

Abstract—This paper introduces hot-swapping in different
situations to implement self healing environment. It starts from
the first techniques with hardware and inroduces user-level
software hot-swapping. Last we show what is important when
hot-swapping is implemented to operating system and present
example implementantion of system-level hot-swapping for Linux
operating system.

Index Terms—Hardware, hot-swapping, self healing, software

I.INTRODUCTION

EEPING the system availability on maximum level
important and in some cases crucial (like in nuclear

plants). Still it is impossible to make unbreakable hardware
and in practice completelly faultless software (some small
programs can be proved to be faultless with mathematic
models). To solve this problem there are some solutions and
we introduce hot-swapping on hardware and software side.

K

On hardware side hot-swapping has been used in the late
1970's in high-end server systems [1]. It has been possible to
replace a malfunctioning processor or memory unit without
shutting down the system by using multiple processors and
isolating the miscalculating processor or memory from the
system and informing the end-user that the broken part needs
to be replaced. Nowadays hardware hot-swapping is available
in some ways in most server systems and in some ways (such
as hard disks) in some workstations.

Software level hot-swapping is mentioned in some form in
early 1980's [2] as dynamic modification of running program.
Lots of research has been done, but still hot-swapping
software components is not a basic tool in programming. Most
commonly used operating systems and programming tools are
lacking hot-swapping feature. Yet a lot of work has been done
and most common programming languages like C, C++ and
Java have technology reviews that show that we are close to
the breakthrough.

Hot-swapping with software can be used to handle a wider
scale of problems than hardware [3]. Still the primary
advantage with hot-swapping is that it reduces or removes the
downtime of the system. There are different ways to
implement hot-swapping on user-level programs and some of
them are introduced in this paper. As system-level hot-
swapping is another area it is introduced separately and an
example for implementing hot-swapping in Linux kernel is
shown [4].

Manuscript received March 9, 2007.
Timi Tuohenmaa is with Department of Computer Science, Helsinki

University, 00014 Helsingin Yliopisto FINLAND (corresponding author to
provide e-mail: timi.tuohenmaa@helsinki.fi).

II.HOT-SWAPPING WITH HARDWARE

Replacement of the hardware component without halting
the system is known as hot-swapping. Nowadays most
components in computer systems have the ability to be
replaced without halting the system. Workstations are not
usually built in way they support hot-swapping (replacing
keyboard or display etc. is not considered as hot-swapping),
but server systems have ways to replace components online. It
is up to the end-user how expensive computer he is ready to
buy.

Replacing power supply is the easiest hot-swappable device
since it is always in one state and with two power supplies
components keep having electricity all the time even when one
power supply is removed. Most commonly computers have
hot-swappable hard drives [5]. These are called Redundant
Arrays of Inexpensive Disks (RAID). See section II.A.
Replacement of processor unit is also possible [1] as shown in
section II.B. Many other components can be replaced too, but
are not covered here [1].

A.RAID
Normally hard drives contains the critical information of the

system. Therefore it is very important to keep critical
information safe by either using backup or keeping data safe
realtime by mirroring data to multiple hard drives [5].
Whereas mirroring is often the primary reason for RAID there
is more relevant reason for self healing and hot-swapping.
Since data is mirrored to multiple hard drives it is possible to
replace one malfunctioning drive to another without
interrupting the running system. Either hardware RAID
controller or system-level software relieve the broken hard
drive and when new functioning hard drive is replaced the
controller will mirror the data to that drive.

B.Replacing processor unit
Professor D. Siewiorek [1] introduced computer by Stratus

that had replaceable processor boards. Computer two
processor boards each having two processors. Both processors
in single board operates the same operations and compares
results. If result differs it removes itself from operation and
asks operating system to do a diagnostic. If operating system
determines an error, it alarms the user to change the broken
board. At the same time the other processor board works
normally. This way system does not fail unless the both boards
fails at the same time.

1

Hot-swapping in Self Healing Environment
Timi Tuohenmaa

III.SOFTWARE BASED HOT-SWAPPING

As for the hardware, hot-swapping can be made for
software components too. In practise this is replacing parts of
the software with newer code without shutting down the
program. To strictly follow the requirements of hot-swapping,
the program or its updated component must be exactly in the
same state as it was before update. Hardware hot-swapping is
used to replace broken (or soon-to-be broken) item to new, but
hot-swapping software can be used in the wider sphere as will
be represented in section III.A.

A.Applications
With hot-swapping broken components can be replaced

without decrease of the system availability [3]. This makes it
possible to fix bugs and security issues much faster than
before since system does not need to be down at all and
updates can be done even during the heavy traffic.

Some problems can be solved with many different
algorithms. These work better (or worse) in different
situations. The algorithms can be implemented as different
components. These alternate components can be changed by
special motitoring component that replaces algorithm when it
notices poor performance [3].

Monitoring and logging is usually not needed and causes
overhead for the operation that component really does. There
could be two versions of components where first one does
monitoring and logging in pursuance of it's primary work and
second version does not [3]. This way there extra operations
can be activated only when required whereas normally
component achieves it's maximum effectiveness.

Usually components need to be able to manage all special
cases to prevent unexpected failures. With hot-swapping and
there can be one version of component that handles the usual
cases and another component that handles all cases [3]. While
all tasks are first given to simple and fast common-case
version, it can fall back to the full version when it fails to
handle special cases. This way the normal operations are
substantially faster and rare special cases slower. Overally the
performance improvers.

IV.USER-LEVEL HOT-SWAPPING

In most user-level programs, like spreadsheet or WWW-
browser, it is not important to be able to update software
without restarting the program. It is easy to save current work
and quit the program and update. But in the server
environment it is often preferred to diminish downtime or
even cut out the downtime completely. There can be hundreds
of users using the server at the same time as the update needs
to be done. Some might be in critical state paying their bills
and others not, but server admistrator can not shut the system
down when he is ready. In some cases these things can be
done safely at night but in global world night time is not same
for everyone.

Software hot-swapping is also referred as dynamic software
updating [6], but both does mean the same, changing parts of

the program (or the whole program) to newer version without
interruption.

Software update can be made by using multiple computers
and updating them one at the time [6], but it is expensive as it
requires multiple server computers and other hardware to
direct connections to right computer. For a more cost-effective
way, software needs to be updateable without extra hardware.

There are different ways to gain the hot-swapping feature
for user-level programs. Some of them are introduced in next
sections.

A.Virtual machines
Virtual machines does not do any hot-swapping by default,

but since they can be implemented to do things that underlying
system can not, they can implement requirements for hot-
swapping.

As example Java virtual machine does implement dynamic
class loading, but not replacing already loaded class. S.
Malabarba et al. [7] made implementation for Java virtual
machine for dynamic classes. Their virtual machine allows
hot-swapping class implementation with another. Current
instances of hot-swapped class are replaced by copying object
variable data from old to new object (implementation requires
that all old variables exist in new implementation). This
implementation also requires that object code is not used while
hot-swapping is made. Still it is full hot-swapping able virtual
machine.

B.Native programs
Native programs have the speed benefit over the virtual

machines. Program is compiled for selected native instruction
set unlike the virtual machines where program is first handled
by virtual machine to native form.

Hicks et al. [6] implemented hot-swapping (which they call
dynamic updating) that allows parts of the program to be
patched at any time. Their approach was to make flexible,
robust, easy to use and low overhead system.

To reach flexibility their solution allowed code updating to
happen any time(also when code is in active use) and language
to be C-like.

For robustness they used Typed Assembly Language (TAL)
[8] which requires programs and patches to be verifiable
native code.

2

Figure 1: Transformation [6]

Patch generation from source is automated to make system
easy to use. Patch information contains the old and new code
and also a transformer function that informs dynamic updater
how to convert old code to new as can be seen in figure 1.

Low overhead comes with native code even with slight
slowdown from dynamic linking.

Implementation shows that complete hot-swapping can be
done with native code without special support from operating
system.

C.Other solutions
To achieve some level of hot-swapping I suggest a few

simple techniques. First user can use lightweight scripting
language on top of the server system. Updating functions
programmed by scripts is as simple as changing function to be
used. This does not offer replacing objects that contain data,
but is sufficient in some places.

On distributed systems like CORBA and DCOM client
programs can be done so that they make a new connection if
connection is lost. This allows services to be updated in
traditional way by restarting them and possibly saving current
state to disk. In many cases clients are able to wait couple of
seconds for restarting service.

Simplest option is to place service to an other program and
communication can then go throught sockets or shared
memory etc. As updated component is then a separate
program it can be restarted while main program can then
reconnect and continue. Whereas this is not hot-swapping in
strict manner, it still allows updating components while the
main system keeps running.

V.HOT-SWAPPING SYSTEM SOFTWARE

Updating system components by hot-swapping is basically
same thing as with user-level software. Options for
implementantion are more limited since virtual machines etc.
are not possible since kernel must be native for the underlying
instruction set. Mistakes in hot-swapping implementation or
hot-swapped code can and often will crash the whole system
unlike with user-level software. One issue is also current
common operating systems. None of them currently support
hot-swapping components (though there are implementation
for Linux shown in chapter VI). New operating system is
rarely an option when a fairly small new feature is needed.

A.Pros and cons
Main reason for implementing hot-swapping to kernel is the

same as with user-level software. Availability must be
maximized, but still fixes should be applied as soon as they
are available. Security issues need to be fixed before they are
commonly known and other bug fixes before they cause
crashes or corruption. These are so important that usually
system reboot is concidered as smaller issue than keeping
system available.

Adding new features or optimizing current components is
also good feature though not as critical as adding fixes. Still
servers on high load might need optimizations for example
with network card drivers or file system drivers. If load is
always high there is never time for update if hot-swapping is
not possible.

On the other hand hot-swappable components are open for
problems since keeping the component state while replacing it
is much more complicated than just restarting it and
initializing from start.

Implementation for existing system is also difficult and can
cause surprising problems on anywhere in the kernel as it was
not originally designed to have hot-swapping feature.

B. Way for implementation
Developers of K42 operating system [3] have described

four requirements to make hot-swapping possible with
operating systems. System needs to be able know component
boundaries, the position of code and data. Component has to
be in the safe state, where no other component is either using
it or atleast not modifying it. Internal state of the component
must be transferable to updated component. Also the external
references to component must be possible to be updated
through the whole system.

First requirement of component boundaries mainly requires
good and disciplined design [3]. Component must be designed
in way that its code clearly in one place and data are in one
place without external state information. Using object-oriented
programming language helps making component a logical
packet, but is not required and often not even possible since
often kernels in operating systems are written in C.

Quiescent state means state where component is not
actively in operation [3]. State where no other component is
currently operating with hot-swapped component. This state is
required to make sure that component state is not changed
during hot-swapping operation. Operations must be made as
short as possible so that quiescent state would be available

3

Figure 2: Options to manage external references [4]

more often. System monitors when such state is available [4].
Component state transfer requires that component designer

makes an interface that is universal to hot-swapping
components [3]. It is safe to assume that developer who
creates the new component knows details about old version.
This way new component gets old component's reference and
reads all the required information directly from there.

Updating external references can be made in two different
ways (see figure 2), both having good and bad sides. Indirect
reference is easy to implement to new system [3]. It is also
very simple to update since there is only one place where
pointer to updated component needs to be set. Unfortunately
this causes extra overhead since every call to component needs
to go through indirection reference. Other option is to use
reference counting where every reference is kept in memory
[3]. This way allows hot-swap operation to update references
to every required place. This does not cause complexity as
indirection and other components are not required to handle
indirection technique. Downside of reference counting is that
it needs possibly large tables to keep references in memory
and operation to update references is much more heavy than
with indirection.

VI.EXAMPLE: KERNEL MODULE HOT-SWAPPING IN LINUX

Linux Kernel is extendable using modules without need of
kernel recompilation. As long as modules are not currently in
use by other modules or any user level programs they can also
be unloaded and then replaced by other updated module
containing the same API. In many cases this is not good
enough. If module is handling for example file system used on
partition where is www-pages or database, module can not be
removed without shutting down http-server before unloading
old module. As indicated in section IV this is not acceptable in
critical environments like online banks. If file system driver
had some critical errors it still needs to be replaced
immediately. With kernel able to do hot-swapping we can
change the file system module on the fly without any
downtime and end-users will never see problem.

A.Implementation
Implementation to Linux Kernel 2.6.11 has some

difficulties since Linux kernel is not object-oriented nor
component-based [4]. Kernel module system has also other
difficulties than previously mentioned for problems.

Component boundaries needs to be solved other way than
object-oriented style since modules are programmed in C [4].
Therefore state of the module needs to be explicitly defined in
module or implicitly by module system. Former causes
modifications to module but is also more flexible since
programmer is able to control what needs to be kept safe for
updated module.

Mutual consistency can be achieved by quiescence without
need of synchronizations by monitoring module and replacing
it immediatelly when modules is not in use [4]. Only change
to old non-hot-swapping system is the monitoring system that
detects the quiescence.

Linux Kernel uses symbol exporting as standard mechanism
for exporting services between different parts of kernel
including modules [4]. Symbol needed by a certain module
can be requested only when loading the module and it will be
read from symbol table. If module exporting symbol is
changed by hot-swap, it also changes address of the symbol
and therefore it needs to be updated to every module that has
requested the module before. This problem is solved by
dynamic resolution and relocation which means that reloading
new module also updates symbol links in symbol table and
makes modules using the symbols to resolve required symbols
again.

Relating to previous problem, modules often need to pass
variable addresses to each other [4]. When hot-swapping
occurs these addresses become invalid without any solution.
There are three different solutions that work in different cases.
First is modifying functions that pass the addresses to allow
updating new addresses. Second is using external variable
allocation where variable is allocated outside of the module
and does not change when module is updated. Third one is
static address section where variables do not change their
addresses when hot-swapping occurs.

There is also a problem with module descriptor. It can be
seen when module is initiated and it needs to be updated when
module is hot-swapped. Module descriptor contains two
problematic elements related to hot-swapping [4]. First is
reference count which contains amount of modules that
depend on the hot-swapped module. Second one is the use list.
A use list contains information about modules depending on
the hot-swapped module. Module descriptor must be updated
correctly when module is hot-swapped and it's information
must be available for modules depending it.

B.Evaluation
Hot-swapping has been implemented for Linux Kernel

2.6.11 successfully and vfat file system is working test
module. Vfat requires also a fat module so for full test both
needed to be modified for hot-swapping.

Test had Apache http-server running on vfat partition and
multiple clients benchmarking the server. Using hot-swapping
slows module loading less than 4% as seen in table 1 and hot-
swapping currently running module is 39% slower than than
loading module without hot-swapping environment (table 2).

4

Table 1: Loading times [4]

Table 2: Loading and hot-swapping times [4]

VII.CONCLUSION

I have shown how widely hot-swapping can be used in both
hardware and software areas. Hardware hot-swapping is very
mature technology and have been used widely for over 25
years. Almost every component in high-end servers can be
replaced without shutting down the system.

Software based hot-swapping has been on talked for almost
as long as hot-swapping hardware has been available, but it is
still not commonly used in production. In majority of systems
hot-swapping seems not to be necessary or customers are not
aware of the possibility and therefore are not demanding it.

Technology for wide use of hot-swapping in software side
is available and working considerably well. But since it is not
available in base systems it won't get publicity it deserves.
Nect step should therefore be adding hot-swapping to standard
Java Virtual Machine and Linux kernel. Both have
implementations and are widely used in production and server
environments. After offering tools there will be soon hot-
swapping programs and drivers.

REFERENCES

[1] D. P. Siewiorek, “Fault Tolerance in Commercial Computers,” in
Computer, vol. 23, no. 7, 1990, pp. 26-37.

[2] T. Bloom, Dynamic Module Replacement in a Distributed Programming
System, MIT, 1983

[3] C. A. N. Soules, J. Appavoo, K. Hui, D. D. Silva, G. R. Ganger, O.
Krieger, M. Stumm, R. W. Wisniewski, M. Auslander, M. Ostrowski, B.
Rosenburg and J. Xenidis, “System support for online reconfiguration”
in Proc. USENIX Annual Technical Conference, 2003

[4] Y-F. Lee and R-C Chang, “Hotswapping Linux kernel modules,” in
Journal of Systems and Software, vol. 79, issue 2, 2006, pp. 163-175

[5] D. A. Patterson, G. Gibson, R. H. Katz, “A case for redundant arrays of
inexpensive disks (RAID)”, Proceedings of the 1988 ACM SIGMOD
international conference on Management of data, Chicaco, Illinois, USA
ACM Press, 1988, pp. 109-116

[6] M. Hicks, J. T. Moore and S. Nettles, “Dynamic software updating,” in
SIGPLAN: ACM Special Interest Group on Programming Languages,
Snowbird, Utah, USA, ACM Press, 2001, pp. 13-23

[7] S. Malabarba, R. Pandey, J. Gragg, E. Barr and J. F. Barnes, “Runtime
support for type-safe dynamic Java classes” in Proceedings of the
Fourteenth European Conference on Object-Oriented Programming,
2000

[8] G. Morrisett, D. Walker, K. Crary and N. Glew, “From System F to
typed assembly language,” in Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. San
Diego, California, USA, ACM Press, 1998, pp. 85-97

5

	I.Introduction
	II.Hot-swapping with hardware
	A.RAID
	B.Replacing processor unit

	III.Software based hot-swapping
	A.Applications

	IV.User-level hot-swapping
	A.Virtual machines
	B.Native programs
	C.Other solutions

	V.Hot-swapping system software
	A.Pros and cons
	B. Way for implementation

	VI.Example: Kernel module hot-swapping in Linux
	A.Implementation
	B.Evaluation

	VII.Conclusion

