

Code and Design Metrics for Object-Oriented Systems

Jaana Lindroos

Helsinki, 1st of December 2004
Seminar on Quality Models for Software Engineering
Department of Computer Science
UNIVERSITY OF HELSINKI

Code and Design Metrics for Object-Oriented Systems

Jaana Lindroos
Seminar on Quality Models for Software Engineering
Department of Computer Science
UNIVERSITY OF HELSINKI
1st of December 2004, 10 pages

Abstract

Object-oriented design and development has become popular in today’s software
development environment. The benefits of object-oriented software development are now
widely recognized. Object-oriented development requires not only different approaches to
design and implementation; it also requires different approaches to software metrics.

The metrics for object-oriented systems are different due to the different approach in
program paradigm and in object-oriented language itself. An object-oriented program
paradigm uses localization, encapsulation, information hiding, inheritance, object abstraction
and polymorphism, and has different program structure than in procedural languages.

There are quite a few sets of proposed metrics of object-oriented metrics for object-oriented
software in the literature and research papers. The definition of six different metrics is
presented in this document. The presented metrics are also validated by couple of real
projects that use object-oriented language in their projects.

Metric data provides quick feedback for software designers and managers. Analyzing and
collecting the data can predict design quality. If appropriately used, it can lead to a significant
reduction in costs of the overall implementation and improvements in quality of the final
product. The improved quality, in turn reduces future maintenance efforts. Using early quality
indicators based on objective empirical evidence is therefore a realistic target.

It is unlikely that universally valid object-oriented quality measures and models could be
devised, so that they would suit for all languages in all development environments and for
different kind of application domains. It should be also kept in mind that metrics are only
guidelines and not rules. They are guidelines that give an indication of the progress that a
project has made and the quality of the design.

ACM Computing Classification System 1998:
D.1.5 [object-oriented programming]
D.2.2 [design tools and techniques]
D.2.3 [coding tools and techniques]
D.2.4 [software/program verification]
D.2.8 [metrics]
D.2.9 [management: software quality assurance]
D.2.11 [software architectures: data abstraction, information hiding]

Keywords: object-oriented software metrics, software quality, object-oriented design, object-
oriented programming

Contents

1 Introduction.. 1

2 Rationale for Measurement ... 2

3 Code and Design Metrics Suite... 3

4 Evaluation of Metrics ... 4

5 Conclusions... 6

References ... 7

Appendix. Terminology... 9

 1

1 Introduction

Object-oriented design and development has become popular in today’s software
development environment. The benefits of object-oriented software development are now
widely recognized [AlC98]. Object-oriented development requires not only different
approaches to design and implementation; it also requires different approaches to software
metrics. Metrics for object-oriented system are still a relatively new field of study. The
traditional metrics such as lines of code and Cyclomatic complexity [McC76, WEY88] have
become standard for traditional procedural programs [LIK00, AlC98].

The metrics for object-oriented systems are different due to the different approach in
program paradigm and in object-oriented language itself. An object-oriented program
paradigm uses localization, encapsulation, information hiding, inheritance, object abstraction
and polymorphism, and has different program structure than in procedural languages.
[LIK00]

Software metrics are often categorized into product metrics and design metrics [LoK94].
Project metrics are used to predict project needs, such as staffing levels and total effort.
They measure the dynamic changes that have taken place in the state of the project, such as
how much has been done and how much is left to do. Project metrics are more global and
less specific than the design metrics. Unlike the design metrics, project metrics do not
measure the quality of the software being developed.

Design metrics are measurements of the static state of the project design at a particular point
in time. These metrics are more localized and prescriptive in nature. They look at the quality
of the way the system is being built. [LoK94]

Design metrics can be divided into static metrics and dynamic metrics [SyY99]. Dynamic
metrics have a time dimension and the values tend to change over time. Thus dynamic
metrics can only be calculated on the software as it is executing. Static metrics remain
invariant and are usually calculated from the source code, design, or specification.

There are quite a few sets of proposed metrics of object-oriented metrics for object-oriented
software in the literature and research papers. Only few of them can be presented in this
document. The presented metric suite in this document is selected from ‘A Metrics Suite for
Object Oriented Design’ article [ChK94] because it describes a basic suite of object-oriented
metrics [AlC98] and its metrics has also tested in practice [ChK94, BBM96]. The basic set of
metrics contains total of six different metrics that are presented in the Chapter 3. More
metrics has been presented for example in the Lorenz’s and Kidd’s book ‘Object-Oriented
Software metrics’ [LoK94].

There has been also a research and development project aiming at developing methods for
the measurement of software quality at the design level that was researched at the University
of Helsinki in the Department of Computer Science between 1999 and 2001. The project is
called ´Metrics for Analysis and Improvement of Software Architectures´ (MAISA) and it
concentrated in recognizing Design Patterns [GRJ98] in C++ Programs. [MAI01]

In this paper the focus is on static product metrics that are described in Chidamber’s and
Kemerer’s article ‘A Metrics Suite for Object Oriented Design’ [ChK94]. The relationship
between different object-oriented metric values is out-of scope in this paper as well as
automated tools for collecting object-oriented metric data. This paper doesn’t cover
measuring design pattern metrics.

 2

The rest of the paper is structured as follows. Chapter 2 explains why it is important to
measure object-oriented metrics. In Chapter 3 the basic set of metrics defined in
Chidamber’s and Kemerer’s article ‘A Metrics Suite for Object Oriented Design’ [ChK94] is
described. Chapter 4 contains couple of practical examples, how defined metrics have been
evaluated in different projects. Chapter 5 concludes the paper and the next Chapter contains
references. The relevant terminology is described in the Appendix.

2 Rationale for measurement

The intent of the metrics proposed is to provide help for object-oriented developers and
managers to foster better designs, more reusable code, and better estimates. The metrics
should be used to identify anomalies as well as to measure progress. The numbers are not
meant to drive the design of the project’s classes or methods, but rather to help us focus our
efforts on potential areas of improvement. The metrics can help each of us improve the way
we develop the software. The metrics, as supported by tools, makes us think about how we
subclass, write methods, use collaboration, and so on. [LoK94] They help the engineer to
recognize parts of the software that might need modifications and re-implementation. The
decision of changes to be made should not rely only on the metric values [SyY99].

The metrics are guidelines and not rules and they should be used to support the desired
motivations. The intent is to encourage more reuse through better use of abstractions and
division of responsibilities, better designs through detection and correction of anomalies.
Positive incentives, improvement training and mentoring, and effective design reviews
support probability of achieving better results of using object-oriented metrics. [LoK94]

According to my experience Extreme Programming (XP) [Bec01] could be utilized in training
and mentoring so that a senior software designer and a junior software designer could work
together and learn design practices from each other’s. It requires good co-operation between
designers, for example so that junior designer is encouraged to contradict design decisions
made by senior designer and vice versa. In that way designers really need to think and justify
their design decisions.

If we are going to improve the object-oriented software we develop, we must measure our
designs by well-defined standards. Thresholds are affected by many factors, including the
state of the software (prototype, first release, third reuse and so on) and your local project
experiences. The language used and different coding styles affect some of the metrics. This
is primarily handled with different threshold values for the metrics, which indicate heuristic
ranges of better and worse values. For example, C++ tends to have larger method sizes than
Smalltalk. Thresholds are not absolute laws of nature. They are heuristics and should be
treated as such. Possible problems in our system designs can be detected during the
development process. [LoK94]

Software should be designed for maintenance [AlC98]. The design evaluation step is an
integral part of achieving a high quality design. The metrics should help in improving the total
quality of the end product, which means that quality problems could be resolved as early as
possible in the development process. It is a well-known fact that the earlier the problems can
be resolved the less it costs to the project in terms of time-to-market, quality and
maintenance.

 3

3 Code and design metrics suite

Metric 1: Weighted Methods per Class (WMC)
WMC is a sum of complexities of methods of a class. Consider a Class C1 with Methods
M1…Mn that are defined in the class. Let c1…cn be the complexity of the methods1 [ChK94].
Then:

(1)

WMC measures size as well as the logical structure of the software. The number of methods
and the complexity of the involved methods are predictors of how much time and effort is
required to develop and maintain the class [SyY99, ChK94]. The larger the number of
methods in a class, the greater the potential impact on inheriting classes. Consequently,
more effort and time are needed for maintenance and testing [YSM02]. Furthermore, classes
with large number of complex methods are likely to be more application specific, limiting the
possibility of reuse. Thus WMC can also be used to estimate the usability and reusability of
the class [SyY99]. If all method complexities are considered to be unity, then WMC equals to
Number of Methods (NMC) metric [YSM02].

Metric 2: Depth of Inheritance Tree (DIT)
The depth of a class within the inheritance hierarchy is the maximum length from the class
node to the root of the tree, measured by the number of ancestor classes. The deeper a
class is in the hierarchy, the greater the number of methods it is likely to inherit, making it
more complex to predict its behavior. Deeper trees constitute greater design complexity,
since more methods and classes are involved. The deeper a particular class is in the
hierarchy, the greater potential reuse of inherited methods. [ChK94] For languages that allow
multiple inheritances, the longest path is usually taken [YSM02].

The large DIT is also related to understandability and testability [LIK00, SyY99]. Inheritance
decreases complexity by reducing the number of operations and operators, but this
abstraction of objects can make maintenance and design difficult.

Metric 3: Number of Children (NOC)
Number of children metric equals to number of immediate subclasses subordinated to a
class in the class hierarchy. Greater the number of children, greater the reuse, since
inheritance is a form of reuse. Greater the number of children, the greater the likelihood of
improper abstraction of the parent class. If a class has a large number of children, it may be
a case of misuse of sub classing. The number of children gives an idea of the potential
influence a class has on the design. If a class has a large number of children, it may require
more testing of the methods in that class. [ChK94] In addition, a class with a large number of
children must be flexible in order to provide services in a large number of contexts [YSM02].

Metric 4: Coupling between object classes (CBO)
CBO for a class is a count of the number of other classes to which is coupled. CBO relates to
the notion that an object is coupled to another object if one of them acts on the other, i.e.,
methods of one uses methods or instance variables of another. Excessive coupling between

1 Complexity is deliberately not defined more specifically here in order to allow for the most general
application of this metric [ChK94].

 4

object classes is detrimental to modular design and prevents reuse. The more independent a
class is, the easier it is to reuse it in another application. In order to improve modularity and
promote encapsulation, inter-object class couples should be kept to a minimum. [ChK94]
Direct access to foreign instance variable has generally been identified as the worst type of
coupling [SyY99].

The larger the number of couples, the higher the sensitivity to changes in other parts of the
design, and therefore maintenance is more difficult. A measure of coupling is useful to
determine how complex the testing of various parts of a design is likely to be. The higher the
inter-object class coupling, the more rigorous the testing needs to be. [ChK94, AlC98]

Metric 5: Response For a Class (RFC)
The response set of a class is a set of methods that can potentially be executed in response
to a message received by and object of that class2. RFC measures both external and internal
communication, but specifically it includes methods called from outside the class, so it is also
a measure of the potential communication between the class and other classes. [ChK94,
AlC98] RFC is more sensitive measure of coupling than CBO since it considers methods
instead of classes [YSM02].

If a large number of methods can be invoked in response to a message, the testing and
debugging of the class becomes more complicated since it requires a greater level of
understanding required on the part of the tester. The larger the number of methods that can
be invoked from a class, the greater the complexity of the class. A worst-case value for
possible responses will assist in appropriate allocation of testing time. [ChK94]

Metric 6: Lack of Cohesion in Methods (LCOM)
The LCOM is a count of the number of method pairs whose similarity is 0 minus the count of
method pairs whose similarity is not zero. The larger the number of similar methods, the
more cohesive the class, which is consistent with traditional notions of cohesion that
measure the inter-relatedness between portions of a program. If none of the methods of a
class display any instance behavior, i.e., do not use any instance variables, they have no
similarity and the LCOM value for the class will be zero. [ChK94]

Cohesiveness of methods within a class is desirable, since it promotes encapsulation. Lack
of cohesion implies classes should probably be split into two or more subclasses. Any
measure of disparateness of methods helps identify flaws in the design of classes. Low
cohesion increases complexity; thereby it increases the likelihood of errors during the
development process. [ChK94]

4 Evaluation of metrics

The content of this chapter is mainly based on Chidamber’s and Kemerer’s document ‘A
Metrics Suite for Object Oriented Design’ [ChK94]. This chapter presents only part of the
testing details and results that is described in the original document. More information about
the details can be read in the referred document [ChK94]. This chapter describes also briefly
results of Basili’s, Briand’s and Melo’s document ‘A Validation of Object-Oriented Design
Metrics as Quality Indicators’ [BBM96] in which they empirically investigate the suite of

2 It should be noted that membership to the response set is defined only up to the first level of nesting
of method calls due to the practical considerations involved in collection of the metric.

 5

object-oriented design metrics introduced in Chidamber’s and Kemerer’s document ‘A
Metrics Suite for Object Oriented Design’ [ChK94].

Chidamber and Kemerer who introduced the basic suite for collecting object-oriented code
and design metrics tested the metrics suite with two projects. The metrics proposed in their
paper were collected using automated tools developed for this research at two different
organizations which will be referred to here as Site A and Site B. [ChK94]

Site A is a software vendor that uses object-oriented design in their development work and
has a collection of different C++ class libraries. Metrics data from 634 classes from two C++
class libraries that are used in the design of graphical user interfaces (GUI) were collected.
Both these libraries were used in different product applications for rapid prototyping and
development of windows, icons and mouse based interfaces. Reuse across different
applications was one of the primary design objectives of these libraries. These typically were
used at Site A in conjunction with other C++ libraries and traditional C-language programs in
the development of software sold to UNIX workstation users.

Site B is a semiconductor manufacturer and uses the Smalltalk programming language for
developing flexible machine control and manufacturing systems. Metrics were collected on
the class libraries used in the implementation of a computer aided manufacturing system for
the production of VLSI (Very Large Scale Integration) circuits. Over 30 engineers worked on
this application, after extensive training and experience with object orientation and the
Smalltalk environment. Metrics data from 1459 classes from Site B were collected.

The data from two different commercial projects and subsequent discussions with the
designers at those sites lead to several interesting observations that may be useful for
managers of object-oriented projects. Designers may tend to keep the inheritance
hierarchies shallow, forsaking reusability through inheritance for simplicity of understanding.
This potentially reduces the extent of method reuse within an application. However, even in
shallow class hierarchies it is possible to extract reuse benefits, as evidenced by the class
with 87 methods at Site A that had a total of 43 descendants. This suggests that managers
need to proactively manage reuse opportunities and that this metrics suite can aid this
process.

Another demonstrable use of these metrics is in uncovering possible design flaws or
violations of design philosophy. As the example of the command class with 42 children at
Site A demonstrates, the metrics help to point out instances where sub classing has been
misused. This is borne out by the experience of the designers interviewed at one of the data
sites where excessive declaration of sub classes was common among engineers new to the
object-oriented paradigm. These metrics can be used to allocate testing resources. As the
example of the interface classes at Site B (with high CBO and RFC values) demonstrates,
concentrating test efforts on these classes may have been a more efficient utilization of
resources.

Another application of these metrics is in studying differences between different object-
oriented languages and environments. As the RFC and DIT data suggest, there are
differences across the two sites that may be due to the features of the two target languages.
However, despite the large number of classes examined (634 at Site A and 1459 at Site B),
only two sites were used in this study, and therefore no claims are offered as to any
systematic differences between C++ and Smalltalk environments. [ChK94]

Basili’s, Briand’s and Melo’s document ‘A Validation of Object-Oriented Design Metrics as
Quality Indicators’ [BBM96] presents the results of a study in which they empirically
investigated the suite of object-oriented design metrics introduced in Chidamber’s and
Kemerer’s document ‘A Metrics Suite for Object Oriented Design’ [ChK94]. In their study,

 6

they collected data about faults found in object-oriented classes. Based on these data, they
verified how much fault-proneness is influenced by internal (e.g., size, cohesion) and
external (e.g. coupling) design characteristics of object-oriented classes. From the results,
five out of six Chidamber’s and Kemerer’s object-oriented metrics showed to be useful to
predict class fault-proneness during the high- and low-level design phases of the life cycle.
The only metric that was not appropriate in their study was LCOM. In addition, Chidamber’s
and Kemerer’s object-oriented metrics showed to be better predictors than the best set of
‘traditional’ code metrics, which can only be collected during later phases of the software
processes. [BBM96]

This empirical validation provides the practitioner with some empirical evidence
demonstrating that most of Chidamber’s and Kemerer’s object-oriented metrics can be useful
quality indicators. Furthermore, most of these metrics appear to be complementary
indicators, which are relatively independent from each other. The obtained results provide
motivation for further investigation and refinement of Chidamber’s and Kemerer’s object-
oriented metrics. [BBM96]

My opinion is that evaluation executed by Basili, Briand and Melo is not as relevant as
evaluation performed by Chidamber and Kemerer. That is because Basili, Briand and Melo
used University environment and students who had no significantly experience with object-
oriented design and implementation.

5 Conclusions

This paper introduces the basic metric suite for object-oriented design. The need for such
metrics is particularly acute when an organization is adopting a new technology for which
established practices have yet to be developed. [ChK94] The metric suite is not adoptable as
such and according to some other researches it is still premature to begin applying such
metrics while there remains uncertainty about the precise definitions of many of the
quantities to be observed and their impact upon subsequent indirect metrics. For example
the usefulness of the proposed metrics, and others, would be greatly enhanced if clearer
guidance concerning their application to specific languages were to be provided. [ChS95]

Metric data provides quick feedback for software designers and managers. Analyzing and
collecting the data can predict design quality. If appropriately used, it can lead to a significant
reduction in costs of the overall implementation and improvements in quality of the final
product. The improved quality, in turn reduces future maintenance efforts. Using early quality
indicators based on objective empirical evidence is therefore a realistic objective [BMB99].
According to my opinion it’s motivating for the developer to get early and continuous
feedback about the quality in design and implementation of the product they develop and
thus get a possibility to improve the quality of the product as early as possible. It could be a
pleasant challenge to improve own design practices based on measurable data.

It is unlikely that universally valid object-oriented quality measures and models could be
devised, so that they would suit for all languages in all development environments and for
different kind of application domains. Therefore measures and models should be investigated
and validated locally in each studied environment. [BMB99] It should be also kept in mind
that metrics are only guidelines and not rules. They are guidelines that give an indication of
the progress that a project has made and the quality of design [LoK94].

 7

References

[AlC98] Alkadi Ghassan, Carver Doris L.: Application of Metrics to Object-Oriented

Designs, Proceedings of IEEE Aerospace Conference, Volume 4, pages 159 -
163, March 1998.

[ArS95] Archer Clark, Stinson Michael: Object-Oriented Software Measures, Technical

Report CMU/SEI-95-TR-002, ESC-TR-95-002, Software Engineering Institute,
Carnegie Mellon University, April 1995.

[BBM96] Victor R. Basili, Fellow, IEEE, Lionel C. Briand, Walcélio L. Melo, Member IEEE

Computer Society: A Validation of Object-Oriented Design Metrics as Quality
Indicators, IEEE Transactions on Software Engineering, Volume 22, Number

 10, pages 751 - 761, October 1996.

[Bec01] Beck Kent: Extreme Programming Explained: Embrace Change, Addison-
Wesley, 190 pages, 2001.

[BMB99] Lionel C. Briand, Sandro Morasca, Member, IEEE Computer Society, Victor R.

Basili, Fellow, IEEE: Defining and Validating Measures for Object-Based High-
Level Design, Volume 25, Number 5, pages 722 - 743, September/October
1999.

[ChK94] Chidamber Shyam R., Kemerer Chris F.: A Metrics Suite for Object Oriented

Design, IEEE Transactions on Software Engineering, Volume 20, Number 6,
pages 476 - 493, June 1994.

[GRJ98] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John: Design Patterns

CD: Elements of Reusable Object-Oriented Software, Addison Wesley
Longman, Inc.1998.

[LIK00] Shuqin Li-Kokko: Code and Design Metrics for Object-Oriented Systems,

Helsinki University of Technology, 9 pages, 2000.

[LoK94] Lorenz Mark, Kidd Jeff: Object-Oriented Software Metrics: A Practical Guide.

P T R Prentice Hall, Prentice-Hall, Inc. A Pearson Education Company, 146
pages, 1994.

[MAI01] Metrics for Analysis and Improvement of Software Architectures (MAISA),

Research and Development Project at the University of Helsinki in Department
of Computer Science, Paakki Jukka, Verkamo Inkeri, Gustafsson Juha,
Nenonen Lilli, 1999 - 2001. http://www.cs.helsinki.fi/group/maisa/ (read on 25th
of November 2004).

[McC76] McCabe Thomas J.: A Complexity Measure, IEEE Transactions on Software

Engineering, Volume SE-2, September, Number 2, pages 308 - 320, December
1976.

[ChS95] Neville I. Churcher, Martin J. Shepperd: Comments on ‘A Metrics Suite for
Object Oriented Design’, IEEE Transactions on Software Engineering, Volume
21, Number 3, pages 263 - 265, March 1995.

 8

[SyY99] Tarja Systä, Ping Yu: Using OO Metrics and Rigi to Evaluate Java software,
University of Tampere, Department of Computer Science, Series of
Publications A A-1999-9, 24 pages, July 1999.

[WEY88] Weyuker Elaine J.: Evaluating Software Complexity Measures, IEEE

Transactions on Software Engineering, Volume 14, Number 9, pages 1357 -
1365, September 1988.

[YSM02] Ping Yu, Tarja Systä, Hausi Müller: Predicting Fault-Proneness using OO

Metrics An Industrial Case Study, Proceedings of the Sixth European
conference on Software Maintenance and Reengineering (CSMR´02), 1534-
5351/02, IEEE, 2002.

 9

Appendix. Terminology

Measurement related terminology
Terminology related to measurement of object-oriented design is defined in Lorenz’s and
Jeff’s book ‘Object-Oriented Software Metrics: A Practical Guide’ [LoK94].

Metric
Metric is a standard of measurement. It is used to judge the attributes of something being
measured, such as quality or complexity, in an objective manner.

Measurement
Measurement is the determination of the value of a metric for a particular object.

Design
Design is that part of software development concerned with the mapping of a business model
into an implementation.

Terms Specific to Object-Oriented Analysis and Design
Terminology related to object-oriented analysis and design is defined in Archer’s and
Stinson’s Technical Report ‘Object-Oriented Software Measures’ [ArS95] unless otherwise
stated.

Abstraction
The essential characteristics of an object that distinguish it from all other kinds of objects,
and thus provide, from the viewer’s perspective, crisply-defined conceptual boundaries; the
process of focusing upon the essential characteristics of an object.

Aggregate object (aggregation)
An object composed of two or more other objects. An object that is part of two or more other
objects.

Attribute
A variable or parameter that is encapsulated into an object.

Class
A set of objects that share a common structure and behaviour manifested by a set of
methods; the set serves as a template from which objects can be created.

Class structure
A graph whose vertices represent classes and shoes arcs represent relationships among the
classes.

Cohesion
The degree to which the methods within a class are related to on another.

Collaboration classes
If a class sends a message to another class, the classes are said to be collaborating.

 10

Coupling
Object X is coupled to object Y if and only if X sends a message to Y. Coupling is a measure
of the strength of association established by a connection from one entity to another [LIK00].
Classes (objects) can be coupled in following three ways [LIK00]:

1. When a message is passed between objects, the objects are said to be coupled.

2. Classes are coupled when methods declared in a one class use methods or attributes
of the other classes.

3. Inheritance introduces significant tight coupling between super classes and their

subclasses.

Encapsulation
The process of bundling together the elements of an abstraction that constitutes its structure
and behaviour.

Information hiding
The process of hiding the structure of an object and the implementation details of its
methods. And object has a public interface and a private representation; these two elements
are kept distinct.

Inheritance
A relationship among classes, wherein one class shares the structure or methods defined in
one other class (for single inheritance) or in more than on other class (for multiple
inheritance). It is a design abstraction that enables programmers to reuse previously defined
classes [LIK00].

Instance
An object with specific structure, specific methods, and an identity.

Instantiation
The process of filling in the template of a class to produce a class from which one can create
instances.

Message
A request made of one object to another, to perform operation.

Method
An operation upon and object, defined as part of the declaration of a class.

Operation
An action performed by, or on an object, available to all instances of class. The operation
needs not to be unique in case of polymorphism [LIK00].

Polymorphism
The ability of two or more objects to interpret a message differently at execution, depending
upon the super class of the calling object.

Super class
The class from which another subclass inherits its attributes and methods.

Uses
If object X is coupled to object Y and object Y is coupled to object Z, then object X uses
object Z.

	Code and Design Metrics for Object-Oriented Systems
	Code and Design Metrics for Object-Oriented Systems

	Abstract
	Contents
	1 Introduction
	2 Rationale for measurement
	3 Code and design metrics suite
	Metric 1: Weighted Methods per Class (WMC)
	Metric 2: Depth of Inheritance Tree (DIT)
	Metric 3: Number of Children (NOC)
	Metric 4: Coupling between object classes (CBO)
	Metric 5: Response For a Class (RFC)
	Metric 6: Lack of Cohesion in Methods (LCOM)

	4 Evaluation of metrics
	5 Conclusions
	References
	Appendix. Terminology
	Measurement related terminology
	Metric
	Measurement
	Design

	Terms Specific to Object-Oriented Analysis and Design
	Abstraction
	Attribute
	Class
	Class structure
	Cohesion
	Collaboration classes
	Coupling
	Encapsulation
	Information hiding
	Inheritance
	Instance
	Instantiation
	Message
	Method
	Operation
	Polymorphism
	Super class
	Uses

