How to Prevent Failure of the Healing Mechanism
In Self-Healing Systems

Janne Metso
Department of Computer Science
University of Helsinki, Finland
Email: Janne.Metso@cs.Helsinki.Fl

Abstract— Self-healing systems tackle the issue of ever in- decide what to do about it. One example of this kind of step
creasing complexity of software and its management. Self- hased approach is presented in [6]. The steps include nronito
healing systems provide solutions for the software systemt® ing, translation, analysis, diagnosis, and feedback. kbani
manage themselves and_ recover from errors. There are multip foll h fth d if hing i
approaches to self-healing systems ranging from agent babe ollows t _estate oft e_sys_tem and reports If anyt Ing 1S out
solutions to frameworks. The self-healing process is usugl Of the ordinary. Translation is used to create an understgnd
enclosed into a separate layer or components in the systemh& of the situation and after that it is analyzed to see whatyeal
separate layer does system diagnosis and repair actions ohet s wrong. After diagnosing the fault, it is fixed and feedback
system. This layer can fail just as the application layer. required to determine if the action was correct or not. Fer th

In this paper | take a look into the problem of self healing layer . . .
failures. I will present two systems and discuss their diffeences PUrPOSes of this paper, any of these steps is equally impborta
and weak points. There is a couple of possibilities to imprav and a failure in any of them can be just as disastrous. For
the reliability of the healing layer. These are computatioml example, a failure in monitoring will cause the self-heglin
verification and common fault tolerance techniques. To miniise system to fail to notice problems while incorrect analysis o
the pQSS|b|I|ty of failures on self-healing systems, eithreof these the situation may result in incorrect healing attempt.
techniques can be used.

This paper is organised as follows. First we will introduce
|. INTRODUCTION two example approaches to self-healing systems. In selttion

Companies are more and more reliant on different types we briefly compare the systems to each other and analyse the
software systems on their day-to-day activities. At the sarveaknesses in their self-healing mechanisms. Then wesdiscu
time the systems used by these companies are more and nie the robustness of the self-healing layer could be imguov
complex. This means that the companies need to have méke issues are discussed in the light of previously predente
and more staff to deal with possible problems in the systengystems. Finally there are conclusions.

Self-healing systems try to answer the issue by providing
software systems that are able to self diagnose the problem
and correct it without the need of human assistance. There are multiple available approaches to building and

While self-healing systems are developed to ensure that gesigning a self-healing system. Two of them are presented
software keeps working, increasing attention must be ticec here. One of the approaches is to use multi-agent systems
towards ensuring that the healing functions are reliabtk@dm and the other approach is a framework based approach. These
not malfunction. The challenge with self-healing functiity approaches serve as examples and provide basis for further
is that it is usually complex and needs sophisticated sesvic@nalysis and discussion in the following sections.
in order to work effectively. Companies dependability on Multi-agent systems are built from a number of software
software requires that the self-healing parts of the saftwacomponents which have a clear operational goal. An integral
works flawlessly. Performing a wrong or faulty healing megpart of the multi-agent systems is a rewarding system that is
sure could have critical consequences and render the systeased on achieving goals. This provides an important fegdba
useless. loop that can also be used in a self-healing environment.

Self-healing systems are usually divided in two layers, akgents are capable of communicating with each other and
application layer and a healing layer. On the applicatigreta they are used in for example distributed decision making.
are the software components that provide services suchlas weA framework is a set of generic support services which
server et cetera. On the healing layer are the software cosapport a certain type of activities. Self-healing framewo
ponents that are responsible for the steps during the hpalitescribes a set of services to help building of self-healing
process. The self-aware systems use sensors on the ajpplicatystems. The support services are generic in the senseraf bei
layer to keep track of how well they are functioning. Thable to support any self-healing system.
healing layer gathers the sensor information and inferstwha The multi-agent and framework approaches are different
actions are needed to heal the system if any. from each other in how they are designed and how they

Quite common approach to self-healing systems is to hasepport the self-healing process. The multi-agent system i
a multi step procedure to detect any possible problems amielsigned to be a separate system that can easily be added to

Il. TWO APPROACHES TOSELF-HEALING

Web server
ositor
ra
Heling Lajar) -ﬁl]uunum) Decision . -{Jﬂnn:hmg w1l |
’,i, Agent 4 Agent A Agent
b if P
Bhl2
| Rl]
¥ ﬁ v
Monitoring | - . Component . Code & i System
o Agent i Agent iﬁnnht i Agent
Server Lager | 1 hrﬁ_ A
P O e T e e
Apach b Lagic) (Oracle)) |
(pais) O o0 (V0)

Uses ln]er ug’_@ iﬁ/ﬂ\ﬁ:;

Fig. 1. System architecture for the multi-agent based tsedling system [6].

run alongside existing system. The multi-agent solutioasdo The self-healing process of the multi-agent is based on a se-
not need any special modifications to the existing systemuence of steps [6]. The healing process includes the follpw
The framework based approach is designed to be usedsteps: monitoring, filtering and translation, analysiggiiosis,
event based systems, where the system is built from setawfd decision and feedback. Monitoring Agent is responsible
components. The components should be easily detachdblefollowing the logs that are generated by servicBsep 1
from each other in order for the framework to do self-healinip Fig. 1). If the size of any of the logs change the Monitoring
on the system. Agent notifies the Component Ager§tép 2. In cases where

) _ the monitored piece of software does not generate log entrie
A. Multi-agent based context aware self-healing system gystem event viewer is monitored for relevant events. After

The multi-agent based system [6], [7] is a proposal to buildreceiving notification from the Monitoring Agent the Com-
self-healing system based on scanning log output of negessaonent Agent extracts required logs. The logs are processed
components, such as web servers. The goal is to determioe certain keywords that indicate problems in the software
possible problems from the log output. As the name suggestmponent. These keywords includet, error, reject andfail.
the system is built from multiple agents which cooperate tbany of these keywords are found the events are transformed
achieve self-healing of the system. This kind of approad¢hto Common Base Event (CBE) format.
should result in a low demand for system resources. System Agent is responsible for receivirstép 3in Fig. 1)

The architecture is divided into two layers, as show iand analysing the CBE formatted events. When it receives
Fig. 1. The layers are the server layer and the healing layan event it gathers relevant system resource informatich su
The server layer is responsible of monitoring the behavioas CPU, memory, process and job schedule information. A
of the servers and the healing layer is responsible for despecific module inside the System Agent, Adaptation module,
sion making. On the healing layer are the following ageis responsible for determining which is the best healing
components: Diagnosis Agent, Decision Agent, and Seagchimethod. The decision is based on threshold values, which
Agent. Various databases and repositories provide supgortrepresent policiesStep 4. Under emergency circumstances,
data and functionalities for the previously mentioned agienwhich are dictated by the policies, System agent executes th
Monitoring Agent, Component Agent, and System Agent aselected healing method right after the adaptation modae h
located on the server layer. In addition to these agentgtiser decided on it tep 43 Otherwise the available data is sent to
a Code Cache which is used in emergency healing situatioB$agnosis agentStep 4h. Diagnosis agent is responsible for
Code repository provides available healing methods. Sgmpt diagnosing the problem with the help of Symptoms CRep
and policy databases provide information about nature 5f. To achieve this it analyzes the CBE log, resource infor-
server failures and how they should be dealt with. mation, and the dependencies between components. Decision

Agent determines which healing method is correstep 6 The architecture descriptions are deployed along the soft-
based on the information analyzed by the Diagnosis Agemtare system, as a basis when the system and its components
The Decision agent also uses a Policy DBtep § and are instantiated. Essentially the system is a reflectiveerys
Code Repository Step § to make the decision. Finally thewhere the architecture description is used both to desthibe
selected healing method is executed by System Agstep(system and to make changes into the system. Changes to an
10). After executing the method System Agent sends feedbaaichitecture are done by creating an architecture difiggen
information to Diagnosis Agent. description. In the context of self-healing systems thenglea
When the system cannot heal itself Searching Agent is ustedhe architecture are done in order to repair the systetmeiOt
to find suitable informationStep 6bin Fig. 1) which can be kind of changes can also be made. An architecture can be
used to resolve the problem. The Searching Agent uses cathanged by replacing, removing, and adding components. The
mon search engines such as Goobd®tep 6b.)1to find this architecture difference description is much like the otitpi
information. Code Repository holds the available selflinga diff command in Unix which is used to compare two text files
mechanisms. The Code Cache in Fig. 1 is used by the Systmgether [4]. For example a replaced component is expressed
Agent to achieve rapid healing in emergency situations [6)y removing the old component and adding a new, similar,
The healing is quicker because multiple analysing steps a@mponent.
skipped during the healing process. The tools and documents used in the framework are depicted
Park et al [6], [7] have created an implementation of the prét Fig. 2. The framework uses xADL, an extensible, XML
viously described system. The implementation of multirdgebased architecture description language to express coenpeon
system was compared with Adaptive Services Framework lypd their relationship in the system. xADL language is also
CISCC and IBM? [2]. During the comparison process it wadused to describe differences in the architecture. The xADL
found that the multi-agent based approach uses significardlescriptions are stored into a repository which is capable o
less system resources [6], [7]. System performance of theticing changes in the descriptions and notifying the AEM
multi-agent system was also determined very good and tbemponent. AEM component is used to maintain mapping
time required to self-healing is less than the competiteesa between the xADL description and the runtime system. AEM
During the measurements it was also found that, since tisealso responsible for initiating and managing the setiting
system only has one monitoring agent which monitors aubsystem. ArchMerge is used to merge architecture differ-
logs and thus only one process in memory for monitoringnces to current architecture. The result of the merge isia ne
purposes, the system was very scalable in terms of followatthitecture which is deployed by the AEM component.
software components [7]. Memory usage of the multi-agentDesign Critics in Fig. 2 are used to perform a what-if
system stays on a nearly constant level no matter how mayalysis on a new architecture. The purpose of the analysis
server level components are simultaneously monitored. is to find out if the new architecture is compliant with the
specification of the system. This means that for example
B. Framework based self-healing all required connections between components exist and that

The framework based approach proposed by Dashofy aék components that are Ueeded by fully functjonal systg m
al [4] is focused on describing the architecture and planné‘&e ava|labl_e. The analysis must also detgrmlne that, if a
repairs in it. The framework extensively uses architectu mpo”?”t IS chapged_, the new compor.len.t is able to produce
descriptions to present the current situation and how iuho € required functlonallw. Th_|s is essential In cases wha
be changed in order to be repaired. The main environment%Ej component is replace_d with a newer version of it Another
the framework are event driven systems which are compoé ortant ISSUes to can|der when an arch_|tecture IS cliange
of multiple independent components. The components &€ the possmle special needs. of an arghltecture. It may n_ot
connected to each other using connectors to reduce intende € poss.lble to ta!<e these special needs Into accoynt by using
dencies between the components. The connectors also m@dF"eMc analysis tool._Therefor_e mulUpIg analysis taoks
that the components themselves are not concerned where tfgpded to take all possible requirements into account [4].

communication counterparts are and thus other componeEI hehchanges in the arghltecture follovx_ahfour steé) process.d
can be relatively easily changed from the other end. Irst, the components and connectors which are to be remove

The framework uses architecture descriptions as an integﬁrgm the system are allowed to run cleanup code and to
part of the system. The descriptions describe which comp%(?nOI da.ta a_bout their state to another component. The state
nents are available and how the components are connecteHﬁ'[grmat'on is used by the replacement component. Second,
each other. Connectors enclose the details required for I§@mponents _and connectors that are on the ed_ge of the area
level communication and therefore the components need ere the failure happe_ned are suspended. This prevents the
be concerned about the communication technology. This ty mponents from :?‘endlng fu_rther messages (events) to the
of architectures increase the flexibility of the system. ected area. During the third step, the components apd
connectors are removed from the system and new, replacing
http:iwww.google.com components are added to the system. Finally, the suspended
2hitp:/Avww.cisco.com components on the edge of the affected area are resumed and
Shttp://www.ibm.com the systems continues its operation.

c2.fw - Event-based Architecture Development Framework |

ArchStudio 3 - Architecture-based Development Environment

A AT instantiates &
Design Critics AEM L manages

Analyze architec- Maintains descrip-
[N J“f_,_{"" F_+| tures and report tion-to-run-time c2.fw
—- , ; uses uses appi
XADL20 | & | problems. . mapping. Running
__| Architecture —_ ¥ 4 System
Descriptions —| Storeg, Seif-healing
'd-; .
m XADL Repository system
Stares xADL 2.0 notifies of managed by
gored-in______y-| documents, emits changes] AEM.
AXA|DL 20 fﬂ___,,_d_—#f“ﬂ_ change events.
L Architecture }——
Differences
Cra
"wps. v
] ArchDiff uses ArchMerge Legend:
Analyzes differ- | 955 Merges diffs into —
ences between architectures to | Document
architectures. evolve them.
Software
‘ Tool
are-input-for Architecture
Framework

(I‘E'il[PS-ClS-l'PSlllI-(]f—I]]E‘l'gP

Fig. 2. Tools and documents used in the architecture badktesding system [4].

Dashofy et al [4] have implemented all other parts dfeywords. If this list is incomplete, the agent does not filid a
the outlined system except fault detection. The group heagor situations. Another weakness is the translation ahtb
approached the subject from reflective self-managing softw error messages into CBE. The logs of software components
perspective and have built the services that are needebtbto alare not standardized and therefore it is not straightfodwar
reflection first. The analysis component is expected to bk bub translate the messages. If the translation fails, théeBys
in future work. cannot recover from the failure.

The difficulty of detecting real failure situations is shown
in the fact that there is no component responsible for that in

In this section we discuss the two systems and brieflile framework based approach. A monitoring scheme can be
compare them to each other. There are a number of simikritimplemented by requiring that each component and connector
and some differences between the systems. In deep davem detect their own error situations. This solution is not
both of the systems are fairly similar. We will also discuseptimal because it would pose a significant demand on the
the weaknesses of both systems especially on the healomgnponents themselves. Similar approach that is used in
subsystems. The weaknesses in self-healing can cause th@ multi-agent system is not possible because it would be
issues. For example the systems should not try and repaimngractical that every component and connector would have
fully functional system or replace wrong components insidéeir own log. Depending on the level of modularisation and
the system when a failure occurs. the amount of components and connectors there could be

Despite their different background and approaches to seffundreds of logs.
healing systems the solutions are somewhat similar. Both ofBoth of the presented systems also rely on pre-existing
the systems share the view of differentiating the selfihgal knowledge about the system. The framework uses explicit
subsystem from the actual application layer. Both appreschdescriptions about the architecture which are then modified
recognise the need for sensors in the application layer tm replace components. In the multi-agent system there is a
monitor the applications. Underneath both of the approsichepecific agent that is responsible for analysing the commtsne
also have similar step-based algorithms to achieve the selhd their dependencies. The approach used in the framework i
healing itself. stronger because explicit information can be verified by &anm

The multi-agent system uses a simple method of monitorimgers. After verification human users can try and modify the
the system healthiness. It employs a log monitoring agenformation so that the system has a correct and complete
which constantly checks if log file sizes change. When thegycture of the system. In the multi-agent system the agent
change a separate agent is responsible for scanning thedogrfiust infer the system composition from secondary clues such
for certain keywords. The weakness in this is the list of th@s process ids. This approach is weaker because the agent

I1l. ANALYSIS

4

can easily overlook unexpected connections between saftwhmited by system resource usage. Use of fault toleranag- sol
components. This can lead to poorly isolated faults in th®ns consumes more system resources and increases sftwar
system. From explicit descriptions the connections arédyeascomplexity.

detected provided that the description is kept up to date. To)) o

make sure that the description is up to date the framewdfk Prevention Using Formal Verification

uses a dedicated service. Montanegro et al [5] propose a method for self-healing

The multi-agent system uses secondary information to infdvat is based on formal logic. The formal logic is built
the situation of the system and determine the correct hgaliaround the concept of events. The event model is useful
measure. This information (see section |I-A) gives a ratheten distributed systems need to be verified. The authors
complete picture of the state of the process but is it enolfghntroduce a new operator\) which is used to note events. The
a process uses unusually large amounts of processing tapdoigical formulations in their approach is based on statethef
it could be busy looping in a live lock situation. A deadlockcomponents. Certain states in the components trigger £vent
situation can be detected by the fact that the process ddeswbich are transferred to another components further trigge
respond to requests in any way. Software components that letate changes in those components. In the paper the authors
memory can be detected by ever increasing memory usagedefnonstrate their approach by modeling the establishnfent o
that component. The a fore mentioned information does ratoken ring network. Using formal modeling of the steps that
provide enough clues to situations where a subsystem ofis taken while a token ring is established the authors dee ab
bigger component is malfunctioning unless the subsystesn ha prove that the coordination will work in any given situati
its own thread or process. When detecting a live lock it is not The use of formal logic allows computational verification of
clear how long the high processor use needs to continuetlie behaviour of the self-healing system. For the verificati
order to be sure that the component is indeed suffering frgpurpose a system is modeled using the formal logic and
a live lock. The same problem is with the deadlock situatiothe resulting description is computationally verified. dhgh

The selection of proper healing method is dependent warification we can be sure that the system behaves correctly
the correct outcome of the problem analysis. The multi-agein all circumstances. If the self-healing mechanism of &giv
approach uses databases to select the correct healingdnetiystem is verified and found correct it can be trusted to work
once it has analysed the situation. This is an advantage émrrectly on logical level. However, verification does nohve
this system because the databases can be populated by huallaproblems. The main problem of verification is that it is
users. The databases will help in the general problems and domputationally expensive and cannot be applied to large an
system is capable of searching new information which inforncomplex systems. Verification cannot be used in large system
how a repair should be done. In the end the system invokeacause state machines, which are used to describe system
human administrators and informs them with its data. This haviour and processing, would become too large to vanify i
also an advantage for the system. When the system canay given time. This problem is referred to as state exptosio
heal itself it can always request help automatically whidh w Because the verification is computationally expensivesb al
result in faster correction. has an increasing effect on development time.

Lack of diagnosis functionality is the main drawback of Verification is suitable for systems where single nodes are
the framework. When the monitoring and diagnosis facgitiesmall and the cost of each node is relatively high. In these
are included in the framework the main challenge will b&ind of situations the verification is computationally vieb
translating the available information to correct archibee and the cost of verification is paid back in small number of
difference descriptions. The framework seems to have agtronode failures. Verification is not needed when single nodes
bidirectional reflection mechanisms which makes implememeed not be self-healing and when they are inexpensive. In
ing planned changes to the architecture straightforwata Tthese circumstances failures are expected and dealt wit us
main question will be how to produce correct plans. Anothdarge number of nodes. One example of such a case is wireless
advantage of the framework are the what-if checks. The chedensor networks [1] and their nodes. Within large and corple
are done before the changes are actually implemented. Wiilstems it is possible to use verification for small subsgste
they decrease the responsiveness of the framework wHenthese situations only the most crucial elements of the
responding to failures, it means that the framework is mos®ftware are verified. This will increase the reliability thfe
likely to take corrective action. Nevertheless it should he software. In many cases it can even be impossible to have
forgotten that the analysis is difficult to make. access to all code of all components to verify them. Esplgcial
in self-healing architectures only the self-healing paftshe
system need to be verified. One example of such a system is

The failure of self-healing mechanisms can be preventtfie multi-agent based solution presented in section |l-&neh
using computational verification or replication of key hiegl you would only need to verify the agents responsible for the
components. These approaches can also be combined. Cbealing process.
putational verification has some advantages but the dréwbac Formal verification is also used to ensure communication
is that it cannot be applied everywhere. The use of existipgotocol behaviour. The communication protocols are very
fault tolerance solutions in key healing mechanisms is igainmportant to distributed applications. For example in \&ss

IV. PREVENTING FAILURES IN HEALING MECHANISM

sensor networks it would be beneficial to use verification to Any combination of previously mentioned fault tolerance
validate the communication protocols and routing protecolmeasures can be used at the same time. This will increase
In wireless sensor networks any node can be rendered usetbessfault tolerance of the system. However, the number of
anytime [1]. This is even expected to happen. At the samdéferent components grows bigger. This means that more and
time nodes rely on each other to be able to communicate witiore resources are consumed to keep the system running. How
the base station. In this kind of scenario it is important thanany of the proposed solutions is practical to use is defined
the communication link will survive as long as possible. by a cost-benefit analysis. If the the system is critical, enor
fault tolerance and other precautions should be used, wahile
non critical system can be allowed to fail.
Existing fault tolerance mechanisms can be used on the
healing layer. This means that the mechanisms are applied V. CONCLUSION
to the components on the healing layer. Classic fault toka
methods include replication, redundancy, and diversityoA ~ Companies rely more and more on their software systems
these methods can be used to improve self-healing systefliging day-to-day activities. At the same time the software
Improving fault tolerance is especially important when lum systems are more and more complex. Self-healing systems
life is dependent of the system or the system is otherwitkckle the growing issue of software management and repairs
critical like power supplies in naval vessels [3]. by proposing solutions that are able to heal themselves. In
Replication can be used in self-healing systems in sitnatighis setting it is crucial that the self-healing systems aggn
analysis and selection of healing method. Replication aan ¥ keep the software running and therefore allow companies
used in these key decision points to use multiple softwal@ do business. Self-healing systems rely on self-diagrarsd
components that independently of others arrive to a decisigelecting correct repairing functions to heal the systens |
of what is the problem. Then the multiple components need @4€n more important that the self-healing functionaligelt
agree on or vote on what or where the problem is. In votiffgnctions correctly. Surprisingly many approaches do akét
situations majority wins. To ensure that there is a majosiey into account the possibility of failures on the self-hegliayer.
should use odd number of decision makers. Once agreemerin this paper | have presented two different approaches to
on the problem is reached, another set of components maelf-healing systems. Multi-agent based approach candedad
independently arrive to a conclusion of what action to take any available system to allow some degree of self-healing
to heal the problem situation. The use of multiple decisidiinctionality. The multi-agent approach uses log outpsait-
makers and the requirement of agreement between the decisigre components to track and repair the problems. The system
makers does not help unless we can distinguish if any of tfelies on existing methods that can be executed to achieve
decision makers is failing or not. If we assume that all dedis self-healing behaviour. The method is selected as a reéult o
makers are deterministic and produce similar results we carimulti-step diagnosis and analysis process. Each of tips ste
determine if one decision maker is faulty by using a voting the process are handled separately in agents distritiated
system. A voting system will also be tolerant of small numbdoth application and healing layer. The framework approach
of malfunctioning decision makers. In the context of multirelies heavily on architecture descriptions and planningeal
agent system replication can be used to at least System Agénit the repair actions. The framework has a number of tools
Diagnosis Agent and Decision Agent. These functions would assist in the architecture description and change phgnni
benefit from increased reliability and fault tolerance. activities. The pre-planning of the repair actions allows t
Increasing redundancy in the context of self-healing syste framework to speculate on the outcome of the repair action
would mean that entire self-healing subsystem would t&&d thus detect if the corrective action is compliant with th
replicated. In this case the system should somehow moni@dghitecture or not.
how the self-healing subsystem is functioning. Monitoring ~We have discussed the weaknesses of presented solutions
needed to determine if the subsystem is faulty or not. nd proposed a couple of solutions to prevent failures on the
achieve this, self-healing systems could be used on topeaf thhealing layer. The main weaknesses of both presented system
selves to create yet another layer of self-healing mechamis are the analysis of the problem and the execution of correct
To prevent a failure on healing layer A we would need healing measure based on the analysis. If either of theps ste
healing layer B. To prevent a failure on healing layer B wéail, the other is of no use. The analysis step is challenging
would need a healing layer C and so on. Using multiple layetsmplex and large systems. The problem needs to be isolated
of self-healing systems to monitor other self-healing syst so that the healing can happen correctly.
is not very practical anymore. To improve the reliability of self-healing mechanisms |
Increasing diversity in self-healing means that the systepnoposed formal verification as a pre-production measuck an
uses multiple different algorithms and components to sefault tolerance techniques as the runtime solution. Vet
healing. For example in a diverse self-healing system bbth increases the time needed to bring a product to the market
the presented approaches could be present at the same thmé.can be very essential in certain applications. Fauértol
Using this kind of solution will also need joint decision niradx ance measures increase the resource demands during runtime
on what action to take. operation. These can also be justified in correct circuntgsn

B. Improving Fault Tolerance

All solutions to increase the reliability of the self-hewagi
mechanisms require either more time and preparation in
advance or more system resources during runtime. Before
any of the solutions is adapted to a given solution a cost-
benefit analysis must be done. If for example replicating
diagnosis components does not provide a substantial iperea
in reliability of the system it should not be done. In other
systems things are expected to fail and single nodes are not
accounted for. Where human life is dependent of self-hgalin
systems higger resource requirements will not pose a pmoble

REFERENCES

[1] AssuNncg H. P., Ruiz, L. B., AND LOUREIRO, A. A. A service
management approach for self-healing wireless sensoronesw In
Autonomic Networking 2006§2006), vol. LNCS 4195/2006, Springer,
pp. 215-228.

[2] BAEKELMANS, J., BRITTENHAM, P., DECKERS T., DELAET, C.,
MERENDA, E., MILLER, B., OGLE, D., RAJARAMAN, B., SNCLAIR,
K., AND SWEITZER, J. Adaptive services framework, Oct. 2003.
CISCO White Paper,http://ww+ 03.ibm conl aut onomi c/
pdf s/ G sco_|l BMASF_100. pdf .

[3] BUTLER-PURRY, K. L. Multi-agent technology for self-healing shipboard
power systems. IrProceedings of the 13th International Conference
on Intelligent Systems Application to Power Systems, ZB@k. 2005),
IEEE, pp. 207-211.

[4] DAsHOFY, E. M., VAN DER HOEK, A., AND TAYLOR, R. N. Towards
architecture-based self-healing systems. Hroceedings of the first
workshop on Self-healing systeif2902), ACM Press, pp. 21-26.

[5S] MONTANGERO, C., EMINI, L., AND SEMPRINI, S. Logic based coordi-

nation for event-driven self-healing distributed systernmsCoordination

Models and Languagg2004), vol. LNCS 2949/2004, Springer, pp. 248—

263.

PARK, J., YOUN, H., AND LEE, E. A multi-agent based context aware

self-healing system. Inntelligent Data Engineering and Automated

Learning - IDEAL 2005(June 2005), vol. LNCS 3578/2005, Springer,

pp. 515-523.

PARK1, J., YooOl, G., EONG]1, C.,AND LEE, E. Self-management

system based on self-healing mechanismMimagement of Convergence

Networks and ServicegSept. 2006), vol. LNCS 4238/2006, Springer,

pp. 372-382.

6

[7

