composed
of multiple independent components. The components are
connected to each other using connectors to reduce interdepen-
dencies between the components. The connectors also mean
that the components themselves are not concerned where their
communication counterparts are and thus other components
can be relatively easily changed from the other end.

The framework uses architecture descriptions as an integral
part of the system. The descriptions describe which compo-
nents are available and how the components are connected to
each other. Connectors enclose the details required for low
level communication and therefore the components need not
be concerned about the communication technology. This type
of architectures increase the flexibility of the system.

1http://www.google.com
2http://www.cisco.com
3http://www.ibm.com

The architecture descriptions are deployed along the soft-
ware system, as a basis when the system and its components
are instantiated. Essentially the system is a reflective system
where the architecture description is used both to describethe
system and to make changes into the system. Changes to an
architecture are done by creating an architecture difference
description. In the context of self-healing systems the changes
to the architecture are done in order to repair the system. Other
kind of changes can also be made. An architecture can be
changed by replacing, removing, and adding components. The
architecture difference description is much like the output of
diff command in Unix which is used to compare two text files
together [4]. For example a replaced component is expressed
by removing the old component and adding a new, similar,
component.

The tools and documents used in the framework are depicted
in Fig. 2. The framework uses xADL, an extensible, XML
based architecture description language to express components
and their relationship in the system. xADL language is also
used to describe differences in the architecture. The xADL
descriptions are stored into a repository which is capable of
noticing changes in the descriptions and notifying the AEM
component. AEM component is used to maintain mapping
between the xADL description and the runtime system. AEM
is also responsible for initiating and managing the self-healing
subsystem. ArchMerge is used to merge architecture differ-
ences to current architecture. The result of the merge is a new
architecture which is deployed by the AEM component.

Design Critics in Fig. 2 are used to perform a what-if
analysis on a new architecture. The purpose of the analysis
is to find out if the new architecture is compliant with the
specification of the system. This means that for example
all required connections between components exist and that
all components that are needed by fully functional system
are available. The analysis must also determine that, if a
component is changed, the new component is able to produce
the required functionality. This is essential in cases where an
old component is replaced with a newer version of it. Another
important issues to consider when an architecture is changed
are the possible special needs of an architecture. It may not
be possible to take these special needs into account by using
a generic analysis tool. Therefore multiple analysis toolsare
needed to take all possible requirements into account [4].

The changes in the architecture follow a four step process.
First, the components and connectors which are to be removed
from the system are allowed to run cleanup code and to
send data about their state to another component. The state
information is used by the replacement component. Second,
components and connectors that are on the edge of the area
where the failure happened are suspended. This prevents the
components from sending further messages (events) to the
affected area. During the third step, the components and
connectors are removed from the system and new, replacing
components are added to the system. Finally, the suspended
components on the edge of the affected area are resumed and
the systems continues its operation.

3



Fig. 2. Tools and documents used in the architecture based self-healing system [4].

Dashofy et al [4] have implemented all other parts of
the outlined system except fault detection. The group has
approached the subject from reflective self-managing software
perspective and have built the services that are needed to allow
reflection first. The analysis component is expected to be built
in future work.

III. A NALYSIS

In this section we discuss the two systems and briefly
compare them to each other. There are a number of similarities
and some differences between the systems. In deep down
both of the systems are fairly similar. We will also discuss
the weaknesses of both systems especially on the healing
subsystems. The weaknesses in self-healing can cause big
issues. For example the systems should not try and repair a
fully functional system or replace wrong components inside
the system when a failure occurs.

Despite their different background and approaches to self-
healing systems the solutions are somewhat similar. Both of
the systems share the view of differentiating the self-healing
subsystem from the actual application layer. Both approaches
recognise the need for sensors in the application layer to
monitor the applications. Underneath both of the approaches
also have similar step-based algorithms to achieve the self-
healing itself.

The multi-agent system uses a simple method of monitoring
the system healthiness. It employs a log monitoring agent
which constantly checks if log file sizes change. When they
change a separate agent is responsible for scanning the log file
for certain keywords. The weakness in this is the list of the

keywords. If this list is incomplete, the agent does not find all
error situations. Another weakness is the translation of found
error messages into CBE. The logs of software components
are not standardized and therefore it is not straightforward
to translate the messages. If the translation fails, the system
cannot recover from the failure.

The difficulty of detecting real failure situations is shown
in the fact that there is no component responsible for that in
the framework based approach. A monitoring scheme can be
implemented by requiring that each component and connector
can detect their own error situations. This solution is not
optimal because it would pose a significant demand on the
components themselves. Similar approach that is used in
the multi-agent system is not possible because it would be
impractical that every component and connector would have
their own log. Depending on the level of modularisation and
the amount of components and connectors there could be
hundreds of logs.

Both of the presented systems also rely on pre-existing
knowledge about the system. The framework uses explicit
descriptions about the architecture which are then modified
to replace components. In the multi-agent system there is a
specific agent that is responsible for analysing the components
and their dependencies. The approach used in the framework is
stronger because explicit information can be verified by human
users. After verification human users can try and modify the
information so that the system has a correct and complete
picture of the system. In the multi-agent system the agent
must infer the system composition from secondary clues such
as process ids. This approach is weaker because the agent

4



can easily overlook unexpected connections between software
components. This can lead to poorly isolated faults in the
system. From explicit descriptions the connections are easily
detected provided that the description is kept up to date. To
make sure that the description is up to date the framework
uses a dedicated service.

The multi-agent system uses secondary information to infer
the situation of the system and determine the correct healing
measure. This information (see section II-A) gives a rather
complete picture of the state of the process but is it enough?If
a process uses unusually large amounts of processing capacity
it could be busy looping in a live lock situation. A deadlock
situation can be detected by the fact that the process does not
respond to requests in any way. Software components that leak
memory can be detected by ever increasing memory usage of
that component. The a fore mentioned information does not
provide enough clues to situations where a subsystem of a
bigger component is malfunctioning unless the subsystem has
its own thread or process. When detecting a live lock it is not
clear how long the high processor use needs to continue in
order to be sure that the component is indeed suffering from
a live lock. The same problem is with the deadlock situation.

The selection of proper healing method is dependent on
the correct outcome of the problem analysis. The multi-agent
approach uses databases to select the correct healing method
once it has analysed the situation. This is an advantage for
this system because the databases can be populated by human
users. The databases will help in the general problems and the
system is capable of searching new information which informs
how a repair should be done. In the end the system invokes
human administrators and informs them with its data. This is
also an advantage for the system. When the system cannot
heal itself it can always request help automatically which will
result in faster correction.

Lack of diagnosis functionality is the main drawback of
the framework. When the monitoring and diagnosis facilities
are included in the framework the main challenge will be
translating the available information to correct architecture
difference descriptions. The framework seems to have a strong
bidirectional reflection mechanisms which makes implement-
ing planned changes to the architecture straightforward. The
main question will be how to produce correct plans. Another
advantage of the framework are the what-if checks. The checks
are done before the changes are actually implemented. While
they decrease the responsiveness of the framework when
responding to failures, it means that the framework is more
likely to take corrective action. Nevertheless it should not be
forgotten that the analysis is difficult to make.

IV. PREVENTING FAILURES IN HEALING MECHANISM

The failure of self-healing mechanisms can be prevented
using computational verification or replication of key healing
components. These approaches can also be combined. Com-
putational verification has some advantages but the drawback
is that it cannot be applied everywhere. The use of existing
fault tolerance solutions in key healing mechanisms is mainly

limited by system resource usage. Use of fault tolerance solu-
tions consumes more system resources and increases software
complexity.

A. Prevention Using Formal Verification

Montanegro et al [5] propose a method for self-healing
that is based on formal logic. The formal logic is built
around the concept of events. The event model is useful
when distributed systems need to be verified. The authors
introduce a new operator (∆) which is used to note events. The
logical formulations in their approach is based on states ofthe
components. Certain states in the components trigger events
which are transferred to another components further triggering
state changes in those components. In the paper the authors
demonstrate their approach by modeling the establishment of
a token ring network. Using formal modeling of the steps that
are taken while a token ring is established the authors are able
to prove that the coordination will work in any given situation.

The use of formal logic allows computational verification of
the behaviour of the self-healing system. For the verification
purpose a system is modeled using the formal logic and
the resulting description is computationally verified. Through
verification we can be sure that the system behaves correctly
in all circumstances. If the self-healing mechanism of a given
system is verified and found correct it can be trusted to work
correctly on logical level. However, verification does not solve
all problems. The main problem of verification is that it is
computationally expensive and cannot be applied to large and
complex systems. Verification cannot be used in large systems
because state machines, which are used to describe system
behaviour and processing, would become too large to verify in
any given time. This problem is referred to as state explosion.
Because the verification is computationally expensive it also
has an increasing effect on development time.

Verification is suitable for systems where single nodes are
small and the cost of each node is relatively high. In these
kind of situations the verification is computationally viable
and the cost of verification is paid back in small number of
node failures. Verification is not needed when single nodes
need not be self-healing and when they are inexpensive. In
these circumstances failures are expected and dealt with using
large number of nodes. One example of such a case is wireless
sensor networks [1] and their nodes. Within large and complex
systems it is possible to use verification for small subsystems.
In these situations only the most crucial elements of the
software are verified. This will increase the reliability ofthe
software. In many cases it can even be impossible to have
access to all code of all components to verify them. Especially
in self-healing architectures only the self-healing partsof the
system need to be verified. One example of such a system is
the multi-agent based solution presented in section II-A where
you would only need to verify the agents responsible for the
healing process.

Formal verification is also used to ensure communication
protocol behaviour. The communication protocols are very
important to distributed applications. For example in wireless

5



sensor networks it would be beneficial to use verification to
validate the communication protocols and routing protocols.
In wireless sensor networks any node can be rendered useless
anytime [1]. This is even expected to happen. At the same
time nodes rely on each other to be able to communicate with
the base station. In this kind of scenario it is important that
the communication link will survive as long as possible.

B. Improving Fault Tolerance

Existing fault tolerance mechanisms can be used on the
healing layer. This means that the mechanisms are applied
to the components on the healing layer. Classic fault tolerance
methods include replication, redundancy, and diversity. All of
these methods can be used to improve self-healing systems.
Improving fault tolerance is especially important when human
life is dependent of the system or the system is otherwise
critical like power supplies in naval vessels [3].

Replication can be used in self-healing systems in situation
analysis and selection of healing method. Replication can be
used in these key decision points to use multiple software
components that independently of others arrive to a decision
of what is the problem. Then the multiple components need to
agree on or vote on what or where the problem is. In voting
situations majority wins. To ensure that there is a majoritywe
should use odd number of decision makers. Once agreement
on the problem is reached, another set of components must
independently arrive to a conclusion of what action to take
to heal the problem situation. The use of multiple decision
makers and the requirement of agreement between the decision
makers does not help unless we can distinguish if any of the
decision makers is failing or not. If we assume that all decision
makers are deterministic and produce similar results we can
determine if one decision maker is faulty by using a voting
system. A voting system will also be tolerant of small number
of malfunctioning decision makers. In the context of multi-
agent system replication can be used to at least System Agent,
Diagnosis Agent and Decision Agent. These functions would
benefit from increased reliability and fault tolerance.

Increasing redundancy in the context of self-healing systems
would mean that entire self-healing subsystem would be
replicated. In this case the system should somehow monitor
how the self-healing subsystem is functioning. Monitoringis
needed to determine if the subsystem is faulty or not. To
achieve this, self-healing systems could be used on top of them
selves to create yet another layer of self-healing mechanisms.
To prevent a failure on healing layer A we would need a
healing layer B. To prevent a failure on healing layer B we
would need a healing layer C and so on. Using multiple layers
of self-healing systems to monitor other self-healing systems
is not very practical anymore.

Increasing diversity in self-healing means that the system
uses multiple different algorithms and components to self-
healing. For example in a diverse self-healing system both of
the presented approaches could be present at the same time.
Using this kind of solution will also need joint decision making
on what action to take.

Any combination of previously mentioned fault tolerance
measures can be used at the same time. This will increase
the fault tolerance of the system. However, the number of
different components grows bigger. This means that more and
more resources are consumed to keep the system running. How
many of the proposed solutions is practical to use is defined
by a cost-benefit analysis. If the the system is critical, more
fault tolerance and other precautions should be used, whilea
non critical system can be allowed to fail.

V. CONCLUSION

Companies rely more and more on their software systems
during day-to-day activities. At the same time the software
systems are more and more complex. Self-healing systems
tackle the growing issue of software management and repairs
by proposing solutions that are able to heal themselves. In
this setting it is crucial that the self-healing systems manage
to keep the software running and therefore allow companies
to do business. Self-healing systems rely on self-diagnosis and
selecting correct repairing functions to heal the system. It is
even more important that the self-healing functionality itself
functions correctly. Surprisingly many approaches do not take
into account the possibility of failures on the self-healing layer.

In this paper I have presented two different approaches to
self-healing systems. Multi-agent based approach can be added
to any available system to allow some degree of self-healing
functionality. The multi-agent approach uses log output ofsoft-
ware components to track and repair the problems. The system
relies on existing methods that can be executed to achieve
self-healing behaviour. The method is selected as a result of
a multi-step diagnosis and analysis process. Each of the steps
in the process are handled separately in agents distributedto
both application and healing layer. The framework approach
relies heavily on architecture descriptions and planning ahead
on the repair actions. The framework has a number of tools
to assist in the architecture description and change planning
activities. The pre-planning of the repair actions allows the
framework to speculate on the outcome of the repair action
and thus detect if the corrective action is compliant with the
architecture or not.

We have discussed the weaknesses of presented solutions
and proposed a couple of solutions to prevent failures on the
healing layer. The main weaknesses of both presented systems
are the analysis of the problem and the execution of correct
healing measure based on the analysis. If either of these steps
fail, the other is of no use. The analysis step is challengingin
complex and large systems. The problem needs to be isolated
so that the healing can happen correctly.

To improve the reliability of self-healing mechanisms I
proposed formal verification as a pre-production measure and
fault tolerance techniques as the runtime solution. Verification
increases the time needed to bring a product to the market
but can be very essential in certain applications. Fault toler-
ance measures increase the resource demands during runtime
operation. These can also be justified in correct circumstances.

6



All solutions to increase the reliability of the self-healing
mechanisms require either more time and preparation in
advance or more system resources during runtime. Before
any of the solutions is adapted to a given solution a cost-
benefit analysis must be done. If for example replicating
diagnosis components does not provide a substantial increase
in reliability of the system it should not be done. In other
systems things are expected to fail and single nodes are not
accounted for. Where human life is dependent of self-healing
systems bigger resource requirements will not pose a problem.

REFERENCES

[1] A SSUNCO, H. P., RUIZ , L. B., AND LOUREIRO, A. A. A service
management approach for self-healing wireless sensor networks. In
Autonomic Networking 2006(2006), vol. LNCS 4195/2006, Springer,
pp. 215–228.

[2] BAEKELMANS , J., BRITTENHAM , P., DECKERS, T., DELAET, C.,
MERENDA, E., MILLER , B., OGLE, D., RAJARAMAN , B., SINCLAIR ,
K., AND SWEITZER, J. Adaptive services framework, Oct. 2003.
CISCO White Paper,http://www-03.ibm.com/autonomic/
pdfs/Cisco IBM ASF 100.pdf.

[3] BUTLER-PURRY, K. L. Multi-agent technology for self-healing shipboard
power systems. InProceedings of the 13th International Conference
on Intelligent Systems Application to Power Systems, 2005(Nov. 2005),
IEEE, pp. 207–211.

[4] DASHOFY, E. M., VAN DER HOEK, A., AND TAYLOR , R. N. Towards
architecture-based self-healing systems. InProceedings of the first
workshop on Self-healing systems(2002), ACM Press, pp. 21–26.

[5] M ONTANGERO, C., SEMINI , L., AND SEMPRINI, S. Logic based coordi-
nation for event-driven self-healing distributed systems. In Coordination
Models and Languages(2004), vol. LNCS 2949/2004, Springer, pp. 248–
263.

[6] PARK , J., YOUN, H., AND LEE, E. A multi-agent based context aware
self-healing system. InIntelligent Data Engineering and Automated
Learning - IDEAL 2005(June 2005), vol. LNCS 3578/2005, Springer,
pp. 515–523.

[7] PARK1, J., YOO1, G., JEONG1, C., AND LEE, E. Self-management
system based on self-healing mechanism. InManagement of Convergence
Networks and Services(Sept. 2006), vol. LNCS 4238/2006, Springer,
pp. 372–382.

7


