Self-healing systems —
What arethey?

Tiina Niklander
Seminar introduction, 2007
Earlier version: AMICT, Aug 2006

Content

e Overview

e Autonomic Computing

e Elementsof Self-Healing
e Architectural approach

 Examples

SELF-ADAPTIVE

SELF-PROTECTING

SELF-ORGANIZING

Autonomic Computing Initiative by IBM, 2001

Self-

o Self-configuring o Self-governing
o Self-healing e Self-managed
o Self-optimising o Self-controlling
o Sdlf-protecting o Sdlf-repairing
o Self-aware e Self-organising
o Self-monitor o Self-evolving

< Self-adjust « Self-reconfiguration
L BSeli adaptive e Self-maintenance

=

3.
4.

System must know itself

System must be able to reconfigureitseld within its
oper ational environment

System must pre-emptively optimise itself
System must detect and respond to itsown faults as
they develop

System must detect and respond to intrusions and
attacks

System must know its context of use
System must live in an open world
System must actively shrink the gap between

=, User/businessgoalsand I T solutions

Autonomic Computing

e Basic model: closed
control loops model

— Based on Process Controller

Control Theory

o Controller i

continuously measurement

compar esthe actual)

and e)gpeCted Controlled
behavior and makes object

. needed adjustments

s, SEE: Any control-theory books

v

> Decide >

Use uncertain reasoning
Policies, rules, ...

v

Analyse Act

4

'Collate, combine, Modify behavior|
Find trends, correlations Inform users,

L Collect - :

From system elements,
Users, environment, agents, ...

Elements of Self-Healing

Fault model

Fault duration

Fault manifestation

Fault source

Granularity

Fault profile expectations

System response

Fault Detection
Degradation
Fault response
Fault recovery
Time constants
Assurance

Fault models

 Each aspects describes a characteristic of
the fault.
— Duration: Isthe fault permanent?

— Manifestation: What does the fault do to the
system?

— Source: Where does the fault come from?

— Granularity: Isthe fault global or local?

— Occurrence expectation: How often will the
. fault occur?

System Response

» Each aspect describes a characteristic of reacting
to faults.

— Detection: How does a system detect faults?

— Degradation: Will the system tolerate running in a
degraded state?

— Response: What does a system do when the fault
occurs?

— Recovery: Once afault occurs, can the system return to
a healthy state?

— Time: How much time does the the system have to
respond to afault?

%, — Assurance: What assurances does a system have to

10

Elements of Self-Healing :

System compl eteness

Architectural completeness
Designer Knowledge
System self-knowledge
System evolution

Design context

Abstraction level
Component homogeneity
Behavioral predetermination
User involvement in healing
System linearity

System scope

11

o Each aspect describes how system implementation
affects self-healing.

— Architecture completeness. How does the system deal
with incomplete and unknown parts?

— Designer knowledge: How do developers deal with
unavoidabl e abstractions?

— System self-knowledge: What does the system need to
know about its components perform self-healing?

— System evolution: How does the system cope with
%, Changing components and environments?

12

Design Context

» Each aspect describes how system design affects self-
healing.

Abstraction level: What abstraction level performs self-healing.

Component homogeneity: Are the system’ s distributed components

homogeneous?
Behavioral predetermination: |s the system non-deterministic?
User involvement: Does a user do some of the healing?

System linearity: |s the system constructed out of composable
components?

System scope: Does the size of the system affect self-healing
possibilities?

13

Alter native taxonomy

 Maintenance of health
— Redundancy, probing, ADL, component relation
and regularities, diversity, log-analysis
e Detection of failure, discovery of non-self
— Missing, monitoring model, notification of aliens
o System recovery back to healthy state

— Redundancy, repair strategies, repair plan, salf-
assembly, recovery-oriented computing, replication,
gauges, event-based action,

e Component
— Focus on connectors and component discovery
e Service
— Serviceinterfaces, Service discovery, restart

e Node

— Network and interface failures, change to new
connection

 Thehealing or recovery part often
requiresreconfiguration and adaptation

 They changethe architecture
— Locate and use alternative component
— Restart (or rgjuvenation or resurrection) the

fal

ed component
nealing can be build on reflective

lawar e

16

..........
N _—

Experiments

OSAD —model (On-demand Service Assembly
and Delivery)

MARKS - Middleware Adaptability for

Resour ce discovery, Knowledge usability and
Self-healing

PAC — Autonomic Computing in Personal
Computing Environment

s, Using self-healing components and connectors

17

Life-cycle of Salf-Healing <

) OSAD — On_dernand Monitering
Service Assembly T
and Delivery Appl. Description
e Prototypein JINI Change Planning D) | ermawarmake
enVi ronment Container 1 T
e Lookingfor o
alter natiV$ Only by Alternative service/
name

Figure 1. The lifecycle of self-healing
behaviour in OSAD model.

Middleware Adaptability for Resource Discovery,
Knowledge Usability and Self-healing

Marks istargeted at embedded and pervasive,
small mobile handheld devices.

New Services. Context, Knowledge Usability and
Self-Healing
Prototype: Ddll Axim 30 pocket PC & .NET

e Services

e Core
components

Application Objects

MARKS

Components

Context Knowledge Self healing |
Service Usability Servioq Service

Core Components

Trust Universal Service
management Access

wsAy suneaad

Transport Laver Protocols for Ad Hoe Networks

I

Sensors

Figure 1. MARKS architecture

Self-healing in MARK S

 Healing manager (of the network) to handle all
fault types
— Toisolate faulty device (Fault containment)

— Select surrogate device or shareload among
wor king members

e Resource manager used asrepository of
Information for backup purposes

o Self-healing unit (on each device)
— One process named rate of change of status

. — For monitoring the device and announcing the

21

connectors

 Healing layer
— Monitoring and

reconfiguration
decisions

o Servicelayer
— Normal functionality

— Report all eventsto
healing layer

«self-healing
cumpnnem»
Component!

Healing
Layer

Service
Layer

«self-healing
connectory
ConnectorA

Healing Layer

Communication
Layer

e For healing:
Self-Healing
controller

Component
monitor

Reconfiguration
manager

Repair

Self-Healing Component

Healing Layer

manager

I IO T wcontrollers “Managen «NANAZET)
Component Self-Healine Hﬂ:ﬂlﬂ.l_.‘].l.l.&nml Rﬂllill

Monitor Contiallon Manager Manager

Detect

R.econtigure

Repair

Motification
ol
Service Layer
wizskon HCONNESCTOr wpassive objects

taskirbject

et e

passiveObject

23

wself-healing components

Componentl wcontrollers

a". momaly

ailed]: Notify A T} Motification
P H;_.lj- Healing —_—
= Lontroller
: i LoD YeY
5]:!|(¢:€m111uur-:¢, 'T S54: |Anomaly _ _
= Notification S3A 1 [Anomalous

PassiveObject1]:

nomalous Taskl]: Block Task

] ek S R —
ock Receiver «managen
Lomponent |
- g "'- 1" !
Healing v -
anager
Laver
I I I I I I D DD D D D B B .
Service K7 Deliver
Lil\l:‘r' Il[ﬁ;iL:l!- "'I"]C"""ﬂl:‘lh:
w [:‘:l.']
IEI) m 2 SAA[Anomalous
R S3B[Anomalous Anomalous PassiveObject]]:
s wconnectors: Connector]: [3"“ | Block Block Task i_ Read
) Block Task Sender M ess ape
bbbl : e wconnectors
S3B.1[Anomalou .
Tt R {_onnectorA
s Connector 2] wen iy T

Block Task

Write

/ | ks ks
I/ Message

Itca[iT

wexternal Messape

-
¥

v

devicen

Device A

H.:ur':

Itcrcu-:

Message
—

OO CTor: _

Message
.&

Message

taskn

E 'ia E "

—

K5.1: Send
Messape

Fig.4 Dynamic self-configuration in Componentl

) /

Anomaly

Motification

LA T e

Netwaork

« Anomaly detection:
— Compar e observed and expected behavior

e |solatethe’faulty’ object

* Repair or replace the faulty object (and
return back to normal operation)

25

PAC — Per sonal Autonon &)
Computing

e Goal: collaboration among per sonal
systemsto take a shared responsibility
for self-awar eness and environment
awar eness

* Proof of concept: self-healing tool
utilizing pulse monitor (heart beat)

| Systems, Man and Cybernetics, Part C, IEEE Transactions on

Heart beat/ Pulse Signal
HeartbeatPulse Monitor
Moniwor

Adjuster

System Knowledge

__ Fig. 3. Autonomic environment.

PAC

Autonomic Element ° A u t onom I C
0 "~ Managed Component
manager
o Autonomic Manager
Ad?::;er :l:ct::i'tl::' Ram:: - %I f -adj USter
I T /. | Heartbeay [y — Self-monitor
- Monitor \ Pulse Monitor -"ﬂ.""'i'\:"’_f\' .
@ = — Internal-monitor
Monitor
ki - — External-monitor
S | — Pulse-monitor (and

Autonomic Signal Channel

generator)

Other Autonomic Elements Other Autonomic Elements

Fig. 2. Architecture of a PAC element.

Conclusions

o Sdlf-healing hasthreeroots:
— Autonomic and self-management world
— Distributed systemsworld (especially middleware)
— Dependable and fault-tolerance world

 Thefailurerecognition and repair decisions
might be faster if autonomic

e However: effects of incorrect decisions can be
_large (and correct them time consuming)

- "

*" gy
gl } e
. - 5

..........
N _—

29

Refer ences

* Philip Koopman: Elements of the Self-Healing
System Problem Space. | n Proceedings of | CSE
WADS 03

o Jeffrey O. Kephart and David M. Chess. The
Vision of Autonomic Computing. |EEE
Computer, January 2003, pp. 41-50

 D.Ghosh et.al.: Self-healing systems — survey
| and synthesis. Decision Support Systems 42
I, (2007) pp. 2164-2185

. N
ol fil .
i 1 5 *- 3y
. 5] ¥ S ey
; £ A
- Ay +, -

30

George Heineman A Model for Designing Adaptable
Software Components

In 22nd Annual International Computer Software and
Applications Conference, pages 121--127, Vienna, Austria,
August 1998.

Vikram Adve, Vinh Vi Lam, Brian Ensink Language and
Compiler Support for Adaptive Distributed Applications
ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems (OM 2001) Snowbird, Utah, June 2001
(in conjunction with PLDI12001)

Marija Rakic, Nenad Medvidovic Increasing the
Confidence in Off-the-Shelf Components: A Software
Connector-Based Approach

Proceedings of SSR '01 on 2001 Symposium on Software

31

Richard S. Hall, Dennis Heimbigner, Alexander L. Wolf A
Cooperative Approach to Support Software Deployment
Using the Software Dock

International Conference on Software Enginering, May 1999

Sarita V. Adve, et.al. The lllinois GRACE Project: Global
Resource Adaptation through CoopEration

In proceedings of Workshop on Self-Healing, Adaptive and
self-MANaged Systems (SHAMAN) 2002

Yennun Huang, Chandra Kintala, Nick Kolettis, N. Dudley
Fulton Software Rejuventation: Analysis, Module and
Applications

Proceedings of the 25th International Symposium on Fault-
Tolerant Computing (FTCS-25), Pasadena, CA, pp. June
1995, pp. 381-390

32

David Patterson, et.al. Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies

UC Berkeley Computer Science Tech. Rep. UCB//CSD-02-1175,
March 15, 2002

George Candea, James Cutler, Armando Fox, Rushabh Doshi,
Priyank Garg, Rakesh Gowda Reducing Recovery Time in a
Small Recursively Restartable System

Appears in Proceedings of the International Conference on
Dependable Systems and Networks (DSN-2002), June 2002

Aaron B. Brown, David A. Patterson Rewind, Repair, Replay:
Three R's to Dependability

To appear in 10th ACM SIGOPS European Workshop, Saint-
Emilion, France, September 2002

Sheng Liang, Gilad Bracha Dynamic Class Loading in the
Java(TM) Virtual Machine

_ Conference on Object-oriented programming, systems, languages,
Sand applications (OOPSLA'98)

33

e 1. period: Writing the paper
— 2. meeting: List of references, refinement of thetopic
— 3. meeting: Table of content
— 4. meeting: draft (to show to Tiina)
— 5. meeting: Paper ready for review
— 6. meeting: Review feedback (from two members)
— Paper ready and submitted befor e second period

.» 2. period: Presentations

el
-

Seminar topicsfor Sprlng 2)

e Faults/ Recovery / Autonomic computing
o Self-adaptive services
« Configuration-level adaptation

o Self-healing ar chitectures
— Agent-based
— Components
— Middleware
«, * Performanceissues
s, Self-optimisation etc.

e Detection and monitoring
e Instrumentation
* Diagnosis (intelligent systems area)
* Repair

— Dynamic updates

— Hot-swap & reconfiguration (software /hardware)
— Remote healing

e Network related

; — Survivable networ ks
Lo — Sensor networks

