Crash-only Components in Self-healing Systems

Toni Ruottu
Department of Computer Science
Helsinki University
Email: toni.ruottu@iki.fi

Abstract—Crash-only components don't provide a method for component doesn’t get a change to free resources it has
shutting them down. Therefore crash recovery functionaliy gets reserved. Lease based resource allocation is useful irs case
tested every time a crash-only component is restarted. Well where freeing resources may not be possible.

working crash recovery makes the components well suited for Crashi h f . istak if t b
building self-healing systems based on transparent restting rashing happens flor programming mistakes, It not by

of failing subsystems. Healing by restart is a widely adaptale design for constructive purposes, so preparing for them is
primitive which is easy to understand. usually a good idea. Components can be made crash-safe by

adding a recovery algorithm for fixing breakages at startup.
Carefully designed runtime behaviour can simplify the re-
Creating a system that is able to heal from unknowtovery algorithm making recovery faster. Transaction like
sicknesses, such as software bugs, is a tricky task. Wheieehniques can be used for transferring the component from
developer notices a failure in the system, she usually attema good restart persistent state, to another good state. The
to locate the problem origin and fix the problem where itecovery algorithm can then simply cancel or complete the
is. A developer who creates self-healing abilities, leatves operations that were unfinished when the crash happened. Thu
software broken and writes some medicine code to heal tthe component will not be stuck in the middle of two states
broken system. While developers try to remove the chroramd doesn't fail for that purpose.
diseases from software before release, it is useful to peepa In most cases there is no point in using a sophisticated
for occasional flu by shipping some medicine with the systeghutdown algorithm with crash-safe components. There are
as a safety measure. some cases where combination of the two techniques makes
Because the failures healed by self-healing code are oftssnse. The recovery algorithm may not work well and it may
unsuspected, it may be hard to design an algorithm to analyzedesigned to be used only as the last straw when everything
the problem and find out a solution. One solution for thelse fails. However, working recovery is usually desireul. |
problem is to restart the failing component and hope thebme special situation a shutdown algorithm may make faster
it will start up in a working state. Failures that happerecovery possible. But then again, recovery can often beemad
always at component startup are noticed immediately whesasonably fast without a shutdown algorithm.
the component is deployed. Therefore, restarting a comypone Along self-healing, restarting components can be used for
will bring it to a working state unless the failure has beerejuvenating the software while it is running. Componerats ¢
stored to persist over the restart. be restarted periodically which heals minor problems kefor
Simplicity of the approach makes it suitable for manthe component breaks up completely. Restarting a component
different purposes, including not only purely technicallfs, can also take place when the system notices some warning
but also failures enforced on purpose by a malicious pattg. Tsigns. For example continuing memory consumption growth
approach has been used in micro kernel operating systemgdald be a warning sign for memory leak. Restarting the
heal form driver failures by restarting the driver. [1] Heal leaking component would then prevent it from filling the run
from security attacks by enabling an IDS (intrusion detecti time memory entirely.
system) to restart components has also been suggested. [2]
Restarting a components is a simple and robust way for
healing an unsuspected failure for components that fongétt Everything that is being run on a computer has a state.
state on restart, but not all components forget their state ®here are many levels of state. Many pieces of software are
restart. The components may have an algorithm that is rannat design to keep their state over crashing. With some simpl
shutdown time to store some parts of the components stateafiplications storing the state would not even make any sense
persist over restart. Crashing the failing componentsatst For example traditional office software may store the stéte o
of shutting them down cleanly may prevent the componeatdocument on request or even periodically. Office software
from storing the failure. Interrupting operation of an usisu seldom stores the state of operation.
pecting component does not always result in a good stateFigure 1 shows a "hello world” component. All it ever does
The component may have stored some state during operai®mgreeting the user and it greets the user until it is crashed
or some state may have been stored in other componeNtith a component this simple, crashing it and restarting it
Another problem in sudden interruption is that the intetedp will make no difference for its operation. The operationlwil

I. INTRODUCTION

Il. STATES THAT MATTER

while(true) restart time (s)

greet() clean crash
RedHat 8 104 75
Fig. 1. Source code for a "hello world” component. JB.OSSAS 30 i 3
Windows XP Bl 48

while(true) Fig. 4. Clean and crash reboot durations. (experiment teefiaim Candea
foreach(customer) and Fox([3])

interview()

Fig. 2. Source code for an imaginary interviewer component. ~ automatic cannon. Application programmers interface ef th
cannon offers a method that operates the loading mechanism
which inserts an explosive shell into the cannon and another
method which fires the cannon. In such case remembering the
state of operation would be mandatory. A crash could occur
after inserting a shell into the cannon. When restarted, the
component would insert another shell without shooting the
Fig. 3. Source code for an imaginary cannon controller carept previous one first. This might break the canon or even result
in an explosion.

while(true)
load()
shoot()

remain equal whether or not we store any of the programs [Il. CRASHES ANDCLEAN SHUTDOWNS

state. So there is no need for sophisticated state handling. Clean shutdown refers to a shutdown operation that manages
Figure 2 shows an imaginary component for interviewing end operation of a software component in a known good
customers. It is used in a huge corporation. When the laghte. A sophisticated algorithm that takes in accountrtheri
customer interview is complete, a relatively long time hagate of a component may be needed in order to perform clean
passed from the first interview and it is time to interview abhutdown. A public method implementing such algorithm is
the customers again. In this example restarting the compongsually called in order to shutdown the component. Each
changes operation. When the component gets restartedtdinponent will then recursively call shutdown methods ef th
always starts interviewing from the first customer. If rest® components they use.
happens often, the first customer gets irritated and it mieg/ ta Crashes are situations where a component working on a
ages before the corporation gets interviewing results@fdht task is interrupted unexpectedly. Crashes are usuallyresdo
customer. In a case like this, storing some of the operationy a master component for components that refuse to work
state can be used to optimize behaviour of a component eveyi,some set of given rules. For example an operating sys-
if storing the state is not a requirement for operation. tem might crash a process for writing to memory locations
Many tasks done with office software are fast, so storingserved for other processes or a user might crash a piece
state of a task in order to save time or computing power ¢§ computer hardware by cutting out its power source, if the
not feasible. With some more heavy computational tasks theachine started to create loud operating noises in extensio
progress is stored at the level of sub operations. For examf@ computational results. In UNIX systems executing kill -9
a compiler may store state of compiling operation at thellevie an example of crashing a process. Turning off a machine
of compiled object files. Once an object is compiled there i a virtual machine, inside which the process is being ran is
no need to recompile it unless the source code changes. Thifbther example.
if a compiler crashes while compiling, it is possible to a&st Crashes can often be hard to avoid. Sudden interruption
work from the last unfinished object. of execution at an inconvenient time may leave the system
Computational operations may have an end or they may neta broken state. Thus it may be feasible to implement
have one. Distributed systems are often lacking a final dw@al t recovery procedures for healing from an occasional crash.
would end all processing. Components are designed to seTtgee most important task for a recovery method is to heal
other components or users in an on demand fashion. Onkke component, thus allowing normal operation to continue.
the need for a service is gone, operation of the componentSsme more ambitious recovery procedures may attempt to
ended explicitly by a system administrator. bring back data processed at interruption time. For example
Large distributed systems may also be hard, if not impogord processor might attempt to bring back a document being
sible to restart. For example the Internet has way too mawprked on at interruption time.
components to be restarted. The systems may also have songometimes the shutdown algorithm may take longer time
availability requirements that could not be met, if the eyst to execute than the recovery time it saves. Figure 4 shows
had to be restarted. Shutting down the Internet completely fthe result table for an experiment where three systems were
a moment doesn’t seem a sensible option. restarted. The systems included Red Hat Linux 8, JBoss
Figure 3 shows an imaginary component that controls @pplication Server 3.0 and Windows XP. Red Hat Linux was

methods on stress. Trivial crashes are usually fixed befare t

_ software is released. Therefore the remaining crashesehapp
+ heal_from_real_life_ damage_and_connect_computer_to_wall_outlet() .
+ cut power(c : computer) seldom and are hard to simulate. The lack of a shutdown
. algorithm implies crash-safety and shutting a componewindo
always by crashing it results in frequent testing of crash
recovery code.

administrator

manages
. ’ In their description of crash-only design, Candea and Hox[3
limit the discussion mainly to software components. Thepal
computer describe many requirements for crash-only systems. These
: E;ff;—;;’g;‘?'f-tesm requirements include many software specific requirements o
. used protocols, additional software components, that shera
only system has to implement, and the way these pieces are
glued together to form a system. While the stated requirésnen
runs provide a useful example for using crash-only components,
1 limiting their use strictly to that design only seems counte

productive.

Reducing all different faults into crashes might make a
system hard to debug. When debugging a system it is useful
to search for the weakest link. Restart density can be usad as
quality metric for a crash-only component. The componegt th
is restarted most often is then the weakest link in the system
handles Specifics of recover operations can be logged for performing
further error analysis at later time while the system is iagn
This way there would be no analysis overhead at restarting
time.

T RN e our i e e ik o Counting failures is not a new idea. For example Tannen-
baum has been advocating LF (Lifetime Failure) as a software
Fig. 5. Examples of Crash-only components with externasttiend internal - quality metric [5]. A quality metric for crash-only compants

operating system

+ recover_able_init()
+ kill(p : process)

*

*

process

recovery methods. would take in account also failures that are invisible toubker.
LF could still be used for measuring quality of the overakus
])] __experience.
configured to use ext3 (third extended file system) as its file
system. Each system was restarted two times. One of the V. SYSTEM COMPOSITION

restarts used a shutdown algorithm for shutting the systtMcandea, Cutler and Fox([3][4] describe a component level
down in aclean fashion, while the other brought the systemetry architecture model for composing systems out of erash
down with acrash. No important data was lost in any of thegnly components. The architecture includes a service sque
experiments. tree and a state store for storing important state.

The components communicate by sending service requests
to each other. The service requests are a way of asking the
Components that intentionally do not provide any publiserving component to perform some computational operation
method for shutting them down are referred to as crash-8hly[The service requests are answered with the computational
components. Lack of public shutdown methods forces userrsults. When the request has no computational results, suc

crash a component in order to shut it down. Crashing is alsessful completion of the given task is reported.
the only way a crash-only component can shut itself down. Components are wired together to form a tree shaped
At high level the crash-only behaviour can be described Byructure. Action begins when root component is assigned a
the equations stop=crash and start=recovery. While avagh- task. Root component starts working on the subject and uses a
components don'’t provide a shutdown method for themselvegt of worker components, to solve subproblems, by sulnmitti
methods for shutting down subcomponents may be providegkrvice requests to them. The serving components then dehav
Figure 5 shows a class diagram example for a few cragimilarly. Each of them uses a distinct set of components
only components. Each component provides an internal recder solving partial problems. Finally processing of thektas
ery method. Each component also provides a method to crashches leaf components that do not need other components
their subcomponents externally without dealing with intdr for performing their task. In the minimum setup there is only
state of the component. In the example "process” makes ame component which is both a leaf component and the root
exception. It doesn’'t provide any mechanism for crashirgpmponent of the system.
subcomponents, as it doesn’t have any subcomponents. When component fails to do its task, each component in the
Crashing components on each shutdown puts recoverbtree behind that component gets restarted along with the

IV. CRASH-ONLY COMPONENTS

failing component. The restarts may be launched recussivel VI. CONCLUSION
for parallel components or at once for components that aréHealing by component level restarts is simple and robust
one inside the other. Processes in an operating system wopklch makes the approach suitable for healing from many
launch restarts of other processes recursivc_aly, whilgrigrihe yifferent unsuspected faults, including purely technieailts
power switch of a computer would effectively restart everynq failures enforced on purpose by a malicious party. Prepa
component running in the computer. Because the systemid'g for crash is usually a good idea. Crash-safety can be
tree shaped, the components behind the failing component gfded to components by adding a recovery algorithm that
hidden from the other components. Thus restarting an enfigeexecuted at startup. Carefully designed runtime behavio
subtree won't cause any side-effects on other componentscan simplify the recovery. In most cases there is no point
Each service request from a component to another CofR-ysing a sophisticated shutdown algorithm with craste-saf
ponent has a related TTL (time to live) value. TTL is thgomponents. Sometimes the shutdown algorithm may even
time frame within which the requested operation is expeciggke longer time to execute than the recovery time it saves.
to complete. At the time of request TTL is set to a positivRestarting components can also be used for component level
integer value. The TTL value may be decided on forehand Rfjuvenation.
calculated from duration of past operations or currentesyst Crash-only components do not provide any public method
load. for shutting them down which puts recovery methods on stress
The TTL value is then decreased peripdically until it reachgyegk spots of the system can be found by counting failures
zero. TTL values can be handled by timers and they do Nt lead to restart of component. In a component level retry
need to be forwarded with service requests. If no respong@hitecture model components are wired together to form a
is received, at that point, the requesting component reéebMree shaped structure. When a component fails to do its task
the request. Root component hides all the other componeis system is able to heal by restarting each component in the
behind it and provides public interface for using the systergpiree behind that component along with the failing compo-
When processing moves towards the leaf components, figt Al state handling can be pushed into one component.
components hide less functionality behind them. Therefo;:paving all state stored in a central place simplifies recpver
the operations closer to leaf components are lighter and M&Y making most parts of the system stateless. When a system
have smaller TTL values than the components closer to th@yres some state with restart persistence it takes theofisk
root component. Having smaller TTL values closer to leafs §0ring a failure in the state information.
useful, as it allows multiple transparent retries at lovearel The discussion around crash-only self-healing seems to
before the TTL values at upper level run out. concentrate on network services that run within a single
Storing state is often useful, sometimes even mandatofyministration domain. The approach might work well also
The architecture model contains a state store where imgortg, some public systems in which the nodes don't trust each
parts of system state are stored. The state store is itsgler. Isolation and fail-safety are already important Sgs-
a crash-only component. Storing state in a dedicated StOjgns consisting of untrusted nodes. Using a crash-only self
is expected to make recovery simpler by introducing ofgxaling strategy in a public p2p-environment might be aa are
component for managing all important state and pushing @jbth further studies. Building user interfaces of crasiyo

related requirements to that component. Rest of the syst@Bponents and allowing user to crash them at any time, might
becomes stateless and thus free of state related requitmef)so pe an interesting experiment.

Pushing all state handling into just one component simplifie
recovery as the component can keep state transitions temisis REFERENCES
with techniques similar to transactions. Full ACID (Atonity¢ [1] Minix website, http://www.minix3.org/reliability.html (visited 10 Mah,
Consistency, Isolation and Durability) requirements may b 2007)

. . - M. Locasto, K. Wang, A. Keromytis and S. Stolfd;LIPS Hybrid
too much for most systems. Taking in account specifics Bt adaptive intrusion prevention, In RAID, 2005.

the target system, it should be possible to design lightel G. Candea and A. FoxCrash-only software, In Proc. 9th Workshop on
alternatives. Hot Topics in Operating Systems, Lihue, Hawaii, 2003.
. . . - [4] G. Candea, J. Cutler and A. Fokynproving availability with recursive
Transactlonal .C.raSh safety comes with a price. It requ”%% microreboots: a soft-state system case study, Perform. Eval. vol 56, 1-4,
using some additional methods that are used for crash safety2004, pages 213-248, Elsevier Science Publishers B. V.

purposes only. Letting the system break when it crashesdvolfl Lifetli,me Fa“foe metfizco Ogvas intrg_ducedTby bAndrew I_Tanenhbaum

at linux.conf.au in , according tdlanenbaum outlines his
make the system operate faster.) . vison for a grandma-proof OS article by Howard Dahdah,
When a system stores some state with restart persistencenttp:/imww.computerworld.com.au/index.php/id;1948804;fp;4:fpid; 1968336438

it takes the risk of storing a failure in the state informatio (published 24 January, 2007 visited 12 March, 2007)
Thus there is a trade-off between amount of state stored and

the systems ability to heal itself by restarting components

A stored failure which would make a component fail again

immediately after restart might cause the system to enter

a tight restart loop. In this worst case scenario the failing

component would not be able to do its task.

