
Date of acceptance Grade

Instructor

Software Engineering Challenges in Small Companies

Yiyun Shen

Helsinki 04.04.2008

Seminar report

UNIVERSITY OF HELSINKI

Department of Computer Science

 ii

HELSINGIN YLIOPISTO − HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta/Osasto − Fakultet/Sektion – Faculty/Section

 Faculty of Science
 Laitos − Institution − Department

 Department of Computer Science
Tekijä − Författare − Author

 Yiyun Shen
Työn nimi − Arbetets titel − Title

 Software Engineering Challenges in Small Companies
Oppiaine − Läroämne − Subject

 Computer Science
Työn laji − Arbetets art − Level

 Seminar report
 Aika − Datum − Month and year

 April 04, 2008
 Sivumäärä − Sidoantal − Number of pages

 12
Tiivistelmä − Referat − Abstract

This paper described three of the challenges met by small software companies and their corresponding
solutions. It focuses on the challenges met by small software companies from software engineering's
point of view, and introduces several approaches, which have been demonstrated helpful to solve the
specified problems.
The paper is organized as follows. Chapter 1 gives an introduction of the current situations of the small
software companies. In chapter 2, the major software process challenges of small organizations are
discussed. In chapter 3, possible solutions to the challenges will be described in turn. Chapter 4 contains
a brief summary and the prospects of small software companies.

Avainsanat – Nyckelord − Keywords

 small software companies, software engineering challenges, software process improvement
Säilytyspaikka − Förvaringställe − Where deposited

Muita tietoja − Övriga uppgifter − Additional information

 iii

Contents

1 Introduction ... 1

2 Challenges .. 3

3 Solutions ... 4

3.1 Open Source Tools Used in Software Process.........................4

3.2 Simplified Measurement ...5

3.3 The IDEAL Model ...6

3.3.1 The IDEAL Model ..6

3.3.2 Adjustment of the IDEAL Model....................................8

4 Summary .. 10

References.. 11

1

1 Introduction

Small companies, judged by number of employees, are generally under 100
employees in the United States while fewer than 50 employees in the European Union
[Sma08]. Small companies, together with large companies, have coexisted for quite a
long time, which makes it difficult to trace the origin of so-called small business.
However, for the small software companies, the true spring can be dated back to
1970s, when the third industrial revolution happened. The rapid advance in
technology, which opened the well-known "Information Age" since 1974, is
undoubtedly linked to IT development, both for hardwares and softwares [Gre97].
Though we often concentrate on large companies and their famous and widely used
products, we cannot ignore the importance of small companies in a national economic
system. According to the software industry statistics taken in Ireland, small software
companies play a fundamental role in many national economies' growth. They
represent up to 85 percent of all software organizations in the US, Canada, China,
India, Finland, Ireland, and many other countries [Sof06]. In Finland, the software
industry is one of the key industrial segments. This industry is expected to employ
more than 100 000 people in the year 2010 [Nuf99]. The number of small Finnish
software companies doubles that of the large firms according to the questionnaire
given by the Technical University of Helsinki in 2000, which pointed out that about
140 out of 200 software companies had fewer than 20 employees [Sal01]. Different
from other counties, the software industry in Finland has concentrated on providing
technological solutions to business-to-business niche markets since its 'rise' in the
1970s [Sal01].

Generally, small companies are supplementary to large firms from marketing view.
Large companies, with enough financial and managerial resources to develop and
market new technologies, aim to gain dominant share of a market. Contrarily, small
software companies, in order to survive in crucial competition, mainly concentrate on
a market niche, which is disregarded by large companies. Small companies cannot be
simply seen as scale-down versions of large ones [Sto82]. For small companies, the
significant advantages commonly adopted are their excellent responsibility and
flexibility. They are selling innovative programmes with special features or offering
particular solutions and services to their customers. While running their businesses,
small software companies often meet difficulties in finances and staffing. A majority
of small companies are independently financed and rather like a develop team than a
company in size. Therefore, we cannot just apply the software engineering standards
and solutions designed mainly for large companies to small ones. The smaller and less
well known the company is, the less attraction it has to the experienced professionals.

2

The challenges in running small software companies seem not only to be networking,
marketing, business issues, but also to creating and leveraging technological
knowledge and know-how. Though having similar objective in providing high quality
softwares and services to satisfy customers, small and large companies cannot both
apply same development methodology or techniques without any modification and
optimization. Actually, due to the limitation of resources and business issues, those
best practices proved in large firms might be too expensive or time consuming to
perform in small companies. Accordingly, the recent researches start to find special
solutions to improve small companies' software processes in several aspects. In
addition, the standardization organizations set up modified standards and improved
approaches on SE Life-Cycle Profiles for Very Small Enterprises (VSEs refer to
companies with fewer than 25 people) [Riw07].

This paper focuses on the challenges met by small software companies from software
engineering's point of view, and introduces several approaches, which have been
demonstrated helpful to solve the specified problems. The paper is structured as
follows. In the next chapter, the major software process challenges of small
organizations are discussed. In chapter 3, possible solutions to the challenges will be
described in turn. Chapter 4 contains a brief summary and the prospects of small
software companies.

3

2 Challenges

Before talking about the software engineering challenges in small companies, I would
like to emphasize that the scale of the software companies is "small". Larry argues
that it is the business goals, not the organization's size, that matter software
development. Though given different characteristics of small and large companies, if
they have the same business goal, then, they can apply the same software engineering
techniques [Lum07]. Philosophically, that might be true under some particular
conditions, because both of the small and large firms want to make benefits in
marketing and to maintain good relationships with their customers. However,
practically, the ways to achieve similar business goals can be greatly varied from
large companies to small ones. This makes the whole story be different to small
companies. The size of organization has influences on the choice of software
development strategies and the use of SE technologies, because leaders have to take
the constraints of staffing and budgets into consideration. According to this situation,
three main software engineering challenges faced by small companies are described
as follows.

First, using toolkits, the copyrights of which are reserved by other commercial entities,
can be costly. To organize software process, project leaders need the help from lots of
development and management tools. In large firms, they may have professional teams
to develop and maintain their own development platforms and secondary toolkits,
which can improve the whole work efficiency. On the contrary, this is not affordable
to small software companies. Though small companies need tools to communicate
with customers and to cover every step in software process, the high cost in
purchasing new secondary toolkits will make the project easily over its original
estimation.

Second, complex but helpful measurement can be time-consuming for small software
companies. The benefits of measurement are usually found in analysing the effects on
software process by improvement efforts. The large firms, of course, with enough
resources, have published their practical experiences in apply metrics programmes in
software process improvement. [Kau99] Even though, the managers and developers in
small software companies are reluctant to measurement, partly because they doubt
whether the metrics programmes can lead them to success after spending extra time
on measurement.

Third, small software companies suffer from the lack of real-world publications from
similar companies describing efforts on an improvement initiative [Kht00]. Adopting
internationally accepted software process practices is essential for software companies

4

to compete in the global software development market [Gue04]. Although more and
more studies on successful initiatives are available in recent years, they still seem to
be restrictive.

3 Solutions

This chapter includes four sections of useful approaches in solving the corresponding
problems described in chapter 2. Section 3.1 introduces several open source tools
covering almost all steps in software process. Section 3.2 describes successfully
applied measurement in small software companies. Since software process
improvement is a demanding and complicated work, Section 3.3 will present an
adjusted IDEAL model, which is practical for small software enterprises.

3.1 Open Source Tools Used in Software Process

As the large software organizations, small organizations aim to gain all the benefits
through exploiting the software engineering practices. However, unlike large
companies, small companies face with the lack of staff to develop functional
specialties to perform complicate tasks supporting there products implementation. The
software process designed needs to be lightweight, low cost in training and suitable
for rapid development. Therefore, most of the tools used in the process should be
open source. In Ken and Bill's open source approach applied to software development,
particularly for long-term project, the software process is conducted into five parts,
namely, communication and documentation, revision control, building management,
testing, and release process [Mah07]. Fortunately, more and more open source tools
covering almost all parts of software process are available these days.

During software development and maintenance, effective communication and
sufficient documentation can lay a solid foundation in software process. The role of
communication is also stressed with its influences on the perception of the innovation.
In recent years, Wiki has become one of most popular communication tools in the
world. The most famous application of Wiki technology is the Wikipedia. To
introduce Wiki into software process, especially in communication aspect, has
become a first place option for many project managers. Wiki, which is software that
used more like a platform to allow users to create, edit, link, and organize the
communication contents collaboratively, is a preferable place to put Q&As issued by
either customers or developers, and to record new sparkling ideas freely [Wik08]. It
helps to narrow the communication gap between developers and customers, even
between developers themselves. As said, the contents of Q&As and important
discussions can be taken into documentation if needed. Therefore, after a long time,

5

less important points will be missed or forgotten than ever before. The improved
documentation helps developers to understand and manage their work, and meet the
customers’ need for accurate information.

Revision control is essential not only for large software companies but for small ones
as well. No matter how small the project will be, the project team need the Revision
Control System (RCS) to store, retrieve, log, identify and merge revisions
automatically. With the RCSs, developers can easily track changes in codes and
documents at any time and manage file versions. Concurrent Versions System (CVS)
and Subversion are two open sources revision control tools widely used nowadays.
Subversion is superior to CVS by providing http/https server mode and allowing users
to move and rename directories or branch and tag files [Mah07].

The Trac system can be a good example of the open source tools used in software
process. Trac combines information between wiki content, revision control, and a
computer bug database by allowing wiki mark up in issue descriptions and commit
messages, creating links and seamless references between bugs, tasks, changesets,
files and wiki pages. Besides, it serves as a web interface to a revision control system,
like Subversion, Git, Mercurial, and Bazaar. Another remarkable function of Trac is
the timeline, which shows all project events in time order, making it more easily for
developers to be acquaint of an overview of the project and tracking progress [Tra07].

3.2 Simplified Measurement

As mentioned before, the goal of measurement is to improve software process, and
almost all software companies can benefit from the improved software process. Thus,
theoretically, software companies no matter whether they are small or large should
warmly welcome measurement and metrics programmes. Actually, the story is rather
opposite to that ideal thought. The software developers, especially from small
companies, tend to greet measurement activities with scepticism before they see true
profits from metrics programmes [Kau99]. After the researchers had an insight into
the doubts of software developers, they found the reasons as follows: the
measurability of software work, the usefulness of data collection, the fears of being
controlled by their employers, and the extra workload spent on measurement, which is
the most considerable thing [Kau99]. For these reasons, the comprehensive,
complicated metrics programs applied in large firms are meaningless for those small
software companies.

In order to eliminate the doubts of software developers, new, simple, quantitative,
small-scale metrics programs are required. Moreover, the metrics programmes need to
be individualized for different companies with high diversities in their characteristics

6

and key objectives. Examples for varied key objectives of small software companies
are to reduce dependency on the chief developer by having all team members' work
on all parts of their product, to maximize the accepted change requests handled in a
certain period, to minimize the time spent on handling customer change requests, etc
[Kau99]. The next step is to gather data from all possible resources. Since the
developers may have residual doubts about measurement benefits and increase in
workload, it is better to aggregate figures from existing available data. The following
step is to generate the results of measurement, which is an important step to make the
whole evaluation be visible and fruitful to developers and customers. The key to
successful measurement is to understand the objectives of small companies. It has
been proved that technology transfer is a process happening in social environment
rather than a context-free technical matter. Given different situations and
characteristics, we should adjust metrics programmes correspondently. Though small
in size, the software companies with fewer than 20 developers need some basic formal
routines as well. Only if metrics programmes are carefully selected and the purposes
of which are well dedicated, can we achieve the balance between mechanisms and
documented procedures.

3.3 The IDEAL Model

The IDEAL Model is proposed by the Software Engineering Institute (SEI) to help
the construct and implementation of software process improvement schemes [Kht00].
It is important to understand the meaning of the software process in order to
comprehend the model. It is also necessary to understand that a software process
model is not a mathematical formula. In this context, it is a description of how to
conduct the process of software development. Software process is defined as a set of
activities that begin with the identification of a need and concludes with the
retirement of a product that satisfies the need; or more completely, as a set of
activities, methods, practices, and transformations that people use to develop and
maintain software and its associated products (e.g., project plans, design documents,
code, test cases, user manuals).

3.3.1 The IDEAL Model
The IDEAL (Integrated Design, Evaluation, and Assessment of Loadings) Model has
been developed in order to provide a routine of steps that constitute a software process
improvement program. [Kht00]

The IDEAL Model includes five phases, as shown in Figure 1:

 the Initiating phase

7

 To build up the stimulus and infrastructure for improvement

 To initialize the roles and responsibilities of team members and allocate
initial resources

 To define the business requirements based initiative

 To establish a management group and a software engineering process group

 To prepare an initial improvement plan for the next two phases

 the Diagnosing phase

 To create a baseline of the current state of the company

 To document an improvement action plan as a initial version which contains
the results and recommendations from evaluation activities

 the Establishing phase

 To prioritize the issues decided by the company

 To form the paths along which to find solutions

 To finish the action plan draft generated in the former phase

 To develop measurable goals and metrics to control infrastructure

 the Acting phase

 To create deploy solutions basing on the aspects of improvement found in the
Diagnosing phase

 the Leveraging phase

 To evaluate the data collected in the earlier phases, the lessons learned and
metrics on performances

Then, the next pass through the IDEAL model begins with probable adjustments of
the strategy, the methods and the infrastructure.

8

 Figure 1. The IDEAL Model [Kht00]

Although the IDEAL model is described graphically as a step by step execution, the
boundaries between phases are not that clear, which allows the model to be applied in
parallel.

3.3.2 Adjustment of the IDEAL Model
It is highly recommended by the IDEAL model guide [Mcf96] to tailor the model
according to the small software companies’ characteristics, such as resources, visions
and business objectives [Kht00].

In actual implementation of the improvement proposals in small companies, resources
are more critical than imagined. Hence, we have to plan to control risks caused by
staff shortage in advance. Some possible actions can be taken in resource assignment
can be hiring specialists from outside the company, letting all developers participate
into each part of the project, etc.

The cultural and organizational facts have great influences on shape the software
companies. There are two kinds of issues faced in the acting phase, namely, problem-
centred and process-centred. The problem-centred issues are easily identifiable, fast
fixable and quickly effective, while the process-centred issues are related to key
process and effect in long term [Kht00]. The IDEAL model tends to have an
adjustment in defining issues between problem-centred and process-centred in the

9

acting phase as early as possible. Successively, adjustment is required in the
establishing phase by using different strategies respectively. For instance, if in the
acting phase, the process-centred issues are realized, the establishing phase, together
with the acting phase will be synchronizing phases. On the contrary, if in the acting
phase, the problem-centred issues are realized, the establishing phase is no longer
needed to be executed. Furthermore, some unnecessary review tasks can be omitted
between the initiating phase and the establishing phase because of the shortness in
time between these two phases.

There are some other factors, which are not least important, rather than the adjustment
of general models:

 Management support and commitment

 Project planning and organization

 Education and training

 Assessment

 Monitoring and evaluation

 Staff involvement

 Support and knowledge transfer by external consultants

 Usability and validity of the introduced changes and cultural feasibility

10

4 Summary

This paper described three of the challenges met by small software companies and
their corresponding solutions. As mentioned in the previous sections, the challenges
in small software companies tied with their business characteristics, like small-scale,
limited budgets, lack of resources, especially the experienced staffs, etc. To some
extent, the small companies enjoy the advantages in immediate decisions addressing,
flat communication and flexibility in marketing. However, they also suffer from the
pains in software products development, and more significant, in improve software
process.

Fortunately, with the prosper of open source projects and products available online,
the lack of funds, which are spent on purchasing process management tools, will no
longer be the challenge in small software companies. However, the other software
process improvement challenges in software engineering aspect still exist. Obviously,
further study is needed on the role of software process improvement approaches,
especially metrics, in enhancing development practice and product quality in small
software companies. Moreover, we still need to continue further studies concentrating
on how to apply suitable process model with necessary adjustment in real-life projects.
As the small software companies begin to gain more and more attention all over the
world, they are sure to find a suitable way for them to survive in the global market.

11

References

Etw95 H. Etzkowitz and A. Webster, Science as Intellectual Property.
Handbook of Science and Technology Studies, Society for Social
Studies of Science.

Gre97 Jeremy Greenwood, The Third Industrial Revolution: Technology,
Productivity and Income Inequality. AEI Studies on Understanding
Inequality, Washington, DC. The AEI Press.

Gue04 F. Guerrero and Y. Eterovic, Adopting the SW-CMM in a Small IT
Organization. IEEE Software 21, 4, 2004, 29-35.

Kht00 K. Kautz, H. W. Hansen, and K. Thaysen, Applying and Adjusting a
Software Process Improvement Model in Practice: the Use of the
IDEAL Model in a Small Software Enterprise. Proc. 22nd Int’l Conf.
Software Eng., IEEE CS Press, 2000, 626-633.

Kau99 K. Kautz, Making Sense of Measurement for Small Organizations.
IEEE Software 16, 2, 1999, 14-20.

Lum07 L. Lumsden, Business Goals Count, Not Organization Size. IEEE
Software 24, 1, 2007, 54/56.

Mah07 Ken Martin and Bill Hoffman, An Open Source Approach to
Developing Software in a Small Organization. IEEE Software 24, 1,
2007, 46-53.

Mcf96 B. McFeeley, IDEALSM: A User’s Guide for Software Process
Improvement. Handbook CMU?SEI 96-HB-001. Software engineering
Institute, Carnegie Mellon University, Pittsburgh, PE, USA.

Nuf99 Nukari, J and Forsell, M, The Growth Strategy and Challenges of the
Finnish Software Industry. TEKES, teknologiakatsaus 67/99, Helsinki.

Riw07 I. Richardson and C. G. Wangenheim, Why Are Small Software
Organizations Different. IEEE Software 24, 1, 2007, 18-22.

Sal01 Sari Sallinen, Social Embeddedness of Dynamic Capabilities:
The Case of Product Development of Small Finnish Software Supplier
Companies. University of Oulu, Finland, 2001.

Sma08 Small business
http://en.wikipedia.org/wiki/Small_business
[30.03.2008]

Sof06 Software Industry Statistics for 1991-2005. Enterprise Ireland, 2006.
www.nsd.ie/htm/ssii/stat.htm

Sto82 D. J. Storey, Entrepreneurship and the New Firm, Croom Helm, 1982.

12

Tra07 Trac
http://trac.edgewall.org/
[17.08.2007]

Wik08 Wiki
http://en.wikipedia.org/wiki/Wiki
[30.03.2008]

