
Grade Date of acceptance

Instructor

Aspect-Oriented Programming
Jyri Laukkanen

1.2.2008

UNIVERSITY OF HELSINKI

Department of Computer Science

HELSINGIN YLIOPISTO − HELSINGFORS UNIVERSITET

Tiedekunta/Osasto − Fakultet/Sektion – Faculty/Section

Faculty of Science

Laitos − Institution - Department

 Department of Computer Science

Tekijä − Författare - Author

 Jyri Laukkanen

Työn nimi − Arbetets titel - Title

Aspect Oriented Programming

Oppiaine − Läroämne - Subject

 Computer Science

Työn laji − Arbetets art - Level

Seminar paper

Aika − Datum – Month and year

 1.2.2008

Sivumäärä − Sidoantal – Number of pages

13

Tiivistelmä − Referat - Abstract

This seminar paper introduces aspect-oriented programming in general. Defines the key
terminology used and covers some areas where it can be applied. Also the benefits and
drawbacks of the aspect-oriented programming are discussed.

Aspect-oriented programming is a complementary programming technique to the object-
oriented programming. It provides tools for managing so called cross-cutting concerns. Log
writing, authorization and transaction management can be taken as examples of this kind of
cross-cutting functionality.

In aspect-oriented programming the system is divided into a two halves: the base program
and the aspect program. The base program will contain the main functionality of the system
and can be implemented using object-oriented programming. The aspect program will
consist of the cross-cutting functionality that has been modularized away from the base
program.

ACM Computing Classification System (CCS):

D.1.5 Object-oriented Programming

Avainsanat – Nyckelord - Keywords

Aspect Oriented Programming, AOP

Säilytyspaikka – Förvaringställe – Where deposited

Muita tietoja – Övriga uppgifter – Additional information

 i

Index

1 Introduction .. 1

2 Terminology ... 2

3 Applications ... 5

4 Benefits and drawbacks.. 8

4.1 Benefits.. 9

4.2 Drawbacks ... 9

5 Summary .. 11

References... 12

 1

1 Introduction

Traditionally in the history of the programming, different kinds of programming

paradigms have evolved from the need of managing the complexity of the software

engineering. Since the size and overall complexity of the software projects have been

growing, the industry has been forced to develop and adapt different approaches to the

problem, in order to keep up with the progress. The procedural and the object-oriented

programming paradigms are the results of this continuous evolution. Especially the

object-oriented paradigm can be used efficiently to model the structure of the software

and to abstract away the low level details of implementation.

Although the object-oriented paradigm provides a rich set of tools for abstraction and

modularization, it can not address the problem with so called cross-cutting concerns. One

can think the cross-cutting concerns as functionality that when implemented, will scatter

around the final product in different components. Since this kind of functionality will cut

through the basic functionality of the system, it is hard to model even with the object-

oriented programming [Kic97, s. 1]. Good examples of the cross-cutting concerns are

authorization, synchronization, error handling and transaction management [KiM05, s.

49].

Aspect-oriented programming tries to address the problem by modularizing the cross-

cutting functionality into more manageable modules – aspects. Unlike the object-oriented

programming, aspect-oriented programming does not replace previous programming

paradigms. Therefore it can be seen as a complementary to the object-oriented paradigm

rather than a replacement. In aspect-oriented programming the system is divided into a

two halves: the base program and the aspect program. The base program will contain the

main functionality of the system and can be implemented using object-oriented

 2

programming. The aspect program will consist of the cross-cutting functionality that has

been modularized away from the base program. This leads to a more concise structure

since the functionality of the cross-cutting concerns is contained within well defined

modules.

2 Terminology

In order to fully understand the concepts of aspect-oriented programming, we have to

define some basic terminology. In this chapter we will define the key terms used with the

aspect-oriented programming and explain their meaning.

Cross-cutting concerns

Hridesh Rajan and Kevin Sullivan define the concern as a dimension where a design

decision is made. It becomes cross-cutting if its realization in traditional object-oriented

designs leads to scattered and tangled code [RaS05, s. 60]. The code scattering results

from the implementation of cross-cutting concerns within the base program. For example

log writing functionality is needed in most of the components, and thus the

implementation will disperse among them. Also the responsibilities of the different

components will get vaguer as they are forced to take care of non-core functionality. In

other words, the components are responsible for some additional functionality – namely

the cross-cutting functionality. This is what we call as code tangling. Examples of the

cross-cutting concerns can be seen in the figure

 3

1.

Personel
Service

Finance
Service

Transaction

Security (Authorization)

Logging

Other
Service

Figure 1. Cross-cutting concerns [see JuB07, s. 904, figure 1]

Aspect

Aspect can be seen as a class-like construct. It consists of set of pointcuts and related

advices. The basic idea of the aspect is to encapsulate the cross-cutting functionality

away from the base program into separate well defined modules [RaS05, s. 60].

Join point

The events during execution at which advice may execute are called join points [WKD04,

s. 890]. Depending on the aspect language implementation the join points can be for

example method calls, exceptions thrown or modifications of classes’ attributes.

 4

Pointcut

The pointcut is a pattern that binds an advice to a single or multiple join points [AVG07,

s. 11]. Usually the pointcut is defined with some kind of pointcut expression language.

The most notable of these languages is the AspectJ’s pointcut expression language.

Advice

An advice is an action to be taken at the join points in a particular pointcut [WKD04, s.

890]. In other words, the advices contain all the functionality of the cross-cutting

concerns. There are different kinds of advices that are related to method calls. Depending

on the advice it can be called before the target method, after it or both before and after,

thus around the method.

Weaving

The process of causing the relevant advice at each join point to be executed is called

weaving [WKD04, s. 891]. Basically this means that advices are bound to join points

according to the pointcuts. Depending on the aspect language implementation, the

weaving process can take place at compile-, load- or runtime [KiM05, s. 53-54]. In

compile-time weaving, a separate aspect compiler is used. In load-time weaving the

classloader is responsible for the weaving process while loading the classes into the

virtual machine. The runtime weaving utilizes proxy classes and code generation libraries

like the CGLIB, to perform the binding. One of the most notable compile-time aspect

language implementation is the AspectJ, while the Spring Framework offers the most

well known runtime implementation [Joh05, s. 109].

 5

3 Applications

Aspect-oriented programming has many applications. Even though the main usage lies in

managing the cross-cutting concerns, it is by no means restricted to that. Adding new or

modifying existing functionality in the base program is another area where aspect-

oriented programming can be applied.

As we have stated earlier, the object-oriented programming itself does not provide

enough tools to manage the cross-cutting concerns. This leads to the code scattering and

tangling which is illustrated in figure 2.

 Transaction
Code tangling

Authorization

Finance
Service

Personel
Service

Code scattering

Figure 2. Code scattering and tangling

 6

By using aspect-oriented programming the code scattering and tangling can be avoided.

Since the cross-cutting functionality is now encapsulated within well defined modules,

the impact on the different components decreases. This is illustrated in figure 3.

Personel
Service

Finance
Service

 Transaction

Aspect program

Transaction aspect Security aspect

Base program

Authorization

Figure 3. Cross-cutting concerns implemented as aspects

Introduction of a caching database access can be taken as an example of existing

functionality modification. Let say that we have a layered architecture based service that

utilizes database. This is illustrated in figure 4.

 7

User Service

User DAO

Database

Figure 4. Layered architecture based service utilizing database

We can use aspect-oriented programming to add caching functionality without making

any modifications to the original base program. This can be achieved by using runtime

weaving and implementing the caching functionality as an aspect. The newly weaved

caching aspect is illustrated in figure 5.

Since the caching functionality could be shared in other services too, we can see that it

actually is a cross-cutting concern. Of course we could implement a separate cache for

every service independently, but better solution is to use an advice. We can implement

one generic cache and apply it into all services using aspect-oriented programming. This

way we can avoid the unnecessary code duplication and increase the reusability and

maintainability of the system.

 8

User Service

User DAO

User Cache Aspect User Cache

Database

Figure 5. Layered architecture based service utilizing database through a caching-aspect

4 Benefits and drawbacks

In this chapter we will discuss some of the benefits as well as the drawbacks related to

the aspect-oriented programming. Although the aspect-oriented programming provides

powerful tools for managing the cross-cutting concerns, it may also produce some

unwanted side effects in software development.

 9

4.1 Benefits

As mentioned earlier, the aspect-oriented programming helps to manage the cross-cutting

functionality in the system by encapsulating the otherwise dispersed functionality into

well defined modules. This affects the overall structure of the system because the base

program does not have to concern about the cross-cutting functionality [AlB04, s. 93-94].

This naturally reduces the amount of duplicated code and decreases the error probability.

Aspect-oriented programming can also be used to add new or to modify existing

functionality in the base program. Using aspects it is possible to add new functionality

without modifying the base program. This is convenient in cases where the source code

of the base program is not available. In any case care must be taken when modifying the

functionality of the base program, since it can lead to unpredictable side effects. We will

discuss more about the drawbacks in the next chapter.

Aspect-oriented programming can also be used with software testing. Advices can be

bound to method calls to measure invocation counts and execution time. Pre- and post-

conditions of the methods can be verified by using around-style advices that are wrapped

around given target methods.

4.2 Drawbacks

Aspect-oriented programming is very powerful programming technique. Depending on

the aspect language implementation, it can be used to modify method call parameters and

return values; in some cases even classes’ attribute values. While this opens new

possibilities it may increase the complexity of the system and in worst case, lead to

problems that are hard to track.

 10

It may sound contradictory to claim that usage of the aspect-oriented programming could

increase the complexity of the system. In object-oriented programming it is often so that

one must understand the functionality in the super class in order to fully understand the

functionality of its subclass. This applies to aspect-oriented programming maybe even

more in some extend. This is because one must understand the functionality of both base

and the aspect programs in order to understand the whole system [AlB04, s. 94].

One potential pitfall resides in the pointcuts that bind the advices to the join points.

Faulty pointcut definitions may cause advices to be bound to wrong join points or not to

any join points at all. Figure 6 shows different types of errors in pointcut definitions.

A B

D C

 Correct join point set

 Pointcut

Figure 6. Possible error situations with pointcuts [LFM06, s. 34]

Following error situations are possible with pointcuts (see figure 6) [LFM06, s. 34]:

A. Pointcut selects some of the intended join points but also some unintended.

B. Pointcut selects none of the intended join points.

 11

C. Pointcut selects all the intended and also unintended ones.

D. Pointcut selects some of the intended but not all.

Errors in the pointcut definitions may cause unpredictable behavior and they can be really

hard to find. For example aspect based transaction management is a good example of

such functionality that may cause severe problems in the system if the related pointcuts

are faulty.

5 Summary

Aspect-oriented programming provides a powerful set of tools for managing the cross-

cutting concerns. It complements the object-oriented programming and together they

form a programming technique that can be used to produce concisely structured and

modularized software.

Modularizing the cross-cutting functionality leads to clearer structure and also less error

prone implementation. This is because the functionality that would otherwise be scattered

around the system can now be implemented in one place. So less code is needed and the

maintenance of the code base gets lot easier than it would be with plain object-oriented

programming.

Regardless of the powerful characteristics of the aspect-oriented programming, it is still

quite transparent and non-intrusive programming technique. With aspects one can easily

add new or modify existing functionality in the base program, even without having access

to the source code. In conclusion we can say that the aspect-oriented programming teams

well with the object-oriented programming.

 12

References

AlB04 Roger Alexander, James Bieman, Aspect-Oriented Technology and
Software Quality. Software Quality Journal, Springer Netherlands, June
2004. Volume 12, Number 2, pages 93-97.

Avg07 P. Avgustinov et al., Semantics of Static Pointcuts in AspectJ. Proc. of the

34th annual ACM SIGPLAN-SIGACT symp. of Principles of prog.

Languages, Nice, France, 2007. Volume 42, Issue 1.

Joh05 Rod Johnson, J2EE development frameworks. Computer, January 2005.
Volume 38, Issue 1, pages 107-110.

JuB07 Ke Ju, Jiang Bo, Applying IoC and AOP to the Architecture of Reflective
Middleware. Network and Parallel Computing Workshops, NPC
Workshops, IFIP International Conference, Septempter 18-21, 2007.

Kic97 G. Kiczales et al., Aspect-Oriented Programming. ECOOP'97, 220-242.

Springer Lecture Notes in CS, 1997.

KiM05 G. Kiczales, M. Mezini, Aspect-Oriented Programming and Modular

Reasoning. Proceedings of international conference of Software

engineering, St. Louis, MO, USA, 2005, pages 49-58.

LFM06 Otávio Augusto Lazzarini Lemos, Fabiano Cutigi Ferrari, Paulo Cesar

Masiero, Cristina Videira Lopes, Testing aspect-oriented programming

Pointcut Descriptors. International Symposium on Software Testing and

13

Analysis, Proc. Of the 2nd workshop on Testing aspect-oriented programs,

Portland, Maine, USA, 2006, pages 33-38.

RaS05 Hridesh Rajan, Kevin J. Sullivan, Classpects: Unifying aspect- and object-

oriented language design. Proc. of the 27th international conference on

Software engineering, St. Louis, MO, USA, 2005, pages 59-68.

WKD04 M. Wand, G. Kiczales, C. Dutchyn, A semantics for advice and dynamic

join points in aspect-oriented programming. ACM Transactions on

Programming Languages and Systems (TOPLAS), September 2004.

Volume 26, Issue 5.

	1 Introduction
	2 Terminology
	3 Applications
	4 Benefits and drawbacks
	4.1 Benefits
	4.2 Drawbacks

	5 Summary
	References

