
 1

Abstract—The mechanism of self-healing enables the

system to continue operating properly on the event of the
failure of some of its components, to determine the errors
and to recover from them. In traditional mechanisms,
analyzing, changing and reusing have never been an easy
task. An alternative and perhaps more efficient way is
allowing the system to adapt dynamically at configuration
level. Configuration-level adaptation mechanism assumes
that the architecture of the system is modeled as a
collection of components. Each component has two-layer
architecture, healing layer and service layer. Anomalous
tasks are detected by means of message communication
between tasks in a component. Message communication is
done via connectors and plays the important role in
detecting anomalous tasks, and, thus consequently, in
reconfiguring components and repairing anomalous tasks.

I. INTRODUCTION

AY by day, computer systems are becoming more
sophisticated, and high degree of reliability is demanded.

With the change of system resources and environment, the
system may tend to show malfunctionality.
 In adaptation mechanism, it is an important issue that in
case of failure of any component of the system, the system
will be able to detect the errors and continue to operate with
degraded functionality. Eventually the system must be able to
recover from failure.
 The adaptation mechanisms can be classified as internal
and external. In internal, adaptation mechanisms are tightly
integrated with the application itself and wired in at the code
level supported by some programming languages (e.g., Java
Exceptions) or usual control checking by the programmers.
The major difficulty of traditional mechanisms is localizing
the errors.
 Configuration-level adaptation, the external mechanism,
outweighs traditional mechanisms because of its global
perception on the system. This perception helps to adapt the
system dynamically. Moreover, the mechanism can support
reuse in more efficient way, since adaptation is not wired into
application. Configuration-level adaptation is based on the
architecture of the self-healing system [4][8], and the
architecture changes during software execution. The structure
of the run-time adaptation can be shortly viewed as illustrated
in Figure 1. The system behavior is monitored by components

 Manuscript received March 12, 2007

The author is with the Department of Computer Science, University of
Helsinki, Finland. (e-mail: jamshed.siddiqi@cs. helsinki.fi)

outside the running system. The component always remains
vigilant to detect if any anomaly occurs. After detection,
errors are analyzed and repaired.

Figure 1: Configuration-Level Adaptation

 Despite the advantages of configuration-level adaptation,
the researchers have been facing some challenges regarding
this run time adaptation. Challenges include [3]:
 Monitoring: How monitoring capabilities can be achieved
so that the regular functionalities of the components are not
disturbed? What type of parameters should be considered for
monitoring? How system components should be designed so
that they can be easily monitored?
 Interpretation: How it can be determined that system
components are erroneous? What is the source of the system
errors?
 Resolution: There might be set of possible repairing
techniques. How the best technique can be chosen?
 Adaptation: How adaptation should be done so that the
system continues to run properly? How the system
components should be designed so that they can be adapted
dynamically?
 This paper is organized as follows. Section II describes the
architecture of self-healing component. Then we describe the
architecture of self-healing connector in Section III. How
anomalies are detected in self-healing systems is described in
Section IV. We discuss the self-healing mechanism by means
of message communication in Section V. The last section,
Section VI, draws some conclusions of configuration-level
adaptation.

Configuration-Level Adaptation
Md. Jamshed Haider Siddiqi

D

Notification

Analysis
and

Repair

Running
System

Monitoring

System
Architecture

Adaptation

Planning

 2

II. ARCHITECTURE FOR SELF-ADAPTATION

 The self-healing system architecture consists of
components. Each component has two layers, healing layer
and service layer. The components in haling layer are
designed to detect and heal anomalies in service layer that
might emerge at run time [7]. The connectors in service layer
help the healing layer in detecting anomalies by notifying the
status of service layer components.
 When the healing layer detects any abnormalities in a task,
it initiates self-healing mechanism for anomalous task.
During healing phase the service layer limits its services to
handling test data only. At the very first step, the healing
layer reconfigures the service layer to isolate the anomalous
task, and inform the neighboring components about the
abnormalities of the task. After that, the healing layer starts
to repair the anomalous task. The healing layer of each
component (Figure 2) consists of the following components
[2]:
 Component Monitor: To monitor the behavior of the
service components the Component Monitor contains the
state transition diagrams for each task. State transition
diagrams represent the functional conditions of the
components. Component Monitor has a thread for each task
in the component. The thread is responsible for executing the
state transition diagrams. The Component Monitor supervises
the behavior of tasks, connectors and passive objects (the
object that does not have its own control, i.e. invoked by only
tasks).

Figure 2: The Healing Layer of a Self-Healing Component

 Reconfiguration Plan Generator: Once Component
Monitor detects any anomaly in the component it notifies the
Self-Healing Controller. The Self-Healing Controller requests

Reconfiguration Plan Generator to generate plan for
reconfiguring the component. Reconfiguration Plan
Generator contains the information about the configuration of
the tasks in the components. There may be other neighboring
components in the system whose objects may be affected by
the behavior of the anomalous tasks. To mitigate the impact
of paralyzed tasks in other components the Reconfiguration
Plan Generator maintains the information about the
organization of neighboring components.
 Reconfiguration Plan Executor: The Reconfiguration Plan
Executor executes the plan generated by the Reconfiguration
Plan Generator. The Reconfiguration Plan Executor is
informed by the Self-Healing Controller and reconfigures the
service layer by blocking sending and receiving connectors
associated with the anomalous task. The sending and
receiving connectors will remain blocked until the anomalous
task has been repaired.
 Repair Plan Generator: The Repair Plan Generator has
knowledge of how to repair each individual task and passive
objects. This component performs the operations similar to
Reconfiguration Plan Generator with the exception that it
plans for repairing.
 Repair Plan Executor: The Repair Plan Executor executes
the plan generated by Repair Plan Generator. It also works in
similar fashion like Reconfiguration Plan Executor.
 Self-Healing Controller: The Self-Healing Controller acts
as a coordinator to conduct the self-healing mechanism. The
Self-Healing Controller listens to the Component Monitor.
According to the received information from the Component
Monitor, the Self-Healing Controller requests plan generators
for generating plans. After receiving responses it informs the
executors to execute the desired plans.

III. ARCHITECTURE OF SELF-HEALING CONNECTOR

 As described in the previous section the healing layer of a
self-healing component detects anomalies in the service layer.
To identify mulfunctional tasks in the service layer, the
Component Monitor communicates with the connectors
associated with the tasks. That means that detection of
anomalies is performed by means of communication with the
connectors and repairing is executed through the connectors.
The self-healing connector can also be designed of two layers,
communication layer and healing layer [1]. Figure 3
illustrates the architecture of self-healing connector.
 The communication layer of the self-healing connector
sends messages to and receives them from healing layer of the
component. The healing layer consists of healing manager.
The healing manager detects, reconfigures and repairs
anomalies as directed by the self-healing mechanism. The
communication layer consists of (Figure 3):
 Call Routine: The Call Routine packs a message and sends
the packed message to a intended receiver.
 Return Routine: The Return Routine unpacks the message
and sends it to the destination component
 Incoming Message Queue: The Incoming Message Queue
stores messages received from other components

Self-Healing Controller

Reconfiguration Plan

Executor

Component Monitor

Repair Plan Executor

Repair Plan Generator

Reconfiguration Plan

Generator

 3

Figure 3: The Architecture of Self-Healing Connector

 Outgoing Message Queue: The Outgoing Message Queue
stores messages to be sent to the incoming queue of other
components.

IV. ANOMALY DETECTION

 The components in the architecture of a system are
designed to perform specific and intended tasks. If any
component in the system does not carry the action as it is
specified, then the system is considered as anomalous. In self-
healing mechanisms, the first step is to localize the anomaly.
An anomaly occurs in the components or connectors between
the components. A Finite State Machine (FSM) represents the
behavior of the system composed of finite number of states
and transition between states [6]. The specification of
components and connectors between components can be
described using state transition diagram. Besides several
techniques, a FSM can be represented as a directed graph,
where the set of vertices represents set of specified states and
a directed edge represents a transition from one state to
another. The FSM can detect faults if the machine provides
an output different from one specified by the output function
or it enters into a different state rather than it is specified by
the transfer function.
 Anomalies in the system are detected at the level of
components and at the level of connectors between
components [5]. The Component Monitor detects anomalies
by observing tasks and connectors between tasks. The
Component Monitor detects the errors with the assistance of
connectors between tasks. Connectors provide message
communication mechanism, as well as, they inform the
Component Monitor about the status of message passing to

ensure the robustness of anomaly detection.
 When a task invokes connectors between tasks and passive
objects, the connectors notify the Component Monitor. The
connectors also notify the Component Monitor when the tasks
and passive objects complete their operations. The
notification message is used by the Component Monitor to
detect anomalies of tasks, connectors between tasks and
passive objects accessed by the task.
 During and after the notification the Component Monitor is
involved with the state transition diagram for the task. The
Component Monitor examines state diagram of the task and
considers the task anomalous if the task does not execute
properly. In this way, the anomaly in a component can be
traced, but if there is any anomaly in the connector itself the
anomaly may remain undetected. To overcome this,
connectors notify the Component Monitor about the status of
message communication. Meanwhile, the Component
Monitor uses timeout. If the Component Monitor does not
hear from the connector within a time intervals, it considers
the respective connectors as erroneous.

V. SELF-HEALING MECHANISM AND MESSAGE

COMMUNICATION

 Besides message communication, connectors also perform
some extended operations to support the self-healing
mechanisms [2]. These extended operations include
reconfiguring the anomalous task in the service layer of a
component and testing the repaired task by test data.
Connectors acknowledge their status to the Component
Monitor after receiving and storing data or messages in
buffers or queues. They also acknowledge the status of
delivering messages to other task on behalf of the associated
tasks. When a passive object is accessed by other tasks in the
service layer of a component and operations are completed
successfully, also needs to notify the Component Monitor.
The trace of a task thread within a connector and a passive
object can determine the abnormalities of the connector and
passive object.
 Figure 4 illustrates the architecture of a self-healing
component and a scenario of sequence of message
communication in usual and intended case and also in case of
some abnormalities. Normal services of the Task1,
Connector1 and Connector2 are described in Figure 4 by
message sequence M1 through M8. When Connector1
receives the message M1 on behalf of the Task1 from any
external object, it notifies the Component Monitor by sending
the message M2 labeled input arrived. The message M2 bears
the meaning that Connector1 receives input from an external
object. After that, Connector1 allows the Component Monitor
to wait for next message input placed. When connector1
places the input in the queue or buffer associated with Task1
it notifies the Component Monitor input placed by the
message M3. When Connector1 places the input it expects to

Healing Manager

Healing Layer

Communication
Layer

Call
Routine

Return
Routine

Incoming
Message
Queue

Outgoing
Message
Queue

Analysis
Detect
Repair

Notification

 4

Reconfiguration
Plan Executor

Self-Healing Controller

Monitor Repair Plan
Executor

Reconfiguration Plan
Generator

Repair Plan
Generator

M10:Request Plan

M11:Recon. Plan

M15:Request Plan

M16: Repair Plan

M12:Reconfiguration Plan
M33: Unblock

 M32:Repair Finished
M9:Failure
Notification

M13:Blocked
M34: Unblocked M29:Test Results

M19: Test Begin
M28: Request Result
M30: Test Finished

Healing Layer

Service Layer

Connector1 Connector2 Task1

M1: Input
(from external obj.)

M12a: Block
Sender
M33a:
Unblock
Sender

M2,21: Input
arrived
M3,22: Arrv.
Input Plc.
M5,24:Read
Input

M6,25: Msg.

M7,26: Msg. Arrived
M8,27: Msg. Placed

M18: Intilz.
M20:Test Data
M31: Intliz.

M12b: Block Receiver
M33b: Unblock Receiver

M4,23:Read Input

 M17:Repair Plan

M14,35: Notify external connectors

Figure 4: Self-Healing Component Architecture and Message Sequence [2]

 5

receive an acknowledgement read input (message M4 in
Figure 4) from Task1. After receiving the message it informs
the Component Monitor via message M5. Receiving any
messages by the connectors and notifying the Component
Monitor go on in the same fashion. If the Component
Monitor missed to be informed about the sequence of
messages from the connectors it determines that the
respective tasks or connectors are anomalous and immediately
start to carry its action to repair the unhealthy task or
connector by means of dynamic reconfiguration.
 After detecting anomaly, the Component Monitor notifies
the failure to the Self-Healing Controller (message M9). The
Self-Healing Controller requests Reconfiguration Plan
Generator to generate and send reconfiguration plan. The
Reconfiguration Plan Generator honors the request and sends
reconfiguration plan to the Self-Healing Controller. In order
to eliminate the impact of anomalous task to other healthy
objects in the component or other external objects, the task is
blocked and restricted to send or receive any messages during
reconfiguration and repairing phases. In Figure 4, Task1 is
blocked. The Reconfiguration Executor sends block sender
(M12a) message to the incoming connector (Connector 1) to
refrain the connector from adding any new messages in the
queue or buffer. In the meantime, it sends the block receiver
message to outgoing connector (Connector2) to block
receiving any message from the queue or buffer associated
with the anomalous task. Reconfiguration against a sick task
is performed through the message sequence M10 to M13. The
Self-Healing Controller also informs neighboring components
about the unhealthy state of the component via message M14.
 After reconfiguring the anomalous task, the Self-Healing
Controller takes initiatives to repair the task. Self-Healing
Controller consults with the Repair Plan Generator and let the
Repair Executor know (by message M17 in Figure 4) about
the planning for repairing the anomalous task, Task1. The
repairing of anomalous task generally includes re-
initialization or re-installation. The Repair Executor repairs
the task according to the plan received through message M17.
After repairing, the task is tested. Testing begins by
initializing the queue or buffer by means of message M18.
The Executor informs the Component Monitor that the test
begins (M19) and sends test data (M20) to the Connector1.
The test data are defined when the self-healing mechanism is
modeled. The remaining part of testing is performed by the
usual operations of Conncetor1, Task1 and Connector2
through message sequence M21 to M27.
 When the Component Monitor receives the test result by
means of message M27 it sends the results to the Repair
Executor via message M29. The Repair Executor informs the
Self-Healing Controller that the repairing of the anomalous
tasks is completed via message M32. In order to allow the
repaired task (Task1) to resume its usual operation, the Self-
Healing Controller requests the Reconfiguration Executor to
unblock (M33) the sending and receiving connectors. When
the component gets rid of its malfunctionality, the Self-

Healing Controller informs neighboring components about
the healthy state of the component through the message M35.

VI. CONCLUSIONS

 External mechanism to detect and repair anomalies has
some advantages than that of programming level mechanism.
In this paper, we have described the required architecture for
configuration-level adaptation and healing mechanism. The
architecture is designed in such a way so that faults can be
detected and repaired with the functionality of the
components of the model. One of the challenges in
configuration-level adaptation is to plan repairing policy and
applying the appropriate plan to a certain failure. Self-healing
systems must consider the fact that they change over time.
The changes may come from operating mode changes,
resource faults, adaptation to external environment etc.
Dynamic changes of adaptation will increase the efficiency in
self-healing mechanisms. There must be some intelligent
mechanism in repair plan generator to allow the self-healing
system to adapt dynamically. For example the history of
previous failures can be stored in order to analyze those.
These sorts of analysis may make the self-healing mechanism
intelligent and more adaptive.

REFERENCES

[1] Michael E. Shin, and Jung Hoon An, Self-
Reconfiguration in Self-Healing Systems, Proceedings of the
Third IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems, March 2006, pp 89-98.

[2] Michael E. Shin, and Daniel Cooke, Connector-Based
Self-Healing Mechanism for Components of a Reliable
System, Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, International
Conference on Software Engineering, 2005, pp 1-7.

[3] David Garlan, and Bradley Schmerl, Model-Based
Adaptation for Self-Healing Systems, Workshop on Self-
Healing Systems, Proceedings of the First Workshop on Self-
Healing Systems, 2002, pp 27-32.

[4] Eric M. Dashofy, Andre van der Hoek, and Richard N.
Taylor, Towards Architecture-Based Self-Healing Systems,
Workshop on Self-Healing Systems, Proceedings of the First
Workshop on Self-Healing Systems, November2002, pp 27-
32.

[5] Michael E. Shin, and Yan Xu, Detection of Anomalies in
a Software Architecture with connectors, International
Workshop on System/Software Architectures (WSSA05), Las
Vegas, Nevada, USA, June 2005, Vol. 61, Issue 1, pp. 16-26

 6

[6] Alexander Sakharov, A hybrid state machine notation for
component specification, ACM SIGPLAN Notices, April
2000, Vol. 35, Issue 4, pp 51-56

[7] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor,
Dennis Heimbigner, Gregory Johnson, Nenad Medvidovic,
Alex Quilici, David S. Rosenblum, and Alexander L. Wolf.,
An Architecture-Based Approach to Self-Adaptive Software,
IEEE Intelligent Systems, June 1999, Vol. 14, Issue 3, pp. 54-
62

[8] Philip Koopman, Elements of the Self-Healing System
Problem Space, Workshop on Software Architectures for
Dependable Systems (WADS2003) ICSE’03 International
Conference on Software Engineering, May 2003.

