
Software Performance Testing

Xiang Gan

Helsinki 26.09.2006

Seminar paper

University of Helsinki

Department of Computer Science

HELSINGIN YLIOPISTO − HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta/Osasto − Fakultet/Sektion – Faculty/Section

 Faculty of Science
 Laitos − Institution − Department

 Department of Computer Science
Tekijä − Författare − Author

 Xiang Gan
Työn nimi − Arbetets titel − Title

 Software performance testing
Oppiaine − Läroämne − Subject

Työn laji − Arbetets art − Level Aika − Datum − Month and year

 26.9.2006
 Sivumäärä − Sidoantal − Number of pages

 9
Tiivistelmä − Referat − Abstract

Performance is one of the most important aspects concerned with the quality of software. It
indicates how well a software system or component meets its requirements for timeliness. Till
now, however, no significant progress has been made on software performance testing. This
paper introduces two software performance testing approaches which are named workload
characterization and early performance testing with distributed application, respectively.

ACM Computing Classification System (CCS):
A.1 [Introductory and Survey],
D.2.5 [Testing and Debugging]

Avainsanat – Nyckelord − Keywords

 software performance testing, performance, workload, distributed application
Säilytyspaikka − Förvaringställe − Where deposited

Muita tietoja − Övriga uppgifter − Additional information

ii

Contents
1 Introduction ...1

2 Workload characterization approach ..2
2.1 Requirements and specifications in performance testing............................. 2
2.2 Characterizing the workload .. 2
2.3 Developing performance test cases... 3

3 Early performance testing with distributed application.......................4
3.1 Early testing of performance .. 5

3.1.1 Selecting performance use-cases...5
3.1.2 Mapping use-cases to middleware ..6
3.1.3 Generating stubs..7
3.1.4 Executing the test ..7

4 Conclusion ...8

References ...9

1

1 Introduction
Although the functionality supported by a software system is apparently important, it
is usually not the only concern. The various concerns of individuals and of the
society as a whole may face significant breakdowns and incur high costs if the
system cannot meet the quality of service requirements of those non-functional
aspects, for instance, performance, availability, security and maintainability that are
expected from it.

Performance is an indicator of how well a software system or component meets its
requirements for timeliness. There are two important dimensions to software
performance timeliness, responsiveness and scalability [SmW02]. Responsiveness is
the ability of a system to meet its objectives for response time or throughput. The
response time is the time required to respond to stimuli (events). The throughput of a
system is the number of events processed in some interval of time [BCK03].
Scalability is the ability of a system to continue to meet its response time or
throughput objectives as the demand for the software function increases [SmW02].

As Weyuker and Vokolos argued [WeV00], usually, the primary problems that
projects report after field release are not system crashes or incorrect systems
responses, but rather system performance degradation or problems handling required
system throughput. If queried, the fact is often that although the software system has
gone through extensive functionality testing, it was never really tested to assess its
expected performance. They also found that performance failures can be roughly
classified as the following three categories:

l the lack of performance estimates,
l the failure to have proposed plans for data collection,
l the lack of a performance budget.

This seminar paper concentrates upon the introduction of two software performance
testing approaches. Section 2 introduces a workload characterization approach which
requires a careful collection of data for significant periods of time in the production
environment. In addition, the importance of clear performance requirements written
in requirement and specification documents is emphasized, since it is the
fundamental basis to carry out performance testing. Section 3 focuses on an
approach to test the performance of distributed software application as early as
possible during the entire software engineering process since it is obviously a large
overhead for the development team to fix the performance problems at the end of the
whole process. Even worse, it may be impossible to fix some performance problems
without sweeping redesign and re-implementation which can eat up lots of time and
money. A conclusion is made at last in section 4.

2

2 Workload characterization approach
As indicated [AvW04], one of the key objectives of performance testing is to
uncover problems that are revealed when the system is run under specific workloads.
This is sometimes referred to in the software engineering literature as an operational
profile [Mus93]. An operational profile is a probability distribution describing the
frequency with which selected important operations are exercised. It describes how
the system has historically been used in the field and thus is likely to be used in the
future. To this end, performance requirement is one of the necessary prerequisites
which will be used to determine whether software performance testing has been
conducted in a meaningful way.

2.1 Requirements and specifications in performance testing

Performance requirements must be provided in a concrete, verifiable manner
[VoW98]. This should be explicitly included in a requirements or specification
document and might be provided in terms of throughput or response time, and might
also include system availability requirements.

One of the most serious problems with performance testing is making sure that the
stated requirements can actually be checked to see whether or not they are fulfilled
[WeV00]. For instance, in functional testing, it seems to be useless to choose inputs
with which it is entirely impossible to determine whether or not the output is correct.
The same situation applies to performance testing. It is important to write
requirements that are meaningful for the purpose of performance testing. It is quite
easy to write a performance requirement for an ATM such as, one customer can
finish a single transaction of withdrawing money from the machine in less than 25
seconds. Then it might be possible to show that the time used in most of the test
cases is less than 25 seconds, while it only fails in one test case. Such a situation,
however, cannot guarantee that the requirement has been satisfied. A more plausible
piece of performance requirement should state that the time used in such a single
transaction is less than 25 seconds when the server at host bank is run with an
average workload. Assume that a benchmark has been established which can
accurately reflect the average workload, it is then possible to test whether this
requirement has been satisfied or not.

2.2 Characterizing the workload

In order to do the workload characterization, it is necessary to collect data for
significant periods of time in production environment. This can help characterize the
system workload, and then use these representative workloads to determine what the
system performance will look like when it is run in production on significantly large
workloads.

3

The workload characterization approach described by Alberto Avritzer and Joe
Kondek [AKL02] is comprised of two steps that will be illustrated as follows.

The first step is to model the software system. Since most industrial software
systems are usually too complex to handle all the possible characteristics, then
modeling is necessary. The goal of this step is thus to establish a simplified version
of the system in which the key parameters have been identified. It is essential that
the model be as close enough to the real system as possible so that the data collected
from it will realistically reflect the true system’s behavior. Meanwhile, it shall be
simple enough as it will then be feasible to collect the necessary data.

The second step is to collect data while the system is in operation after the system
has been modeled, and key parameters identified. According to the paper [AKL02],
this activity should usually be done for periods of two to twelve months. Following
that, the data must be analyzed and a probability distribution should be determined.
Although the input space, in theory, is quite enormous because of the non-uniform
property of the frequency distribution, experience has shown that there are a
relatively small number of inputs which actually occur during the period of data
collection. The paper [AKL02] showed that it is quite common for only several
thousand inputs to correspond to more than 99% of the probability mass associated
with the input space. This means that a very accurate picture of the performance that
the user of the system tends to see in the field can be drawn only through testing the
relatively small number of inputs.

2.3 Developing performance test cases

After performing the workload characterization and determining what are the
paramount system characteristics that require data collection, now we need to use
that information to design performance test cases to reflect field production usage for
the system. The following prescriptions were defined by Weyuker and Vokolos
[WeV00]. One of the most interesting points in this list of prescriptions is that they
also defined how to design performance test cases in case the detailed historical data
is unavailable. Their by then situation was that a new platform has been purchased
but not yet available; plus software has already been designed and written explicitly
for the new hardware platform. The goal of such work is to determine whether there
are likely to be performance problems once the hardware is delivered and the
software is installed and running with the real customer base.

Typical steps to form performance test cases are as follows:

l identify the software processes that directly influence the overall performance of
the system,

l for each process, determine the input parameters that will most significantly
influence the performance of the system. It is important to limit the parameters
to the essential ones so that the set of test cases selected will be of manageable
size,

4

l determine realistic values for these parameters by collecting and analyzing
existing usage data. These values should reflect desired usage scenarios,
including both average and heavy workloads.

l if there are parameters for which historical usage data are not available, then
estimate reasonable values based on such things as the requirements used to
develop the system or experience gathered by using an earlier version of the
system or similar systems.

l if, for a given parameter, the estimated values form a range, then select
representative values from within this range that are likely to reveal useful
information about the performance behavior of the system. Each selected value
should then form a separate test case.

It is, however, important to recognize that this list cannot be treated as a precise
preparation for test cases since every system is different.

3 Early performance testing with
distributed application
Testing techniques are usually applied towards the end of a project. However, most
researchers and practitioners agree that the most critical performance problems, as a
quality of interest, depend upon decisions made in the very early stages of the
development life cycle, such as architectural choices. Although iterative and
incremental development has been widely promoted, the situation concerned with
testing techniques has not been changed so much.

With the increasingly advance in distributed component technologies, such as J2EE
and CORBA, distributed systems are no longer built from scratch [DPE04]. Modern
distributed systems are often built on top of middlewares. As a result, when the
architecture is defined, a certain part of the implementation of a class of distributed
applications is already available. Then, it was argued that this enables performance
testing to be successfully applied at such early stages.

The method proposed by Denaro, Polini and Emmerich [DPE04] is based upon the
observation that the middleware used to build a distributed application often
determines the overall performance of the application. However, they also noted that
only the coupling between the middleware and the application architecture
determines the actual performance. The same middleware may perform quite
differently under the context of different applications. Based on such observation,
architecture designs were proposed as a tool to derive application-specific
performance test cases which can be executed on the early available middleware
platform on which a distributed application is built. It then allows measurements of
performance to be done in the very early stage of the development process.

5

3.1 Early testing of performance

The approach for early performance testing of distributed component-based
applications consists of four phases [DPE04]:

l selection of the use-case scenarios relevant to performance, given a set of
architecture designs,

l mapping of the selected use-cases to the actual deployment technology and
platform,

l creation of stubs of components that are not available in the early stages of the
development, but are needed to implement the use cases, and

l execution of the test.

The detailed contents in each phase are discussed in the following sub-sections.

3.1.1 Selecting performance use-cases

First of all, the design of functional test cases is entirely different from the case in
performance testing as already indicated in the previous section. However, as for
performance testing of distributed applications, the main parameters relating to it are
much more complicated than that described before. Table 1 is excerpted from the
paper [DPE04] to illustrate this point.

 Table 1: Performance parameters [DPE04].

Apart from traditional concerns about workloads and physical resources,
consideration about the middleware configuration is also highlighted in this table (in
this case, it describes J2EE-based middleware). The last row of the table classifies

6

the relative interactions in distributed settings according to the place where they
occur. This taxonomy is far from complete, however, it was believed that such a
taxonomy of distributed interactions is key for using this approach. The next step is
the definition of appropriate metrics to evaluate the performance relevance of the
available use-cases according to the interactions that they trigger.

3.1.2 Mapping use-cases to middleware

At the early stage of development process, software architecture is generally defined
at a very abstract level. It usually just describes the business logic and abstract many
details of deployment platforms and technologies. From this point, it is necessary to
understand how abstract use-cases are mapped to possible deployment technologies
and platforms.

To facilitate the mapping from abstract use-cases to the concrete instances, software
connectors might be a feasible solution as indicated [DPE04]. Software connectors
mediate interactions among components. That is, they establish the rules that govern
component interaction and specify any auxiliary mechanisms required [MMP00].
According to the paper [MMP00], four major categories of connectors,
communication, coordination, conversion, and facilitation, were identified. It was
based on the services provided to interacting components. In addition, major
connector types, procedure call, data access, linkage, stream, event, arbitrator,
adaptor, and distributor, were also identified. Each connector type supports one or
more interaction services. The architecturally relevant details of each connector type
are captured by dimensions, and possibly, sub-dimensions. One dimension consists
of a set of values. Connector species are created by choosing the appropriate
dimensions and values for those dimensions from connector types. Figure 1 depicts
the software connector classification framework which might provide a more
descriptive illustration about the whole structure.

As a particular element of software architecture, software connector was studied to
investigate the possibility of defining systematic mappings between architectures
and middlewares. Well characterized software connectors may be associated with
deployment topologies that preserve the properties of the original architecture
[DPE04]. As indicated, however, further work is still required to understand many
dimensions and species of software connectors and their relationships with the
possible deployment platforms and technologies.

7

Figure 1: Software connector classification framework [MMP00].

3.1.3 Generating stubs

To actually implement the test cases, it needs to solve the problem that not all of the
application components which participate in the use-cases are available in the early
stages of development. Stubs should be used in place where the components miss.
Stubs are fake versions of components that can be used instead of the corresponding
components for instantiating the abstract use-cases. Stubs will only take care that the
distributed interactions happen as specified and the other components are coherently
exercised.

The main hypothesis of this approach is that performance measurements in the
presence of the stubs are decent approximations of the actual performance of the
final application [DPE04]. It results from the observation that the available
components, for instance, middleware and databases, embed the software that mainly
impact performance. The coupling between such implementation support and the
application-specific behavior can be extracted from the use-cases, while the
implementation details of the business components remain negligible.

3.1.4 Executing the test

Building the support to test execution involves more technical problems provided
scientific problems raised in the previous three sub-sections have been solved. In
addition, several aspects, for example, deployment and implementation of workload
generators, execution of measurements, can be automated.

8

4 Conclusion
In all, two software performance testing approaches were described in this paper.
Workload characterization approach can be treated as a traditional performance
testing approach that requires to carefully collecting a series of data in the production
field and that can only be implemented at the end of the project. In contrast, early
performance testing approach for distributed software applications seems to be more
novel since it encourages to implement performance testing early in the development
process, say, when the architecture is defined. Although it is still not a very mature
approach and more researches need to be conducted upon it according to its
advocators [DPE04], its future looks like to be promising since it allows to fix those
performance problems as early as possible which is quite attractive.

Several other aspects also need to be discussed. First of all, there has been very little
research published in the area of software performance testing. For example, with
the search facility IEEE Xplore, if one enters software performance testing in the
search field, there were only 3 results returned when this paper was written. Such a
situation indicates that the field of software performance testing as a whole is only in
its initial stage and needs much more emphasis in future. Secondly, the importance
of requirements and specifications is discussed in this paper. The fact, however, is
that usually no performance requirements are provided, which means that there is no
precise way of determining whether or not the software performance is acceptable.
Thirdly, a positive trend is that software performance, as an important quality, is
increasingly punctuated during the development process. Smith and Williams
[SmW02] proposed Software Performance Engineering (SPE) which is a systematic,
quantitative approach to constructing software systems that meet performance
objectives. It aids in tracking performance throughout the development process and
prevents performance problems from emerging late in the life cycle.

9

References
AKL02

AvW04

BCK03

DPE04

MMP00

Mus93

SmW02

VoW98

WeV00

Avritzer A., Kondek J., Liu D., Weyuker E.J., Software performance
testing based on workload characterization. Proc. of the 3rd

international workshop on software and performance, Jul. 2002, pp.
17-24.

Avritzer A., and Weyuker E.J., The role of modeling in the performance
testing of E-commerce applications. IEEE Transactions on software
engineering, 30, 12, Dec. 2004, pp. 1072-1083.

Bass L., Clements P., Kazman R., Software architecture in practice,
second edition. Addision Wesley, Apr. 2003.

Denaro G., Polini A., Emmerich W., Early performance testing of
distributed software applications. Proc. of the 4th international
workshop on software and performance, 2004, pp. 94-103.

Mehta N., Medvidovic N. and Phadke S., Towards a taxonomy of
software connectors. In proc. of the 22nd International conference on
software engineering, 2000, pp. 178-187.

Musa J.D., Operational profiles in software reliability engineering.
IEEE Software, 10, 2, Mar. 1993, pp. 14-32.

Smith C.U. and Williams L.G., Performance solutions: a practical
guide to creating responsive, scalable software. Boston, MA, Addision
Wesley, 2002.

Vokolos F.I., Weyuker E.J., Performance testing of software systems.
Proc. of the 1st international workshop on software and performance,
Oct. 1998, pp. 80-87.

Weyuker E.J. and Vokolos F.I., Experience with performance testing of
software systems: issues, an approach and a case study. IEEE
Transactions on Software Engineering, 26, 12, Dec. 2000, pp.
1147-1156.

