
Evolution of Requirements

Harri Huuhka

Helsinki 2nd December 2003

Seminar report

UNIVERSITY OF HELSINKI

Department of Computer Science

CONTENTS

1 INTRODUCTION .. 1

2 CONCEPTS OF EVOLUTION.. 1

3 EMPIRICAL STUDY OF REQUIREMENTS ... 3

4 DISCUSSION ... 8

5 CONCLUSIONS.. 8

REFERENCES.. 9

1

Evolution of Requirements

1 Introduction

In this paper requirements engineering is examined from evolutionary perspective.

Software systems are bound to adapt or else ”they become progressively less satisfactory

in use” [Leh 2001]. There are at least two aspects. The practical one is how to cope with

evolving requirements and is closely related to concepts like management and traceability

of requirements. These aspects are covered in other papers in the seminar. The subject of

this paper is to analyze the nature of evolution in requirements engineering. First some

basic concepts of evolution are introduced. In section 3 some research reports that analyze

historical data of requirements evolution are discussed. In section 4 problems of evolution

are discussed briefly. The paper is concluded in section 5.

2 Concepts of evolution

Evolution of requirements refers to changes that take place in a set of requirements after

inital requirements engineering phase [Ant 2001]. Thus changes in requirements that may

happen in initial elicitation, analysis, specification and validation phases are not

evolutionary. Changes in requirements are additions, omissions or modifications of

requirements [Sta 1999].

Evolution of requirements is related to other forms of evolution in computer-

based systems. In the following picture a taxonomy of elements in evolutionary space is

presented [Fel 2003]:

2

Software EvolutionSoftware Evolution

Architecture EvolutionArchitecture Evolution

Requirements EvolutionRequirements Evolution

Computer-based System
Evolution

Computer-based System
Evolution

Organization evolutionOrganization evolution

Evolution in design Evolution in use

Hard
Evolution

Soft
Evolution

Picture 1 : Evolutionary space [Fel 2003]

The dimension Evolution in design – Evolution in use refers to temporal dimension. The

dimension Hard Evolution – Soft Evolution refers to the place where evolution takes place

in the system. Software evolution captures a product viewpoint and architecture evolution

captures a design viewpoint. They belong to the hard evolution which emphasizes

technical aspects. Computer-based system evolution refers to the human factors and

organization evolution refers to the interaction between the computer-based system and the

surrounding environment. Requirements evolution stands in the middle position which ties

hard and soft aspects of a computer-based system together. Therefore it is ” a natural place

where to capture information about the evolution of computer-based systems” [Fel 2003].

A functional requirement is something that enables a user or in the broader

sense a stakeholder to achieve her goal(s) 1. If we want to empirically study existing

software systems then requirements establish themselves as services provided by the

1 More about goal-based approach to requirements engineering see [Ant 1996].

3

system. A service that does not support any goals or it does but at an unjustifiable cost is

pointless or decorative. Sometimes a new service is a burden to a stakeholder because

more harm than benefit is caused. For example if new services are unuseful to a

stakeholder he may still have to change the way he interacts with the system which causes

him harm. Beneficial services can be divided to core services and second order or

modulating services. Core services are directly connected to the application domain

whereas modulating services are based on creation or transmission of knowledge about the

system. In a telephone system a core service is to be able speak via telephone and a

modulating service is to know who is calling without having to answer the phone [Ant

2001]2.

3 Empirical study of requirements

One of the longest records of services in the computer based systems can be found in

telephone services. In a study by Antón et al services contained in the call guide of the

Atlanta telephone directories for the years 1950-1999 were tabulated. Like in evolutionary

biology an interesting problem is if evolution in computer-based systems takes place

gradually or rapidly in short periods of time. In the case of Atlanta telephone services there

were clear jumps in the number of services in few years (1971, 1980, 1989) (see picture 2).

This supports punctuated form of evolution. After a rapid increase a gradual decline in the

number of services took place. Also when services were classified according their

benefit/burden profiles the results still promoted punctuated evolution [Ant 2001].

2 More about classification of services see [Ant 2001]

4

Picture 2. Growth in services over 50 years [Ant 2001]

Based on previous results it can be argued that a software product is evolving

either steadily longer periods or rapidly in a short period of time. This should affect how

the technical and management processes are organized in the development organization.

The decline in the number of services after an expansion may be explained by

redundancies between new and old services, which result in displacement of old services

by new ones [Ant 2001].

Another conclusion of the Atlanta case is that beneficial services for those

stakeholders who use the system direcly precede services for other groups of stakeholders.

In telephony first services were related to communicating with others. Being accessible to

others dominated later phases of development. This suggests that requirements obtained

from actor stakeholders shoud be given priority over other stakeholders. Core services that

are related to the creation and transfer of information take priority over services that are

based on information about core services. These meta-level services deal with information

about the state of the system and are intended to help coping with complexities introduced

by core services. This indicates the relative unimportance of meta-level services like

customization in the early releases of the product [Ant 2001].

In another study by Anderson and Felici an avionics safety-critical system

was examined [And 2001]. Like in the previous Atlanta telephone system there was great

variation in the number of new services between releases. The Software Maturity Index

(RMI) was used to measure the relative change in the number of requirements:

RMI = (RT – RC) / RT

5

where RT is the number of requirements in the current release; RC is the number of

requirements that were added, modified or deleted from a previous release. Figure 3 shows

RMI of an avionics system for all the functional requirements.

Picture 3. RMI of an avionics system [And 2001]

When the number of requirements changes was calculated for different 8 functions of the

system the following graph was obtained:

Picture 4. Cumulative number of requirements changes for each function [And 2001]

6

From Picture 4 it can be observed that function F1 is a stable part of the system. F1 is

responsible for interfacing the hardware architecture of the system. Therefore in my

opinion even this function can demonstrate punctual evolution when the system is

imported to a new hardware. It seems that functions that change in the early releases

became stable later and functions that are stable in the early releases fluctuate later [And

2001].

In a study by Stark et al 44 software releases spanning 7 products were

examined. Requirements in all releases were listed by change type (addition, deletion and

change). Picture 5 shows the distribution of these changes [Sta 1999].

Picture 5. Distribution of requirements change by type [Sta 1999]

Addition is the dominating change type as one might expect followed by deletion and

modification

Requirements were also listed by stakeholders. Four groups of people

participating the requirements generation process were identified: the contractor

development team and the acquisition management team which belong to the maintaining

organization and user management personnel and individual site analysts which belong to

the client organization. The distribution is shown in picture 6 [Sta 1999].

7

Picture 6. Distribution of requirements by stakeholder [Sta 1999]

According to this data changes in the requirements originate equally from

maintainers and customers. Other conclusions in the study were [Sta 1999]:

• Formal reviews are the most effective means to gather requirements changes

• Error handling and condition tests were the most common types of requirements

changes, but new features consume the most resources

• Using data from past releases a regression model can be constructed, which helps

estimating the workload associated with different sets of requirements. Since the data

and the model can be verified by both maintainers and clients mutual trust can be

enhanced.

8

4 Discussion

An obvious way to critisize empirical case studies is to claim that their results can’t reveal

generalities. In evolutionary biology the classical darwinian claim is that evolution is

essentialy competition. This claim can be supported by many cases in nature. But equally

there is evidence that complicated biological structures like an eye are results of co-

operation. So I believe that one can find software systems that have developed steadily or

hardly at all after their first release. But it seems obvious that a software in a competitive

environment has to evolve rapidly in order to stay in business. Usually there is a major

release which contains many new features followed by minor releases that mainly fix the

probles contained in the major release.

Personally I think that along with change management and requirements

traceabily good initial preparation for likely types of changes is a key in succesfull

evolution of a software system. In requirements engineering requirements should be

classified by their likelihood of change. Also not all requirements are implemented

(usually because of limited resources) and those that are not form a natural basis for

evolution. This can be taken into account in the archtecture design phase so that typical

nonfunctional requirement ” modifiability” is described in concrete terms. There are also

methods to evaluate architectures where different stakeholders test the architecture by

describing scenarios which the architecture should be able to handle. Different kinds of

change scenarios are useful in testing modifiability of the architecture and in

communicating the needs of change experienced by various stakeholders [Bas 2003]

5 Conclusions

According to studies presented in this paper software systems continue evolving long after

their initial release. Evolution is punctual; there are long periods of steady progress and

short spikes in the number of new features. One can find out if this is the case in a

particular system by using simple methods described in section 3: tabulation of the

number of new services per release (and possibly per function). More sophisticated

9

regression models can be used to estimate workload associated with different sets of

requirements.

References

[And 2001] Anderson S., Felici M., Requirements Evolution From Process to Product

Oriented Management, In Proceedings of Profes 2001, 3rd International

Conference on Product Focused Software Process Improvement,

Kaiserslautern, Germany, September 10-13, 2001, LNCS 2188, Springer-

Verlag, pp. 27-41.

 [Ant 1996] Antón, A.I. “Goal-Based Requirements Analysis,” International Conference

on Requirements Engineering (ICRE `96), Colorado Springs, Colorado, USA,

pp. 136-144, April 1996.

[Ant 2001] A.I. Antón, C. Potts: Functional Paleontology: System Evolution as the User

Sees It. In: Proc. 23rd (IEEE) International Conference on Software

Engineering, Toronto, Canada, 2001, 421-430.

[Bas 2003] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice

Second Edition. Reading, Mass.: Addison-Wesley, 2003.

[Fel 2003] Massimo Felici, ``Taxonomy of Evolution and Dependability''. In

Proceedings of the Second International Workshop on Unanticipated

Software Evolution, USE 2003, Warsaw, Poland, 5-6 April 2003, pp. 95-104.

[Leh 2001] Lehman M.M., Ramil J.: Rules and Tools for Software Evolution Planning

and Management. Annals of Software Enginerering 11: 2001, 15-44

[Sta 1999] Stark G., Oman P., Skillicorn A., Ameele R: An Examination of the Effects

of Requirements Changes on Software Maintenance Releases. In Journal of

Software Maintenance Research and Practice, Vol. 11, 1999 pp. 293-309.

