
Reducing Uncertainty in Software Projects:
Proposal for A Product Envisioning Framework

Hanna Mäenpää
Department of Computer Science, University of Helsinki

Helsinki, Finland
hanna.maenpaa@cs.helsinki.fi

Abstract—This article describes a software product envisioning
framework that has been created by studying four dominant
product vision models from the disciplines of new product
development and software engineering. Results from evaluating
the framework in three cases are presented. The framework can
be used to assist communicating high-level goals of a software
development effort, observing decrease of uncertainty about the
project’s goals and hopefully also in finding an ”agile optimum”
for requirements engineering activities in software project
front-end.

I. INTRODUCTION

At the beginning of a new software project, uncertainty
about the development effort’s goals, scope and priorities
is high []. Agile methodologies aim to produce a working
software prototype as early as possible [1], and a software
engineer should rapidly be able to envision not only the
internal structure of the future system but also, comprehend
constraints and goals that are likely to guide the development
effort.

During the effort, software team and product owner may
communicate with a large amount of different stakeholders
such as project-, product- or program management, cus-
tomer service staff, other software teams, subcontractors, user
experience- and usability designers and also possibly also end-
users themselves [2]. As agile principles emphasize close and
frequent interaction with stakeholders [1], the ability to work
collaboratively with people from varying backgrounds and
professional disciplines has become valued.

Communicating opportunities and constraints created by
architectural decisions and agreeing on development priorities
require understanding of sagendas, aspirations and wishes
of project stakeholders [3]. With an understanding of the
interdisciplinary context that surrounds the development ef-
fort a product owner and his team may better distinguish
dependabilities in between the stakeholders’ goals [4] and help
resolve conflicts [2].

Even though agile principles have long encouraged face to
face communication and documenting only what is absolutely
necessary [1], [5] they do not provide enough support for
initial product planning. The need for tools to assist ’barely
sufficient’ software product design, such as the Product Vision,
have began to be identified amongst agile software develop-
ment practitioners [6]. The absence of tools to follow the
changing product definition and project context have created

knowledge- and communication gaps in between the fast-
delivering agile development project and determined product
planning [7], [8]. The misalignments have been reported to
complicate predictive extra-project activities, such as schedul-
ing, change- and resource planning [2].

II. BACKGROUND

Nambisan and Wilemon (2000) surveyed the potentials for
cross-domain knowledge sharing between Software Develop-
ment (SD) and New Product Development (NPD) [?]. Even
though the terminology used to describe the NPD and SD
processes were very different, they found similar stages of
idea generation, analysis, design, development, testing and
implementation in the workflows of both schools of thought.
Also conjunctive factors influencing the project trajectory and
measures for success were found. The researchers concluded
that as the foundation of both theories is strongly based on
innovation management, the interdisciplinary gap can possibly
be bridged by studying their complementarities [?].

Software Development (SD) is a special form of new prod-
uct development (NPD) [10]. A new project in both disciplines
starts with acquiring domain understanding, generating and
validating ideas and outlining either the complete solution or
first steps to build it. In NPD terminology, a project initiation
is called ”fuzzy front-end of innovation” [11] while in software
engineering, the corresponding ambiguous, creative and non-
determined pre-development period is called a ”concept phase”
[12].

A New Product Development process starts by identifying
a promising ideas [9], choosing what exactly is to be built
and create a definite enough specification needed to start
development [9], [13].

A. Software Product Success

In project front-end, nonformity of ideas impedes proceed-
ing to the development phase [9]. Success and performance
of pre-development activities rely on the whole project teams
ability to understand the sources and nature of uncertainty
[9], [14]. Generating access to new knowledge and integrating
it to the development process increases the chances of the
project reaching it’s goals [15]. However, knowledge created
in the project front-end phase is fluid, unstructured and hard
to measure [9]. In Table I, Wilemon and Kim (2002) specify
the nature of qualitative transformation of knowledge that is

TABLE I
CHARACTERISTICS OF FRONT-END- AND DEVELOPMENT PHASES [9].

Front End Development phase characteristic
Idea quality Propable, fuzzy Determined, fixed, clear, specific
Quality of information for decision making Qualitative, informal, approximate Quantitative, formal, precise
Outcome (action) Blueprint (diminished ambiguity for decision mak-

ing)
Product (making it happen)

Width and depth of focus Broad, thin Narrow, detailed
Rejecting an idea Easy More difficult
Degree of formalization Low High
Personnel involvement Individual / small team Full development team
Budget Small or none Large designated
Management methods Un-structural, experimental, creative Structured, systematic
Damage if project is abandoned Small Substantial
Upper management commitment None or small Usually high

required for ending the project front-end planning and starting
the development phase.

Low end-product performance have been identified as one of
the consequence of performing the project front-end activities
negligently [10]. Sufficient front-end evaluation contributes
to the team being able to estimate the project scope, thus
creating a basis informed project resource planning [9], [10],
[16]. Table 2 explains common problems in project front-end
activities and presents some of their outcomes on product
performance.

Balancing between sufficient and overdone project front-
end work is complicated. Common problems in software
envisioning include starting the development effort without
no vision of the outcome [3], [10]. At the other extreme,
the development effort can be commenced by illustrating a
prophecy vision, which is not in align with the software
development team’s ability to perform within a reasonable
timeframe [3]. The product vision may be based on invalidated
assumptions about the stakeholders or end-users, or solely
on end-user aspirations, leading low stakeholder acceptance
[10], [17], [18]. The front-end analysis may also be too
thorough, leading to big up-front design, possibly stagnating
the development effort [3], [11]

B. The Software Product Vision

It is hard to express a vague software idea. Describing a
project goal often starts by describing software features, rather
than outlining the underlaying reason why the software is
being built. A product vision describes the high-level goal
of the development effort - it’s reason for existence [?], [3],
[19], [20]. Making personal knowledge about the project’s
goals available for team lays the groundstone for achieving
a common understanding [21]. Understandind the projects
goals, constraints and priorities already early in the process
contributes positively to the end-product success [9], [10].

Existing software product vision models provide concrete
parameters that can be used to analyze the end-product [6],
[11], [22]–[24]. Modeling the new software product devel-
opment as a collection of problems to be solved increases
the development effort’s possibilities of avoiding them, thus

helping the effort to first define, then achieve it’s goals with
more precision [15].

At the beginning of a software project, absence of ideas
is rarely the problem: while stakeholders are eager to share
their needs and aspirations, goal of the software project may
become fuzzy. Restricting the ideas by setting a a clear goal
for the development effort yields ideas that are of better quality
[17]. A well-defined and concise vision statement also helps
the development team to distinguish the most critical building
blocks of the software product [25].

The problem of choosing the most valuable features with-
holds and designing a future roadmap for the software product
bare the most important strategic decisions in new product
development. A mutual understanding of goals helps the prod-
uct owner and his development team in aligning technological
decisions to stakeholder goals, such as business requirements.
It also facilitates the discussion and alignment of intra-project
activities to project long-term goals and allows to prepare
tactics for reacting to possible disruptions emerging from e.g.
new technologies or changes in the marketplace [4].

Despite it’s widely recognized benefits, the concept of a
product vision has traditionally been present only at levels
of company strategy- and product portfolio management [26].
It has been recognized only recently that agile development
methods should be extended by tools for long term product
planning [27] and methods for tracking the high-level product
concept and it’s underlying goals have started to emerge [3],
[6], [26].

III. THE SOFTWARE PRODUCT ENVISIONING FRAMEWORK

In this chapter, a new framework for software product
envisioning is introduced. The framework has been built
as a synthesis of a four major, structured product vision
statements from the disciplines of New Product Development
and Marketing. The product vision models that lay the
foundation of this work are:

• Cooper et al. Integrated Product Description [11]
• Geoffrey Moore’s Product Vision Statement [22]
• Alex Osterweilder’s Business Model Canvas [23]

The Software Product Vision

Problem Space Stakeholders Solution Space Business Space Project Space

Problem
Outline

Problem
Process
AnalysisP
ro
SProblempace

Stakeholder
Discovery

Stakeholder
Goal Discovery

Stakeholder
Value Analysis

Stakeholder
Prioritization
Pro
SProblempace

Solution Outline
Description

Value Proposition

Solution Process
Analysis
 (Functional Requirements)

Requirement
Priorities

Delivery Channels

Constraints
(Non-Functional Requirements)

Detailed Design

Product Name
Value

Competitor
Discovery

Competitive
Advantage

Revenue
Streams

Cost Structure

Competiti

Project
Resources

First Steps

Scope

Fig. 1. The Software Product Envisioning Framework

TABLE II
REASONS FOR LOW PRODUCT PERFORMANCE [LSD]

Problem Outcome
1. Missing of a com-
pelling value proposition

Lack of customer interest

2. Neglect of defining a
competitive advantage

Poor differentiation

3. Insufficient innovation
front-end work

Slowed development due vision inclarity

4. Insufficient voice-of-
customer evaluation

Poor user acceptance

5. Lack of end-user vali-
dation of concept

Poor user acceptance

6. Changes in product
specifications

Delays due to misunderstandings

7. Variance in scope Difficulty of estimating amonut of work

8. Lack of cross-
functionality in team

Decreased team cohesiveness

9. Under-resourcing the
team

Delays due task switching

10. Lack of competencies Inability to proceed with the project

• Ash Mayura’s Lean Canvas [24]

Various short, i.e. one-sentence descriptions describing a
high-level product vision were found in agile software devel-
opment literature [28]–[31]. However, because they provide
very little contribution on project front-end analysis, they were
not included in this comparison. While the Kano-model of
product development [32] is a tool for evaluating product
construct and steering the development effort, it was left out
of this comparison for it’s narrow focus on customer/end-
user driven value prioritization of product features and at-
tributes. Holtzblatt’s ”Contextual Design” -method [33] was
also rejected from this study because of it’s heavy emphasis
on detailed software design.

To reflect on integrating the product envisioning process
with the Agile Software Development process, a novel and un-
published envisioning framework by Agile Product Ownership
author and industry expert Roman Pichler was also included
in the comparison [6].

Each of the product envisioning models has their own
emphasis. Cooper’s Integrated Product Definition (IPD) bares
only very general product vision parameters. While capturing a

high-level view on the end-product, it does not directly address
analysis of the problem domain. When applying the heuristics
of Osterweilder’s Business Model Canvas (BMC) into software
product discovery, a strong emphasis is paid on identifying
customers, their needs, solution processes, resources and the
business model. Lean Canvas has more emphasis on defining a
strong competitive advantage than BMC and is also described
to define the project scope: a ”pathway to Minimal Viable
Product”. Geoffrey Moore’s Product Vision Statement has
been commonly used in agile software development literature.
It captures the product vision at lesser tangible terms than the
BMC and LC. Similarly to Cooper’s Integrated Product Vi-
sion, Moore’s vision statement does not encourage continuing
problem- or solution domain analysis to process level, thus
possibly contributing to starting the development effort based
on assumptions.

Pichler’s two-step method aims for integrating product en-
visioning into the agile software development process. It’s first
part, the Product Vision Board (PVB), encourages discovering
end-users, their needs and the value that the software solution
will provide to them. The second part, Product Canvas (P.PC)
is a tool for transforming the high-level product vision, into
a concrete development plan. It utilizes the Agile Modeling
-method’s [?] stepwise refinement of user stories. The model
leaves more detailed problem/solution analysis and design
to later stages of the development effort. Similarly, detailed
project space analysis: scope, resources and first steps on
starting the development effort are out of scope of the two
tools.

Even though most of the already established vision state-
ments were described with different vocabulary, they evoke
coterminous knowledge in the product envisioning process.
Therefore, each model and it’s related instructions were stud-
ied to find similarities and differences. The analysis yielded
18 underlying parameters were chosen and organized into five
integrative meta-categories (Problem Space, Stakeholders, So-
lution Space, Market Space and Project Space). One parameter,
Detailed Design, was added to identify whether the teams were
starting to be close to entering the development phase. Figure
1 demonstrates resulting framework.

IV. ACTION RESEARCH CASE STUDY

The validity of the new Software Product Envisioning
Framework was been evaluated by performing action research
three cases. The author arranged a software innovation work-
shop and two project courses for computer science major
students to test validity of the software product envisioning
framework. She participated in all cases the course in the role
of a facilitator.

A. Software Innovation Workshop

Software Innovation Workshop was a 17-day course that
was arranged at University Of Helsinki’s Department of Com-
puter Science in May 12. Action research aimed to identify,
which product envisioning framework parameters would be
discovered in a software product design process that started

maximum uncertainty about both the goal and means to
achieve it. Analysis of some parameters was evoked during
the workshop by setting clear goals for each session, some
were left to be discovered by the students themselves.

During the workshop, teams of 3-4 students worked collab-
oratively to create novel software ideas. The curriculum was
designed to conform to three stages: discovery, scoping and
building a business case [11]. Schedule of the five workshops
was designed to be intensive, consisting of five, mandatory 4-
hour workshops. In between the workshops, the teams spent
2-4 days contemplating the challenge, interviewing people,
validating their assumptions and studying the phenomena
related to their teamwork.

Outline of the workshop (WS) topics and homework (HW)
assignments:

HW.1 Discover new, exciting technologies.
WS.1 Perform a Persona interview [?]. Find a problem to

solve. Identify stakeholders and their needs. Outline
a solution.

HW.2 Study competing solutions to the same problem.
WS.2 Iterate your solution, find a means to differentiate it

from competitors.
WS.3 Analyze delivery channels and benefits for stakehold-

ers. Define a competitive advantage.
HW.3 Find a critical feature of the system [25].
WS.4 Identify possible partners in providing the service.

Identify revenue streams. Create a product backlog.
WS.5 Concept demo

Goals of each workshop were introduced at the beginning
of sessions. Participants were encouraged to facilitate their
communication by using both software modeling tools and
free form sketches. Clean guidelines were intended to be pro-
vided for accomplishing the tasks, but during the first session
it became obvious that the students did not need detailed
guidance. At third workshop, students were confused about
where the modeling actions would lead. Therefore a product
vision canvas (Figure 2) was introduced. Table 3 displays the
parameters that were discovered during the software product
design process.

When asked, some Innovation Workshop participants im-
plied that they had realized the wider context a software can
have. After the initial confusion, seeing the canvas had helped
them to concretize a goal for the software discovery effort.

B. Open Data -Application Development

To evaluate relevance of the framework in a real software
project with highly experienced developers and moderate
uncertainty, a startup -style software product development
effort was started as a masters’ level project course. Four
professional web- and mobile application developers were
assigned to create an open data application for Apps4Finland
[?]-competition. The team consisted of an User Experience
Designer (UXD) and three programmers.

After an free form ideation session, the UXD presented an
initial concept of a mobile, map-based rest stop application as
concept sketch, containing images and user interface mockups.
Researcher observed which product vision parameters were
intuitively included in the presentation. Development effort
started quickly and was mostly guided by online discussion
and light sketches of user interfaces. No detailed design
modeling was made either in the project front-end, during
development or post-project. A summary of Software Product
Vision Parameters that were discovered the three project stages
are found in table IV. Post-project parameters were qualita-
tively surveyed from the participants, yielding very unanimous
answers.

Of the Product Envisioning Framework parameters Cost
Structure, Revenue streams and non-functional requirements
were not addressed at all. Stakeholder value analysis and
defining a strong competitive advantage were addressed very
lightly.

Even though the application was professionally developed
and launched in in social media and received wide public
attention in the Apps4Finland competition, it did not perform
well. When analyzing low product performance with the
user experience designer after the project had been ended
he identified that the product was terminated too early. He
expressed that continuing development, planning determined
marketing activities and launching the product with better
timing and visibility could still bring the product to its target
audience successfully. It is impossible to say, weather more
thorough analysis of the competitive environment would have
contributed to the low success of the end-product.

C. Robotics Lab

The Robotics Lab -project was started for developing an
embedded system as a showcase for robotics programming
education. Participants of the project included three Computer
Science major students and one Physics student who all shared
extensive knowledge in DIY-robotics and programming. One

TABLE III
CASE A: SOFTWARE PRODUCT ENVISIONING FRAMEWORK PARAMETERS

DISCOVERED AT EACH PHASE OF THE INNOVATION WORKSHOP.

Parameter
Pre-workshop
task (HW0)

-

Workshop 1 Problem outline, Problem Process Analysis,
Stakeholder Discovery, Stakeholder Goal
Discovery, Solution Outline

HW1 Competitor Discovery

Workshop 2 Value Proposition, Stakeholder Value Anal-
ysis, Competitive Advantage, Solution Pro-
cess Analysis

Workshop 3 Delivery Channels, Stakeholder Prioritiza-
tion, Requirement Priorities

HW3 First Steps

Workshop 4 Project Resources (partnering), Revenue
Streams

Workshop 5 -

of the participants was assigned as a project manager.

The core project team spent autumn 2012 investigating
hard- and software technologies related to theit topic, building
prototypes of various subsystem options, including speech
recognition, movement on demand and capacitative sensing.
Processes of manufacturing custom circuitboards and chassis
parts were also studied.

During the extensive project front-end activities, the team
gained advanced knowledge about the solution domain and
many small sub-project ideas started to emerge. While ”big
picture” of the projects goals was clear, plans for actualizing
the steps for proceeding become vague. To help the project
team align their actions according to original goals and to
prioritize the small team’s efforts. Eight parameters of the
framework were chosen and composed into a simple A3
canvas tool (Figure 2). Parameters that were chosen to be
used in the canvas were:

• Problem Outline
• Stakeholder Discovery
• Solution Outline
• Competitive Advantage
• Solution Process Analysis
• Requirement Priorities
• Next Steps

When sketching the sub-projects, discussion was mainly
dominated by solution space details. However, when asked, the
team was able to deliver information related to all parameters.

After the meeting, the subproject sketches were reviewed
with the project group. Three major aggregate categories
were identified: Platform Projects, Vision/Hearing Interfaces
and Small Application Projects. Each category contained 3-4
project sketches. Platform Projects -category was chosen to
be top priority. After the group meeting, the project manager
was invited separately to review the top priority sketches and
was interviewed about the experience of using the framework
in capturing the project ideas. He indicated that goals of each

TABLE IV
CASE B: SOFTWARE PRODUCT ENVISIONING FRAMEWORK PARAMETERS

DISCOVERED IN OPEN DATA APPLICATION DEVELOPMENT PROJECT.

Parameter
Project Front-end Problem Outline, Stakeholder Discovery,

Solution Outline, Competitor Discovery,
Delivery Channels, Product Name, Solution
Process Analysis, First Steps

During Develop-
ment

Problem Process Analysis, Stakeholder
Goal Discovery, Functional Requirements,
Value Proposition, Stakeholder Prioritiza-
tion, Project Resources, Project Scope

Post-
development
interview

Product name, Problem Outline, Solu-
tion Outline, Stakeholder Discovery, Value
Proposition, Competitive Advantage, Prior-
itization Criteria

subproject had become clearer and he had gained an overview
of priorities for next steps of the project.

V. DISCUSSION

In Case A Software Product Envisioning Framework was
used to observe the decrease of uncertainty in new fuzzy front-
end of software product innovation. In Case B, parameters
were used in observing the amount of uncertainty about a real
software development project’s goals before, during and after
the development effort. In third case, chosen parameters of the
framework were used to accelerate starting the development
phase after a very long fuzzy front-end of innovation.

Cases A and C imply that visualizing parameters on the
form of a canvas poster clarifies the output of the development
effort. By requiring a minimum amount of parameters to be
present in software project front-end, starting the development
effort with insufficient vision can be avoided. On the other
hand, restricting the amount of parameters helps avoiding a
big up-front design.

Project B was market-driven. Project C was driven by
technology opportunities. Therefore, applying some of the
parameters (revenue streams, competitive advantage) was
not applicable. In Case A, the Value Proposition was used
unanimously with the Product Name. As a conclusion, fixing
a predetermined set of parameters into a canvas tool and
using it for all purposes may restrict it’s compatibility for
different kinds of projects and is therefore discouraged by the
author.

Requirement prioritization activities in case A yielded end-
user value driven prioritization. In case C, the same parameter
evoked thorough analysis on sub-project dependencies. This
implies that choosing a general enough parameter name in-
creased it’s compatibility for different kinds of projects.

Some of the Software Product Envisioning Framework
parameters were present from the very beginning of all case
studies. From all parameters, constraints was the one that was
least addressed. This implies that elicitating constraints, i.e.
”Non-Functional requirements” may require more thorough
guidance.

Three of the established product envisioning models contain
a design heuristic that can be used to aid design. In all
cases the new framework was evaluated in, the design process
was highly iterative. A predefined heuristic worked well for
guiding the product discovery novices at Innovation Workshop
course in Case A. Remarkably with experienced developers
performing only a short project front-end before starting
development (case B), the design process could not be directed
by suggesting the team to discover parameters. Therefore, the
framework was used to follow the product discovery process
i.e., the decreasing uncertainty about the project’s goals.

Some of the concepts introduced to the computer science
major students were new, originating from the world of
marketing and product development. However, the concepts
of ”value proposition”, ”competitive advantage” and ”revenue
streams” were easily digested after a brief explanation. Using

the framework in the context in case A was thus, Computer
Science education applicable.

VI. CONCLUSIONS

Uncertainty about a software project’s goals and priorities
complicates development efforts. Uncertainty is often caused
by the volatility of the software project’s environment: varying
stakeholder goals or changes in the market- or technology
space. Intra-project factors such as project management or
competences of the product owner and the software team also
effect the development effort. Uncertainty can be reduced by
creating new knowledge [21].

While the emphasis of agile methods are focused on a
single development team working on a single project [27]
and close collaboration of the development team and it’s
customer [1], they currently lack support for initial and long-
term product envisioning [2]. Predictive product management
is complicated by the evolving release scope that is typical for
agile development methodologies. Knowledge gaps in between
long-term planning, daily development activities and user
experience design is reported to distract determined product
development [2], [7], [8].

Researchers and practitioners have awaken to recognize
product envisioning and -planning as an amendment to the
agile development process. Some product envisioning frame-
works exist in New Product Development body of knowledge
[11], [22]–[24]. An Agile Product Management practitioner
expert has published his initial, two-step agile product envi-
sioning process [6].

When analyzing the existing product envisioning methods,
significant similarities were found. All methods approach a
great deal of the same questions with different terminology.
Therefore, as a contribution of this thesis, an interdisciplinary
framework for software product envisioning terminology is
created by comparing the underlaying knowledge each product
envisioning method evokes.

The framework was evaluated in a university course of inno-
vative product discovery for software engineers, as well as in
two capstone projects. The results from the experiments imply
that the software engineering curriculum can be complemented
with pre-project activities assisted by the product envisioning
framework. In case B, the framework was applicable for
evaluating the amount of uncertainty about the project’s goals
was present at a software project. In case C, the framework
was successfully used to capture vague ideas and thus reduce
uncertainty about a project’s goals.

While uncertainty in software projects is a chaotic and
complex phenomenon, no ”silver bullet” can address all situa-
tions. Therefore, the framework parameters are recommended
to be chosen to suit the project at hand. Parameters can
be accompanied with a simple, one-page template to help a
software development team to find an ”agile optimum” for
requirements engineering activities in the project front-end.

REFERENCES

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,

TABLE V
THE CANVAS TOOLS USED IN CASES A AND C

7. Revenue
streams

1. Problem

4. Solution

6. Solution processes

2. Stakeholders

5. Competitive
advantage

3. Value proposition

8. Product
Backlog top 3

Unique Value Proposition

Problem Solution

Stakeholders
Competitive
Advantage

Prioritization
Criteria

Product
Backlog

Top 3

J. Kern, B. Marick, R. C. Martin, S. Mallor, K. Shwaber, and
J. Sutherland, “The Agile Manifesto and The Twelve Principles of
Agile Software,” The Agile Alliance, Tech. Rep., 2001. [Online].
Available: http://www.agilemanifesto.org/

[2] D. Karlstrom and P. Runeson, “Combining agile methods with stage-
gate project management,” Software, IEEE, vol. 22, no. 3, pp. 43–49,
2005.

[3] R. Pichler, Agile Product Management with Scrum: Creating Products
that Customers Love. Pearson Education, 2010. [Online]. Available:
http://books.google.co.uk/books?id=aLSu0P0EojEC

[4] B. Boehm, “Making a difference in the software century,” Computer,
vol. 41, no. 3, pp. 32–38, 2008.

[5] S. Ambler, Agile Modeling: Effective Practices for EXtreme Program-
ming and the Unified Process, ser. Programming, software development.
Wiley, 2002.

[6] R. Pichler, “All things product owner,” 2013. [Online]. Available:
http://www.romanpichler.com/blog/

[7] N. Dzamashvili Fogelstrom, T. Gorschek, M. Svahnberg, and P. Olsson,
“The impact of agile principles on market-driven software product de-
velopment,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 22, no. 1, pp. 53–80, 2010.

[8] C. Manteli, I. van de Weerd, and S. Brinkkemper, “Bridging the gap
between software product management and software project manage-
ment,” in Proceedings of the 11th International Conference on Product
Focused Software. ACM, 2010, pp. 32–34.

[9] J. Kim and D. Wilemon, “Focusing the fuzzy front–end in new product
development,” R&D Management, vol. 32, no. 4, pp. 269–279, 2002.

[10] M. Poppendieck and T. Poppendieck, Implementing Lean Software De-
velopment: From Concept to Cash, ser. The Addison-Wesley Signature
Series. Addison-Wesley, 2007.

[11] R. Cooper and S. Edgett, Lean, Rapid and Profitable New Product
Development. CreateSpace, 2009.

[12] “Ieee standard glossary of software engineering terminology,” IEEE Std
610.12-1990, p. 1, 1990.

[13] F. P. Brooks, “No silver bullet: Essence and accidents of software
engineering,” IEEE computer, vol. 20, no. 4, pp. 10–19, 1987.

[14] A. Pearson, “Managing innovation: an uncertainty reduction process,”
Managing innovation, pp. 18–27, 1991.

[15] W. A. Sheremata, “Finding and solving problems in software new
product development,” Journal of Product Innovation Management,
vol. 19, no. 2, pp. 144–158, 2002. [Online]. Available:
http://dx.doi.org/10.1111/1540-5885.1920144

[16] IEEE Computer Society, Software Engineering Body of Knowledge

(SWEBOK), P. Bourque and R. Dupuis, Eds. EUA: Angela Burgess,
2004. [Online]. Available: http://www.swebok.org/

[17] M. Pikkarainen, W. Codenie, N. Boucart, and J. A. Heredia, The Art
of Software Innovation - Eight Practice Areas to Inspire your Business.
Springer, 2011.

[18] C. Kessler and J. Sweitzer, Outside-In Software Development: A Prac-
tical Approach to Building Successful Stakeholder-Based Products, ser.
Networking Technology. IBM Press/Pearson, 2008.

[19] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,
2009.

[20] P. Trott, Innovation Management and New Product Development, ser.
Pearson education. Financial Times Prentice Hall, 2008. [Online].
Available: http://books.google.co.uk/books?id=9hv4GqUq1E0C

[21] I. Nonaka and H. Takeuchi, The knowledge-creating company: How
Japanese companies create the dynamics of innovation. Oxford
University Press, USA, 1995.

[22] G. A. Moore, Crossing the chasm. New York: Harper Business, 1991.
[23] A. Osterwalder and Y. Pigneur, Business Model Generation: A Hand-

book for Visionaries, Game Changers, and Challengers. Wiley, 2013.
[24] A. Maurya, Running Lean: Iterate from Plan A to a Plan That

Works, ser. Lean Series. O’Reilly Media, Incorporated, 2012. [Online].
Available: http://books.google.co.uk/books?id=j4hXPn233UYC

[25] B. Boehm, “Value-based software engineering: reinventing,” ACM SIG-
SOFT Software Engineering Notes, vol. 28, no. 2, p. 3, 2003.

[26] J. Vähäniitty, “Towards agile product and portfolio management,” 2012.
[27] P. Kettunen and M. Laanti, “Combining agile software projects and

large-scale organizational agility,” Software Process: Improvement and
Practice, vol. 13, no. 2, pp. 183–193, 2008.

[28] L. Hohmann, Innovation Games: Creating Breakthrough Products
Through Collaborative Play. Addison-Wesley, 2007.

[29] J. Highsmith, Agile Project Management: Creating Innovative Products,
ser. Agile Software Development Series. Pearson Education, 2009. [On-
line]. Available: http://books.google.co.uk/books?id=VuFpkztwPaUC

[30] Agile Estimating And Planning. Pearson Education, 2006.
[31] D. Leffingwell, Agile Software Requirements: Lean Requirements Prac-

tices for Teams, Programs, and the Enterprise. Pearson Education,
2010.

[32] N. Kano, “Upsizing the organization by attractive quality creation,” in
Total Quality Management Proceedings of the First World Conference.
Carfax Publishing UK, 1995, pp. 60–72.

[33] K. Holtzblatt, J. Wendell, and S. Wood, Rapid Contex-
tual Design:, ser. Morgan Kaufmann Series in Interactive
Technologies. Elsevier Science, 2005. [Online]. Available:
http://books.google.co.uk/books?id=VjO6n9stHzUC

