

Abstract—The concepts of detecting and monitoring faults in a
self-healing environment are examined. The Nagios fault-
detection system is evaluated and its self-healing capabilities
researched. This paper outlines possibilities of interconnecting
Nagios with other applications in order to further facilitate and
automate recovery after service failures.

Index Terms—Dependability, fault-tolerance, Nagios, self-
healing.

I. INTRODUCTION

ETECTING failures is never easy. It is, in fact, so hard
that many of the problems studied under computability

theory build on the fact that a Turing machine cannot know
when another Turing machine has halted. If we accept the idea
that a Turing machine is an accurate abstraction of the modern
computer, we must also accept that some faults will remain
invisible to the machines.

D

Yet we humans somehow seem to be able to instantly
recognise when a computer is not functioning correctly. True,
we might not always be accurate either. Many times a
perceived fault should not be blamed on the program, which is
only executing as specified. The fault that we detected does
not lie within the computing devices, but somewhere else.

But we feel that we are, at least, able to tell when a
computer has halted and not doing things like we want it to.
The concept of time seems to intuitively be linked with the
idea that a program “is taking too long” to process.

Thus, when developing computer programs that monitor
other programs for failures, the logical conclusion is to include
timers. The monitored program might be allowed leeway in
processing, until the inevitable alarm of the timer. The
developer is content and moves on to the next problem.

Unfortunately, not all faults are caused by the targeted
program. The new problem: how to distinguish the source of
the fault, and if the source is not of concern to us (not our
problem), how to ignore it. The concept of retry is added. Now
the monitoring program tries, times out and retries, hoping that
the fault-that-is-not-ours goes away. Many times this
technique is sufficient and faults are eliminated. We label
those faults as transient: they come and go, but we can live
with them.

Checking and retrying quickly becomes resource intensive.

Manuscript received March 6, 2007.
Mikko Pervilä is with the Department of Computer Science, Helsinki

University, 00014 Helsingin yliopisto FINLAND (corresponding author to
provide phone: +358-44-7696086; e-mail: pervila@cs.helsinki.fi).

We do not want the monitoring program to perform the tests
again and again. Better to let it rest between executions – after
all, we can wait a little before detecting a new problem.

If the monitoring is not constant, as often is the case, some
part of the faults that the system encounters may not be
detected. In distributed systems, transient faults become more
common as the systems encompass a wider area of the
environment. Because of this, care has been taken into
building communication channels that are dependable even in
the presence of faults. With the use of standard technologies
like TCP, we are more interested in catching only those
failures that require intervention from the administrator.

 With more complex systems the administrator becomes
easily overworked and stressed. The monitoring programs
discover too many faults, and not all of them are important
enough to warrant immediate attention. The administrator is
human – she makes mistakes [1]. Thus we must now turn our
attention into diminishing the amount of work it takes to repair
such failures. After detection and monitoring, automating the
repairs is the next logical goal on the track towards self-
healing systems.

In this article we examine how the Nagios monitoring
application is able to provide solutions for the self-healing
problem space. Nagios predates many of the concepts of self-
healing and builds on fault-tolerant concepts and techniques.
Special interest is taken into how Nagios can be extended
from a fault-detection application into a part of an autonomous
system.

The possibility of interconnecting Nagios with other
systems might provide ideas for further studies. Koopman's
article [2] is used as a basis for the concepts and terminology
relating to self-healing. The model for faults, errors and
failures is from Avižienis et al. [3].

II. DETECTION AND MONITORING

One of the most common techniques for detecting faults in
distributed environments is observing the state of services
with a dedicated application. This application can be called a
sentinel service [2], referring to its nature as a watchdog for
failures in system operation.

The detection of service faults is often based on
probabilistic decisions concerning the type of service and a
time frame in which it should respond to a query. Such
decisions are made by gathering and processing information
relating to the relevant services. A singular, discrete decision is
called a check. Performing a check may be a simple decision

1

Using Nagios to monitor faults in a self-healing
environment

Mikko A.T. Pervilä

based on the existence of a process within the operating
system's memory. It can also be a time-consuming query for
multiple data sets, followed by a heuristic decision of service
correctness.

Since nondeterministic changes in the environment can
cause both transient and permanent faults to appear, the
service checks will have to be repeated at specified intervals.
The performance of repeating checks over a time period is
called the monitoring of a set of services. Monitoring a service
may include multiple different check types that are performed
at both regular intervals and after specific changes in the
environment.

A. Detection techniques
The detection techniques employed in monitoring can be

categorized into two sets according to the visibility of the
checks to the service being monitored [2].

Nonintrusive methods try to predict the state of the service
by monitoring its external attributes. These might be the
number of system calls that the process makes, its memory or
CPU time usage or the messages it sends to the environment.
The service can be aware of the monitoring sentinel, sending
specially crafted status messages to it. Example targets for
nonintrusive checks are SNMP, system loads and the
temperature and humidity within a computing site.

Intrusive methods concentrate on acceptable input/output
combinations on the service. Their application can be seen to
change the service state, albeit this change can be a transient
one. Intrusive sentinels can send queries to the service, either
to the same interfaces that are used to serve users or to
interfaces that have been developed for testing purposes.
Examples of intrusive checks are queries for specific pages
from a HTTP server, inserting and deleting a row in a database
and injecting faults in order to test fault-tolerant systems.

A sentinel service may employ a combination of both
intrusive and non-intrusive methods in order to monitor one or
several services. Special program logic must be present to
handle situations where the different testing methods yield
conflicting results for a specific service. The sentinel may
default to non-intrusive methods but change to an intrusive
method when a possible failure is detected.

Upon detecting a failure, steps must be taken into correcting
the problem. Currently the most used approach is to inform the
system administrators and let them handle the repairs. With
the progress of self-healing techniques, the alternative of
letting the sentinel do a larger part of the work becomes more
tempting.

Preliminary tasks could include collecting information
about the failure before notifying the operators. Further
operations should be done carefully, so that the automated
repairs will not cause any more damage to the system. For
example, rebooting a host just because one of its services has
failed is clearly not desirable if the other services on the host
are still operating correctly.

III. THE NAGIOS MONITORING APPLICATION

Nagios is a sentinel service that concentrates on monitoring
failures and reporting their existence to selected destinations.
Nagios has been designed for the Linux operating system, but
it is possible to install Nagios on most other UNIX variants.
The sentinel has been developed as an open source project and
released under the GNU General Public License version 2.
The development started in 1999 and continues to present day
– as of writing, the current version is 2.7. It is considered quite
mature for use in production environments. Several books
have been written about the application [4].

It is worth noting that the development and distribution of
the application have benefited from splitting the project into
different parts [5]. The main application is responsible for
scheduling and executing the service checks in a concurrent
fashion. It also maintains all state information and takes action
when the transitions require it. The checks are called Nagios
plugins and are available separately. Their use is
recommended but not necessary – the administrator may set
up a system that only executes locally developed service
checks. Additionally, the core addons include the NRPE
(Nagios Remote Plugin Executor) and NSCA
(Netsaint1/Nagios Service Check Acceptor) tools. NRPE is
used to execute indirect checks locally on target hosts. NSCA
enables passive monitoring, where Nagios is split into client
and server applications. This technique is useful in physically
distributed setups and it is closely related with the scalability
examined in section IV.

A. Specifying a check and running it
In Nagios, the size of the self-healing unit is a service. The

services are monitored by the main application running a set
of checks against the specified services. Each service is
announced using the hierarchical, template-based
configuration file system of Nagios. The configuration files
are human-readable text files that follow the syntax defined in
Nagios' documentation [6]. The documentation is considered
to be very complete; only a rough outline of the configuration
process is given here. Because of the size of the
documentation, additional references are made when
necessary.

The configuration files can be split into separate directories
and processed recursively. Depending on the amount of
services, this may simplify generating and grouping the
configuration files.

The definitions in the files specify Nagios objects and their
interrelations. Using templates and inheritance as a basis for
definitions is strongly encouraged. Examples of objects are
hosts, service dependencies, services and commands.

Hosts serve services. Each service is defined to belong to a
specific host2. When all services on the host are working
correctly, the host is taken to be working correctly as well.
After a service on the host fails, the host status can be checked
separately. If the host is considered to have failed as well,
service checks are still processed but the resulting

1 Netsaint is an obsolete name of the Nagios project.
2 Special care has to be taken when defining clustered services [7].

2

notifications are silenced. Notifications are enabled when the
host resumes operation [8]. As we will see later on, recovery
for multiple services begins with their host.

Service dependencies define relations between two services
that are being monitored. The logic is simple: if a service fails,
the depending service will fail as well. Using dependencies,
the monitoring system can skip redundant checks and
notifications. Some of the graphical addons available to
Nagios are able to draw dependency graphs for services.

Services are defined very loosely to be whatever that can be
monitored. The definition includes several obligatory fields,
for example the check interval, maximum retries and a check
command. Intervals and retries are used to deduce the state of
the service in the presence of transient faults. The values are
defined in time units; flexible setups are possible, and Nagios
tries to follow all the definitions. When monitoring larger
setups, this may require extending the resource usage of
Nagios through additional concurrent checks. The target of the
check and additional information can be defined through the
use of macros and command line arguments. They are
substituted and passed on to the check command, which is an
executable plugin.

B. Plugging in a check
The plugin package contains instructions for extending the

set of plugins with locally developed ones as needed. In the
open source fashion, new plugins are readily accepted for
community development and eventual inclusion in the plugin
package. The current version (1.4.6) of the package includes
over 100 plugins as small, executable files. About half of the
executables are written in Perl, a bit less than a half in C and
the remaining as shell scripts.

Following the idea of architecture completeness, the main
application does not need to know how the plugins are
implemented. The standards that acceptable plugins should
conform to are explicitly written out in the Nagios developer
guidelines [9]. In practice, the administrators have total
freedom with their own systems. The full guidelines are
beyond the scope of this article, but the basic input / output
requirements are examined.

Input. The plugin should read two argument values as the
warning and critical ranges for the check in question. Further
arguments may be given in the command specification for the
check in question. The plugin should provide documentation
for these in the form of help messages. The argument values
are used to modify check behavior. Depending on the values
and the parsed output of the monitored service, the plugin will
deduce the service state and report it to the main application.

Output. Every Nagios plugin may print a single line of
output containing the relevant results for the current check.
The length of the output line should not exceed 80 characters
in order to guarantee successful notification on mobile phones,
pagers and other devices where the display size is small. The
state of the service is passed to the main application as a return
code – this is the only real requirement from a functional
plugin.

C. Changing the service state
The basic state labels [10] for a service or a host are “OK”

or “up”, “warning”, “critical” or “down”, “unknown”, and
“unreachable”. The first two states signal correct functioning
and the rest are error states. In addition to the state labels,
Nagios defines a state type on the basis of how many times a
check has indicated that a transition should be made.

The object definition files define a parameter for maximum
check attempts3. When the number of checks done is less than
the value of the parameter, the transition is considered soft.
When the number reaches the value, a hard transition is made.
A recovery from a soft state is considered soft; respectively a
recovery from a hard state is a hard recovery. A change from a
soft state to a hard state causes a notification, which we will
explore more fully in section IV.

There are a number of exceptions to this logic caused by the
flexibility of the object definitions. Due to the variable
parameters and the combination of a state type with the states
themselves, drawing a state diagram becomes quickly
counterintuitive. We will not try to catch all the exceptions or
possibilities, but show in what way soft and hard transitions
are beneficial for self-healing purposes. But before that, we
must define when a transition is not made.

D. Cascading failures
Nagios provides support for network topologies in multiple

ways. Here, the notion of system self-knowledge is tied with
the concept of cascading failures. Whenever a service or host
fails, the state of the depending services cannot be known. The
services might be functioning correctly, but other failures
prevent the sentinel from reaching the services. The basic
types of cascading failures are host, parent and dependency
disruptions.

The host status is deduced from the state of the services
running on it. If even one of the services is still available, the
host is considered to be available as well. However, in some
cases a host may have failed even when its services are still
available. For example, DNS checks defined for a host may
fail independently from the host. In situations related to
cascading failures, a host's status may be rechecked even
while its services are still marked as available. This is
commonly done to figure out the root cause of a problem
affecting multiple related hosts or services.

Parent relations are specified between hosts. They are
routinely used in defining routers and firewalls that might
disrupt network communications upon failure. If a remote
service check returns an error state, Nagios will walk the
parent tree until it reaches the root or a functioning parent.
After this, the malfunctioning child is marked as “down”, and
the rest of the hosts below it as “unreachable”. Notifications
for unreachable hosts may be suppressed with the object
definition files. A CGI script is provided to view network
outages [11], several addons for further visualization exist
[12].

Dependencies between hosts and services are defined

3 max_check_attempts in both service and host definitions

3

separately in the definition files [13]. The dependencies are
not inherited by default4 and their use is considered an
advanced feature. With dependencies, relations can be
specified between services on different hosts. Dependency
definitions allow total control of check execution and
notification suppression. E.g. a local application server might
be dependent on a VPN tunnel to a central database server,
although both may suffer failures independently.

Since the number of dependencies can grow quickly, it
should be noted that a suitable shorthand exists for writing
multiple objects with a single definition [14].

In addition to cascading failures, checks and notifications
can be deliberately turned off with scheduled downtime or
when a service is detected to have begun flapping. Flapping is
used to distinguish situations where the objects change state
too frequently, causing too many notifications. Flapping [15]
remains an experimental feature and has to be separately
enabled. It is designed to be useful in situations where a
service or host state changes too frequently, causing an
unwanted number of notifications.

IV. REPORTING AND REPAIRING PROBLEMS

The concepts of event handlers and notifications in Nagios
raise in importance when discussing self-healing
implementations. Event handlers are run in all state changes
and they allow both proactive fault tolerance and retroactive
reconfiguration steps. Notifications are primarily sent out
when a service or a host does a hard state change.

A. Reconfiguration steps
Event handlers are defined in the same object definition

files as any other Nagios object [16]. Their use resembles
plugins in that each event handler is defined as a command
appended with possible arguments and environmental values.
The use of event handlers is left to the administrators, though
examples, ideas and community-supported instructions are
available. Following GNU/Linux ideas, an event handler can
be any executable program. The minimum requirement for an
event handler is that it should read the event type that caused
the execution of the handler and react accordingly. The event
type is passed as the first command line argument.

A very basic type of an event handler might do a remote
login to the target host and restart the failed service. This
proactive repair would take place when the soft state change
takes place. Event handlers are only run once for each state
change, i.e. the service restart would be done upon the initial
discovery of a service failure, but not on subsequent retries. If
the restart is not effective in repairing the failure, the event
handler will eventually be called for a hard state change. (Note
that the current state will still be marked as soft, but the check
attempt will match the maximum retry count.) This time the
handler might create a problem ticket into a local job database
and append it with the information gathered so far. When the
maximum retries are reached, an eventual notification will be

4 Although, in the same flexible fashion, they can be made to inherit.

sent to service contacts. The personnel could check the ticket
and proceed with manual repairs, perhaps later on improving
the soft event handling with additional intelligence.

A. Notifying users and administrators
When a notification has to be made, the definition files will

be again consulted to find out who will receive the
information and how the transfer will proceed. Contact groups
and schedules are specified in the host and service definitions.
The contact groups may overlap. Schedules can be used to
limit the reception of some notifications to working hours.
E.g. in hosting environments only a subset of the personnel is
scheduled to be on-duty and may be notified about failures
day or night.

The options for notifying contacts are diverse, and it may be
beneficial to use several methods at the same time. Email is
probably the most commonly used method, but since the
notification is done by calling an executable file, any method
that can be programmed is suitable. It is useful to extend
Nagios with SMS services, or pagers in other areas. Instant
messengers and VoIP calls might be suitable alternatives as
well.

All of the contacts need not be humans. Piping the
notification messages to a separate parser or a long-term
database might be a better alternative than event handlers for
some environments.

B. Long-term information
Since Nagios can be configured to log all of the state

changes, it is usable for monitoring service level agreements
and overall trends. The statistical functions of the main
application and its CGI scripts can be further enhanced by the
event handlers. A global event handler could be defined so that
all information gathered by Nagios is also forwarded to a
separate database. Thus, more advanced data mining
operations can be performed on the database.

The built-in displays are probably sufficient for most cases.
Different user levels can be defined with separate visibility
levels. For example, a customer contact could be given
permission to view, but not modify, the service states
pertaining to the customer's hosts. Both long-term statistics
and current events would then be available to the contact. If
the contact is a trusted one, its capabilities could be extended
by allowing commands to the main application be given
through its web interface.

When failures occur, Nagios supports repair
communications through its web interface. The personnel
working on the problem may write out additional details and
estimated repair times. All are stored for latter viewing and
analysis, so that the repair process may be timed, examined
and improved. Troublesome services that are the cause for
multiple failures may be replaced or eliminated.

V. SCALING AND INTERCONNECTING NAGIOS

Nagios enjoys a large user base and is considered to be a
reliable sentinel service for a wide scale of services. The

4

current web site includes an optional feature for adding user
profiles. It is meant as a voluntary method of disclosing
statistical information [17] about Nagios setups. As of writing,
the largest implementations constitute of over 5 000 hosts or
over 30 000 services. It is clear that networks of this size
require some special considerations concerning in which
manner the checks are scheduled and distributed.

A. Distribution and scaling of a setup
Whenever scaling a Nagios setup for larger environments,

some problems are expected and must be dealt with. The most
common scenarios involve scheduling problems caused by the
amount of checks and communication problems due to
different subnets, firewalls and other communication
gateways.

Scheduling problems may surface when the amount of
services increases. The amount of resources required depends
on the type of checks to be run. When the product of the
amount of checks and execution time per check exceeds the
checking interval, some of the checks will be delayed. This
will manifest in checks running less often than specified and
can be verified from the execution logs. The problem may be
alleviated by increasing the resources available to Nagios. In
particular, the amount of allowed concurrent processes is
paramount. Also, even small performance improvements in
plugin execution may yield significant increases in overall
time taken. Plugins written in C execute typically faster than
the interpreted ones.

Communication problems are encountered when some of
the services are situated behind firewalls or low-bandwidth
links. They are not only caused by the upwards scaling of the
Nagios environment, but may be encountered even in very
small setups. The Nagios addons NRPE (Nagios Remote
Plugin Executor) and NSCA (Netsaint Service Check
Acceptor) offer different ways of solving problems caused by
firewalls or plugin types. The downside is the amount of
complexity, specially when NSCA is concerned.

NRPE is used to run plugins indirectly on local hosts [18].
The primary use is to check those services that do not include
network communications. Examples are CPU loads, memory
usage and the status of RAID arrays. These checks are
typically nonintrusive. NRPE has a plugin and a daemon to be
run on the target host. In situations where communications are
limited by a network boundary, the NRPE daemon may be
further delegated to check other services within the boundary.
The downside is the vulnerability of the NRPE daemon. If it
cannot be reached, all service checks delegated to it are
unavailable as well.

NSCA is used to distribute monitoring [19] to other sites
within the monitoring environment. The others sites will run
secondary instances of the Nagios application, complete with
their own set of plugins. The secondary instances will deliver
their status information using the NSCA client program. The
clients communicate with the NSCA daemon on the central
server. The added benefit of this setup is that some of the
checks may be delegated to the secondary servers. When
specified thus, the sites may even overlap. Notifications are

typically triggered by the staleness of the information
delivered. That is, if no new updates are received within a
specified time frame, communications are assumed to be lost
and notifications are triggered.

B. Making it redundant
Delegating the responsibility of proactive repairs to Nagios

without considering the possibility of the sentinel itself failing
would not be a long-lived solution. There are two methods for
creating fault-tolerant Nagios applications [20] on the
network. One involves event handlers and the other relies on
cron and NRPE.

Redundant monitoring involves having two instances of the
Nagios application executing service checks concurrently. The
downside of this setup is the added overhead of running the
checks twice. Although most of the checks are quite
conservative in their use of bandwidth, access statistics on the
services themselves may become unintentionally skewed if the
checks are intrusive. Naturally, this will happen with a
singular installation as well, so the problem need not be major.
The secondary Nagios server works as a standby spare: its
notifications are disabled, but it also checks the availability of
the primary Nagios server. If the check returns an error state,
external commands are used to enable notifications and thus
assume primary status. If the primary server recovers,
notifications are again disabled. A side effect of the recovery is
that it may cause blackouts during which neither server
monitors the network. The duration of the blackouts depends
on the scheduling intervals.

Failover monitoring differs in the activity of the slave
server. In this setup, active checks are disabled as well as
notifications. The slave host monitors the primary server's
status locally with the help of the NRPE addon. If the check
indicates an error state, external commands are again used to
enable service checks and notifications.

In principle, there can be several servers doing failover, as
long as the NRPE checks do not interfere with each other. The
downside is that if the primary server is down for extensive
periods, the event databases will become inconsistent. This
problem may be solved using global event handlers and an
external database, as outlined in section IV.

C. Compatible applications
Due to the open source community, Nagios has been

extended with many other addons and extensions. This paper
examines a very select few of them in order to provide ideas
for further research. The selection has been assembled with
self-healing attributes in mind.

Perhaps one of the most interesting extensions for the
monitoring setup is the possibility of connecting external
sensors [21]. With the help of sensors, Nagios may monitor
environmental attributes like humidity, temperature, the status
of UPS devices and physical intrusion. The event handlers can
be configured to manage power events as a last resort method.

Nagios has been successfully interconnected [22] with
Cfengine [23], an autonomous agent for system and network
configuration. In this setup, Nagios uses event handlers to

5

execute Cfengine's problem-solving functionality whenever a
service failure is detected. The example setup is local, but
could easily be extended to remote execution using SSH.

Through the use of volatile services [24], Nagios can
receive events that are not indications of a state change. These
events may be SNMP traps or information about blocked
intrusion attempts at a local firewall. Suitable follow-ups
include notifying contacts or executing special event handler.
SNMP monitoring is also useful for devices where the NRPE
plugin cannot be executed, for example routers and switches
with a limited operating system. Note that ports exist for
Windows NT/2000 platforms [25, 26].

VI. ACKNOWLEDGMENT

Ethan Galstad, the current project leader of Nagios,
deserves many thanks for his corrections and clarifications on
the technical details presented herein. The DNS example from
section III is taken from correspondence with him.

VII. REFERENCES

[1] A. Brown, D.A. Patterson, “To err is human”. Proc. of the first
workshop on evaluating and architecting system dependability,
Gothenburg, Sweden, July 2001.
http://roc.cs.berkeley.edu/papers/easy01.pdf. [6.3.2007]

[2] P. Koopman, “Elements of the self-healing system problem space” .
Proc. workshop on architecting dependable systems, 2003

[3] A. Avižienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure Computing”. IEEE Trans. on
dependable and secure computing Vol. 1, Issue 1, pp.11-33, 2004.

[4] Nagios: Books. http://www.nagios.org/propaganda/books/. [6.3.2007]
[5] Nagios: Downloads. http://www.nagios.org/download/. [6.3.2007]
[6] Nagios documentation: “Table of contents”.

http://nagios.sourceforge.net/docs/2_0/toc.html. [6.3.2007]
[7] Nagios documentation: “Monitoring service and host clusters”.

http://nagios.sourceforge.net/docs/2_0/clusters.html. [6.2.2007]
[8] Nagios documentation: “Determining status and reachability of network

hosts”. http://nagios.sourceforge.net/docs/2_0/networkreachability.html.
[6.3.2007]

[9] Nagios Plugins Development Team, “Nagios plug-in development
guidelines”. http://nagiosplug.sourceforge.net/developer-guidelines.html.
[6.3.2007]

[10] Nagios documentation: “State types”.
http://nagios.sourceforge.net/docs/2_0/statetypes.html. [6.3.2007]

[11] Nagios documentation: “Network outages”.
http://nagios.sourceforge.net/docs/2_0/networkoutages.html. [6.3.2007]

[12] NagiosExchange: Categories: AddOn Projects: Charts.
http://www.nagiosexchange.org/Charts.42.0.html. [6.3.2007]

[13] Nagios documentation: “Host and service dependencies”.
http://nagios.sourceforge.net/docs/2_0/dependencies.html. [6.3.2007]

[14] Nagios documentation: “Time-saving tricks for object definitions or how
to preserve your sanity”.
http://nagios.sourceforge.net/docs/2_0/templatetricks.html. [6.3.2007]

[15] Nagios documentation: “Detection and handling of state flapping”.
http://nagios.sourceforge.net/docs/2_0/flapping.html. [6.3.2007]

[16] Nagios documentation: “Event handlers”.
http://nagios.sourceforge.net/docs/2_0/eventhandlers.html. [6.3.2007]

[17] Nagios: “User profile stats”.
http://www.nagios.org/userprofiles/quickstats.php. [6.3.2007]

[18] Nagios documentation: “Indirect host and service checks”.
http://nagios.sourceforge.net/docs/2_0/indirectchecks.html. [6.3.2007]

[19] Nagios documentation: “Distributed monitoring”.
http://nagios.sourceforge.net/docs/2_0/distributed.html. [6.3.2007]

[20] Nagios documentation: “Redundant and failover monitoring”.
http://nagios.sourceforge.net/docs/2_0/redundancy.html. [6.3.2007]

[21] Nagios: “Automation and environmental monitoring products”.
http://www.nagios.org/products/. [6.3.2007]

[22] G. Retkowski, Building a self-healing network. O'Reilly ONLamp.com,
25.5.2006, http://www.onlamp.com/pub/a/onlamp/2006/05/25/self-
healing-networks.html. [6.3.2007]

[23] “Cfengine – an adaptive system configuration management engine”.
http://www.cfengine.org/. [6.3.2007]

[24] Nagios documentation: “Volatile services”.
http://nagios.sourceforge.net/docs/2_0/volatileservices.html. [6.3.2007]

[25] Nagios FAQ: “How can I monitor Windows NT / 2000 Servers?”.
http://www.nagios.org/faqs/viewfaq.php?faq_id=32. [6.3.2007]

[26] “NSClient official site”, http://nsclient.ready2run.nl/. [6.3.2007]

6

http://roc.cs.berkeley.edu/papers/easy01.pdf
http://nsclient.ready2run.nl/
http://www.nagios.org/faqs/viewfaq.php?faq_id=32
http://nagios.sourceforge.net/docs/2_0/volatileservices.html
http://www.cfengine.org/
http://www.onlamp.com/pub/a/onlamp/2006/05/25/self-healing-networks.html
http://www.onlamp.com/pub/a/onlamp/2006/05/25/self-healing-networks.html
http://www.nagios.org/products/
http://nagios.sourceforge.net/docs/2_0/redundancy.html
http://nagios.sourceforge.net/docs/2_0/distributed.html
http://nagios.sourceforge.net/docs/2_0/indirectchecks.html
http://www.nagios.org/userprofiles/quickstats.php
http://nagios.sourceforge.net/docs/2_0/eventhandlers.html
http://nagios.sourceforge.net/docs/2_0/flapping.html
http://nagios.sourceforge.net/docs/2_0/templatetricks.html
http://nagios.sourceforge.net/docs/2_0/dependencies.html
http://www.nagiosexchange.org/Charts.42.0.html
http://nagios.sourceforge.net/docs/2_0/networkoutages.html
http://nagios.sourceforge.net/docs/2_0/statetypes.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagios.sourceforge.net/docs/2_0/networkreachability.html
http://nagios.sourceforge.net/docs/2_0/clusters.html
http://nagios.sourceforge.net/docs/2_0/toc.html
http://www.nagios.org/download/
http://www.nagios.org/propaganda/books/

	I.Introduction
	II.Detection and monitoring
	A.Detection techniques

	III.The Nagios monitoring application
	A.Specifying a check and running it
	B.Plugging in a check
	C.Changing the service state
	D.Cascading failures

	IV.Reporting and repairing problems
	A.Reconfiguration steps
	A.Notifying users and administrators
	B.Long-term information

	V.Scaling and interconnecting Nagios
	A.Distribution and scaling of a setup
	B.Making it redundant
	C.Compatible applications

