
Crash-only Components in Self-healing Systems
Toni Ruottu

Department of Computer Science
Helsinki University

Email: toni.ruottu@iki.fi

Abstract—Crash-only components don’t provide a method for
shutting them down. Therefore crash recovery functionality gets
tested every time a crash-only component is restarted. Well
working crash recovery makes the components well suited for
building self-healing systems based on transparent restarting
of failing subsystems. Healing by restart is a widely adaptable
primitive which is easy to understand.

I. I NTRODUCTION

Creating a system that is able to heal from unknown
sicknesses, such as software bugs, is a tricky task. When a
developer notices a failure in the system, she usually attempts
to locate the problem origin and fix the problem where it
is. A developer who creates self-healing abilities, leavesthe
software broken and writes some medicine code to heal the
broken system. While developers try to remove the chronic
diseases from software before release, it is useful to prepare
for occasional flu by shipping some medicine with the system
as a safety measure.

Because the failures healed by self-healing code are often
unsuspected, it may be hard to design an algorithm to analyze
the problem and find out a solution. One solution for the
problem is to restart the failing component and hope that
it will start up in a working state. Failures that happen
always at component startup are noticed immediately when
the component is deployed. Therefore, restarting a component
will bring it to a working state unless the failure has been
stored to persist over the restart.

Simplicity of the approach makes it suitable for many
different purposes, including not only purely technical faults,
but also failures enforced on purpose by a malicious party. The
approach has been used in micro kernel operating systems to
heal form driver failures by restarting the driver. [1] Healing
from security attacks by enabling an IDS (intrusion detection
system) to restart components has also been suggested. [2]

Restarting a components is a simple and robust way for
healing an unsuspected failure for components that forget their
state on restart, but not all components forget their state on
restart. The components may have an algorithm that is ran at
shutdown time to store some parts of the components state to
persist over restart. Crashing the failing components instead
of shutting them down cleanly may prevent the component
from storing the failure. Interrupting operation of an unsus-
pecting component does not always result in a good state.
The component may have stored some state during operation
or some state may have been stored in other components.
Another problem in sudden interruption is that the interrupted

component doesn’t get a change to free resources it has
reserved. Lease based resource allocation is useful in cases
where freeing resources may not be possible.

Crashing happens for programming mistakes, if not by
design for constructive purposes, so preparing for them is
usually a good idea. Components can be made crash-safe by
adding a recovery algorithm for fixing breakages at startup.
Carefully designed runtime behaviour can simplify the re-
covery algorithm making recovery faster. Transaction like
techniques can be used for transferring the component from
a good restart persistent state, to another good state. The
recovery algorithm can then simply cancel or complete the
operations that were unfinished when the crash happened. Thus
the component will not be stuck in the middle of two states
and doesn’t fail for that purpose.

In most cases there is no point in using a sophisticated
shutdown algorithm with crash-safe components. There are
some cases where combination of the two techniques makes
sense. The recovery algorithm may not work well and it may
be designed to be used only as the last straw when everything
else fails. However, working recovery is usually desired. In
some special situation a shutdown algorithm may make faster
recovery possible. But then again, recovery can often be made
reasonably fast without a shutdown algorithm.

Along self-healing, restarting components can be used for
rejuvenating the software while it is running. Components can
be restarted periodically which heals minor problems before
the component breaks up completely. Restarting a component
can also take place when the system notices some warning
signs. For example continuing memory consumption growth
could be a warning sign for memory leak. Restarting the
leaking component would then prevent it from filling the run
time memory entirely.

II. STATES THAT MATTER

Everything that is being run on a computer has a state.
There are many levels of state. Many pieces of software are
not design to keep their state over crashing. With some simple
applications storing the state would not even make any sense.
For example traditional office software may store the state of
a document on request or even periodically. Office software
seldom stores the state of operation.

Figure 1 shows a ”hello world” component. All it ever does
is greeting the user and it greets the user until it is crashed.
With a component this simple, crashing it and restarting it
will make no difference for its operation. The operation will



Fig. 1. Source code for a ”hello world” component.

Fig. 2. Source code for an imaginary interviewer component.

Fig. 3. Source code for an imaginary cannon controller component.

remain equal whether or not we store any of the programs
state. So there is no need for sophisticated state handling.

Figure 2 shows an imaginary component for interviewing
customers. It is used in a huge corporation. When the last
customer interview is complete, a relatively long time has
passed from the first interview and it is time to interview all
the customers again. In this example restarting the component
changes operation. When the component gets restarted it
always starts interviewing from the first customer. If restarting
happens often, the first customer gets irritated and it may take
ages before the corporation gets interviewing results of the last
customer. In a case like this, storing some of the operational
state can be used to optimize behaviour of a component even,
if storing the state is not a requirement for operation.

Many tasks done with office software are fast, so storing
state of a task in order to save time or computing power is
not feasible. With some more heavy computational tasks the
progress is stored at the level of sub operations. For example
a compiler may store state of compiling operation at the level
of compiled object files. Once an object is compiled there is
no need to recompile it unless the source code changes. Thus,
if a compiler crashes while compiling, it is possible to restart
work from the last unfinished object.

Computational operations may have an end or they may not
have one. Distributed systems are often lacking a final goal that
would end all processing. Components are designed to serve
other components or users in an on demand fashion. Once
the need for a service is gone, operation of the component is
ended explicitly by a system administrator.

Large distributed systems may also be hard, if not impos-
sible to restart. For example the Internet has way too many
components to be restarted. The systems may also have some
availability requirements that could not be met, if the system
had to be restarted. Shutting down the Internet completely for
a moment doesn’t seem a sensible option.

Figure 3 shows an imaginary component that controls an

Fig. 4. Clean and crash reboot durations. (experiment results from Candea
and Fox[3])

automatic cannon. Application programmers interface of the
cannon offers a method that operates the loading mechanism
which inserts an explosive shell into the cannon and another
method which fires the cannon. In such case remembering the
state of operation would be mandatory. A crash could occur
after inserting a shell into the cannon. When restarted, the
component would insert another shell without shooting the
previous one first. This might break the canon or even result
in an explosion.

III. C RASHES ANDCLEAN SHUTDOWNS

Clean shutdown refers to a shutdown operation that manages
to end operation of a software component in a known good
state. A sophisticated algorithm that takes in account the inner
state of a component may be needed in order to perform clean
shutdown. A public method implementing such algorithm is
usually called in order to shutdown the component. Each
component will then recursively call shutdown methods of the
components they use.

Crashes are situations where a component working on a
task is interrupted unexpectedly. Crashes are usually enforced
by a master component for components that refuse to work
by some set of given rules. For example an operating sys-
tem might crash a process for writing to memory locations
reserved for other processes or a user might crash a piece
of computer hardware by cutting out its power source, if the
machine started to create loud operating noises in extension
to computational results. In UNIX systems executing kill -9
is an example of crashing a process. Turning off a machine
or a virtual machine, inside which the process is being ran is
another example.

Crashes can often be hard to avoid. Sudden interruption
of execution at an inconvenient time may leave the system
in a broken state. Thus it may be feasible to implement
recovery procedures for healing from an occasional crash.
The most important task for a recovery method is to heal
the component, thus allowing normal operation to continue.
Some more ambitious recovery procedures may attempt to
bring back data processed at interruption time. For examplea
word processor might attempt to bring back a document being
worked on at interruption time.

Sometimes the shutdown algorithm may take longer time
to execute than the recovery time it saves. Figure 4 shows
the result table for an experiment where three systems were
restarted. The systems included Red Hat Linux 8, JBoss
Application Server 3.0 and Windows XP. Red Hat Linux was



Fig. 5. Examples of Crash-only components with external crash and internal
recovery methods.

configured to use ext3 (third extended file system) as its file
system. Each system was restarted two times. One of the
restarts used a shutdown algorithm for shutting the system
down in aclean fashion, while the other brought the system
down with acrash. No important data was lost in any of the
experiments.

IV. CRASH-ONLY COMPONENTS

Components that intentionally do not provide any public
method for shutting them down are referred to as crash-only[3]
components. Lack of public shutdown methods forces user to
crash a component in order to shut it down. Crashing is also
the only way a crash-only component can shut itself down.
At high level the crash-only behaviour can be described by
the equations stop=crash and start=recovery. While crash-only
components don’t provide a shutdown method for themselves,
methods for shutting down subcomponents may be provided.

Figure 5 shows a class diagram example for a few crash-
only components. Each component provides an internal recov-
ery method. Each component also provides a method to crash
their subcomponents externally without dealing with internal
state of the component. In the example ”process” makes an
exception. It doesn’t provide any mechanism for crashing
subcomponents, as it doesn’t have any subcomponents.

Crashing components on each shutdown puts recovery

methods on stress. Trivial crashes are usually fixed before the
software is released. Therefore the remaining crashes happen
seldom and are hard to simulate. The lack of a shutdown
algorithm implies crash-safety and shutting a component down
always by crashing it results in frequent testing of crash
recovery code.

In their description of crash-only design, Candea and Fox[3]
limit the discussion mainly to software components. They also
describe many requirements for crash-only systems. These
requirements include many software specific requirements on
used protocols, additional software components, that a crash-
only system has to implement, and the way these pieces are
glued together to form a system. While the stated requirements
provide a useful example for using crash-only components,
limiting their use strictly to that design only seems counter-
productive.

Reducing all different faults into crashes might make a
system hard to debug. When debugging a system it is useful
to search for the weakest link. Restart density can be used asa
quality metric for a crash-only component. The component that
is restarted most often is then the weakest link in the system.
Specifics of recover operations can be logged for performing
further error analysis at later time while the system is running.
This way there would be no analysis overhead at restarting
time.

Counting failures is not a new idea. For example Tannen-
baum has been advocating LF (Lifetime Failure) as a software
quality metric [5]. A quality metric for crash-only components
would take in account also failures that are invisible to theuser.
LF could still be used for measuring quality of the overall user
experience.

V. SYSTEM COMPOSITION

Candea, Cutler and Fox[3][4] describe a component level
retry architecture model for composing systems out of crash-
only components. The architecture includes a service request
tree and a state store for storing important state.

The components communicate by sending service requests
to each other. The service requests are a way of asking the
serving component to perform some computational operation.
The service requests are answered with the computational
results. When the request has no computational results, suc-
cessful completion of the given task is reported.

Components are wired together to form a tree shaped
structure. Action begins when root component is assigned a
task. Root component starts working on the subject and uses a
set of worker components, to solve subproblems, by submitting
service requests to them. The serving components then behave
similarly. Each of them uses a distinct set of components
for solving partial problems. Finally processing of the task
reaches leaf components that do not need other components
for performing their task. In the minimum setup there is only
one component which is both a leaf component and the root
component of the system.

When component fails to do its task, each component in the
subtree behind that component gets restarted along with the



failing component. The restarts may be launched recursively
for parallel components or at once for components that are
one inside the other. Processes in an operating system would
launch restarts of other processes recursively, while turning the
power switch of a computer would effectively restart every
component running in the computer. Because the system is
tree shaped, the components behind the failing component are
hidden from the other components. Thus restarting an entire
subtree won’t cause any side-effects on other components.

Each service request from a component to another com-
ponent has a related TTL (time to live) value. TTL is the
time frame within which the requested operation is expected
to complete. At the time of request TTL is set to a positive
integer value. The TTL value may be decided on forehand or
calculated from duration of past operations or current system
load.

The TTL value is then decreased periodically until it reaches
zero. TTL values can be handled by timers and they do not
need to be forwarded with service requests. If no response
is received, at that point, the requesting component resubmits
the request. Root component hides all the other components
behind it and provides public interface for using the system.
When processing moves towards the leaf components, the
components hide less functionality behind them. Therefore
the operations closer to leaf components are lighter and may
have smaller TTL values than the components closer to the
root component. Having smaller TTL values closer to leafs is
useful, as it allows multiple transparent retries at lower level
before the TTL values at upper level run out.

Storing state is often useful, sometimes even mandatory.
The architecture model contains a state store where important
parts of system state are stored. The state store is itself
a crash-only component. Storing state in a dedicated store,
is expected to make recovery simpler by introducing one
component for managing all important state and pushing all
related requirements to that component. Rest of the system
becomes stateless and thus free of state related requirements.

Pushing all state handling into just one component simplifies
recovery as the component can keep state transitions consistent
with techniques similar to transactions. Full ACID (Atomicity,
Consistency, Isolation and Durability) requirements may be
too much for most systems. Taking in account specifics of
the target system, it should be possible to design lighter
alternatives.

Transactional crash safety comes with a price. It requires
using some additional methods that are used for crash safety
purposes only. Letting the system break when it crashes would
make the system operate faster.

When a system stores some state with restart persistence
it takes the risk of storing a failure in the state information.
Thus there is a trade-off between amount of state stored and
the systems ability to heal itself by restarting components.
A stored failure which would make a component fail again
immediately after restart might cause the system to enter
a tight restart loop. In this worst case scenario the failing
component would not be able to do its task.

VI. CONCLUSION

Healing by component level restarts is simple and robust
which makes the approach suitable for healing from many
different unsuspected faults, including purely technicalfaults
and failures enforced on purpose by a malicious party. Prepar-
ing for crash is usually a good idea. Crash-safety can be
added to components by adding a recovery algorithm that
is executed at startup. Carefully designed runtime behaviour
can simplify the recovery. In most cases there is no point
in using a sophisticated shutdown algorithm with crash-safe
components. Sometimes the shutdown algorithm may even
take longer time to execute than the recovery time it saves.
Restarting components can also be used for component level
rejuvenation.

Crash-only components do not provide any public method
for shutting them down which puts recovery methods on stress.
Weak spots of the system can be found by counting failures
that lead to restart of component. In a component level retry
architecture model components are wired together to form a
tree shaped structure. When a component fails to do its task
the system is able to heal by restarting each component in the
subtree behind that component along with the failing compo-
nent. All state handling can be pushed into one component.
Having all state stored in a central place simplifies recovery
by making most parts of the system stateless. When a system
stores some state with restart persistence it takes the riskof
storing a failure in the state information.

The discussion around crash-only self-healing seems to
concentrate on network services that run within a single
administration domain. The approach might work well also
in some public systems in which the nodes don’t trust each
other. Isolation and fail-safety are already important forsys-
tems consisting of untrusted nodes. Using a crash-only self-
healing strategy in a public p2p-environment might be an area
worth further studies. Building user interfaces of crash-only
components and allowing user to crash them at any time, might
also be an interesting experiment.

REFERENCES

[1] Minix website, http://www.minix3.org/reliability.html (visited 10 March,
2007)

[2] M. Locasto, K. Wang, A. Keromytis and S. Stolfo,FLIPS: Hybrid
adaptive intrusion prevention, In RAID, 2005.

[3] G. Candea and A. Fox,Crash-only software, In Proc. 9th Workshop on
Hot Topics in Operating Systems, Lihue, Hawaii, 2003.

[4] G. Candea, J. Cutler and A. Fox,Improving availability with recursive
microreboots: a soft-state system case study, Perform. Eval. vol 56, 1-4,
2004, pages 213-248, Elsevier Science Publishers B. V.

[5] Lifetime Failure metric was introduced by Andrew Tanenbaum
at linux.conf.au in 2007, according toTanenbaum outlines his
vision for a grandma-proof OS article by Howard Dahdah,
http://www.computerworld.com.au/index.php/id;1942598204;fp;4;fpid;1968336438
(published 24 January, 2007 visited 12 March, 2007)


