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1 Introduction

Software testing is the task of executing software following a specifig sequence of

steps, comparing the software’s actual and expected outputs. In order to expose as

many bugs as possible with the tests, the tester must first thoroughly understand

what the software is supposed to do. This can be a difficult task due to the very

nature of software, as witnessed by its intangibility and complexity compared to

products of traditional engineering. Written specifications and requirements, are

often incomplete and ambiguous, if they even exist. So when a software tester

selects which tests to run and what kind of problems to look out for when executing

the tests, he usually depends on his own mental picture and understanding, a model,

of the software. As Kaner et al [KBP01] state, every kind of testing could therefore

be called model-based. When comparing different testing styles, only the explicitness

and lifetime of the model varies, but a model still exists.

In the last two decades, modeling has become a popular technique in designing and

developing software, practiced in one form or another almost anywhere software is

being made. Object oriented programming practices and the establishment of UML

as a standard for object oriented design, have contributed to the increasing reliance

on modeling in the field.

The abundance of modeling techniques in software design as well as the fact that

modeling already is an implicit a part of software testing, has lead to the definition

of a set of testing practices, commonly labeled as model-based testing. El-Far and

Whittaker [EFW01] describe model-based testing, or MBT, as a style of software

testing which encourages the use of explicitly written down, sharable and reusable

models for directing and even automating the selection and execution of test cases

and evaluating the results.

Model-based testing can originally be traced back to hardware testing, mainly in the

telecommunications and avionics industries [RR00]. It is nowadays well established

in the academic field of software testing but is also slowly gaining interest in the

software industry. In this paper model-based testing is described from a black-box

testing perspective applied in the system testing of software, which is the way it’s

treated by most of the academic research.

A brief introduction on modeling is presented in section 2, continuing with an outline

of the model-based test activities in 3. The last two chapters describe how a testable

model is created in practice, and how a test suite can be derived from it.
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2 Modeling software behavior

Modeling, whether in software engineering or any other discipline, means the pro-

cess of creating a representation of a real system or phenomenon, abstracting and

simplifying its behavior. Models always describe the system or phenomenon from a

certain viewpoint. Two totally different models may still describe the same system,

depending on which aspect of the system it is used to depict. In case of a software

system, different kind of models can be used to describe for instance the control

flows in the source code, module dependencies or GUI states. The models may

focus on anything between internal logic to the user perceivable input and output

behaviour. Models can be presented using any of numerous different notations, from

graphical charts (such as UML) to mathematical models or specification languages

(such as SDL and Z). As El-Far and Whittaker [EFW01] point out, a model should

be “as formal as it is practical”, making it important that a right kind of modeling

technique is selected for the application in question.

2.1 Finite state machines

In case of software testing, and software engineering in general, the fundamental

model on which many other models are based on, is the finite state machine. This

is obvious from the way most software systems are usually perceived, used and

tested – in any moment, a system appears to always be in a specific state, in which

a defined, finite set of inputs are allowed. When the system receives one of the

available inputs, it performs some action and proceeds to another state, in which

another set of inputs are allowed. Systems that match this description are known

as reactive systems and for instance graphical user interfaces often fit within this

category. Finite state machines are appropriate models such systems.

In automata theory [HMU79] finite state machines are formally defined as a quin-

tuple (Q, Σ, δ, q0, F ), where in the case of a software system

• Q is the set of software states

• Σ is the set of possible inputs in any state

• δ is the transition function, defining what state transition occurs for each

software input in any state

• q0 is the software’s initial start state, one of the states in Q
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State 1 State 2

Initial state Final state

Input

Figure 1: A finite state machine using UML notations

• F is the set of final states of the software, a subset of Q

Finite state machines are usually represented as transition matrices or usually more

informatively as graphical transition diagrams, using notations such as in figure 1.

2.2 Other models

The standard FSM definition can be restricted or extended so it is a better suits

the needs or the environment of the modeled system. The finite state machine and

its derivatives are commonly known as transition based models [Har06]. A classic

extension of the FSM is the statechart which introduces hierarchy to models. Using

statecharts a higher-level model can be expanded into several lower-level models,

where one state in a higher-level model is further described by a separate lower-level

FSM. Hierarchical statecharts make it easier to understand complex behavior. When

extending the FSM model with conditional transitions makes it possible to model a

system which behavior is not purely state based, but also dependent on context and

external variables. Statecharts are included in the UML framework, where they are

called state machine diagrams.

Other UML models can also be applied in describing a software system behavior

when performing model-based testing, for instance activity diagrams and sequence

diagrams. Since modeling in UML is often already performed in many software

projects, reusing and adapting these models for testing purposes is encouraged. A

methodology for systematically transforming software design models in UML to test

specifications has been presented by Zhen [Zhe04]. Even without attempting such

a formal derivation of a testable model from existing UML design models, they are

still useful insights into the system’s behavior.
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Executable
Test Scripts
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Figure 2: The main activities in the model-based test process

3 Model-based test activities

Engaging in model-based testing shifts the focus in the test process from the tradi-

tionally difficult and time consuming tasks of test case generation and execution, to

constructing testable and accurate enough models of the software under test. Figure

2 displays the main activities in a model-based test process. The activities begin

with the construction of the model, by transforming the mental, implicit models into

an explicit one. In model-based testing, the test cases generated from the model are

actually nothing more than different paths in the model. Creating the abstract test

suite is an easily automatable process of simply traversing through the states and

transitions in the model, until the wanted model coverage is met. The generated

abstract tests are then translated to an executable test scripts, which can run on

the system under test. By comparing the actual and expected outputs of the system

against the model, it can be decided whether the test passed or failed.

After one iteration of the process has been performed, the results are analyzed. The

possible actions include generating more test cases using the old model, modifying

the model allowing new kind of tests to be generated, or finally stopping the testing

if it’s estimated that sufficient software quality has been reached.

Creating a new software system often includes rapid, unanticipated changes in the

system’s requirements and specifications as the development proceeds. As the soft-

ware’s change and evolves, it’s a well known fact that manually specifying test cases
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and keeping the tests up-to-date with respect to a decided coverage criteria, is a

difficult and time consuming task. For instance changing the behavior of a sin-

gle control in the software’s user interface makes every single test case using that

control outdated. The tester must manually search the influenced test cases and

update them. The more intricate the changes are, the more difficult the process of

maintaining the test suite becomes.

Maintaining a model-based test suite, however, proves to be much simpler. When

the specifications change, only the relevant parts of the models must be changed.

Since the model itself prescribes the available set of test cases, and test case gen-

eration and execution can be automated, the test suite is always up-to-date and

maintenance costs approach zero [Har06]. The amount of possible test cases that

can be automatically generated is practically infinite, leading to execution of test

cases that the testers themselves couldn’t have imagined.

Engaging in model-based testing allows the testers to engage in their work in an ear-

lier stage of the development process. The models can be developed incrementally,

starting from higher-level models describing the greater software context, proceeding

towards lower-level models describing actual user interface details, or even tracing

the execution at source code level. Rosaria and Robinson [RR00] also point out that

commitment to model-based testing can help find bugs already before entering the

system testing phase. Simply doing the modeling, before creating or running any

tests, should lead to improved software quality. Modeling helps to find inconsisten-

cies in the specification and design before implementation, which usually makes it

easier to fix the problems.

4 Creating a testable model

The process of developing a testable model of software roughly in three steps: un-

derstanding the system, identifying the system inputs and building the model.

4.1 Understanding the system

The process begins with the same task as with any testing style, which is acquiring

of information and understanding about the system’s intended functionality. There

are different sources for getting the information needed, such as system requirements

and specifications and existing design models. Specifications are rarely informative
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enough to be the only source of information in building sufficient mental understand-

ing of the systems. By actually using and exploring the system, for instance using

exploratory testing techniques [KBP01], and combining the perceived behavior with

the written specifications, a mental model of the system begins to take form.

It is necessary to understand the software’s functionality from different perspectives,

analyzing its environment, different users and interfaces. The bigger and more com-

plex the system is, the harder the task of building the model becomes. It’s not

possible to completely describe a whole system in a single model, so the test ob-

jectives should be narrowed down to keep the process manageable [EFW01]. Also,

there’s no single kind of software model that fits every purpose, so a suitable model,

or collection of models, must be selected separately in every case.

4.2 Identifying the inputs and constructing the model

After a basic understanding of the software’s functionality has been established,

the modeling process continues with enumerating the system’s inputs [RR00]. This

includes identifying every control in the user interface or other interfaces, depending

on the system. The allowed value domains, including boundaries and illegal values,

should be analyzed for each input. The system’s expected responses to the inputs are

analyzed and documented similarly. In case the model-based test cases are meant

to be automated, which they usually are, this is the perfect time for the testers to

start investigating how these inputs can be programmatically generated and results

captured through a test automation interface.

When enumerating the software’s inputs, the tester should observe in which situa-

tions the input’s can be applied, and how the expected responses change depending

on the situation. The model begins to take shape when different operational modes,

i.e. states, can be recognized. When the system is in a certain state, a certain set

of inputs are available. When inputs are applied the system makes a transition to a

different state where different inputs are available. The states, inputs and rules con-

trolling how different inputs change the systems state are finally presented through

a model. Figure 3 presents a very simple model of the standard Windows Calcula-

tor application, with a viewpoint focusing only on switching between standard and

scientific modes.

By iterating through the different steps in creating the model, changing and refining

the viewpoint, it is possible to learn more about the systems purpose and func-
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Standard mode,
not running

Standard mode,
running

Scientific mode,
not running

Start Start ExitExit

Enter scientific

Enter standard

Enter standard

Scientific mode,
running

Enter scientific

Figure 3: Windows Calculator states and transitions

tionality, and encounter more inputs and states. The model can be hierarchically

divided in separate models, describing different levels of functionality, or combined

in the same model for instance using composite states found for instance in UML

state diagrams. Figure 4 extends the Windows Calculator application, by further

extending the functionality within the scientific mode state.

4.3 State space explosion

The example depicted in the figures above are of course simple, academic “toy ex-

amples”. In real model-based testing examples, the amount of states and transitions

would quickly become hugely greater. This, in fact leads to the main problem facing

model-based testing, namely state space explosion. Adding new states to already

complex models can lead to quick, possibly even exponential growth of the num-

ber of states and transitions in the system. Even though test generation using the

model is automated, there’s a limit to how large models and resulting test suites

it’s practical to develop and maintain. The tester developing the model must select

between a limited model, or limited test coverage in the actual system.

The state space explosion can be kept in control through two different tactics

[EFW01], namely abstraction and exclusion. By opting for abstraction multiple

states or inputs are combined to a single state or input. This can be observed in

figure 3 where the different states within the scientific mode are all abstracted within

a single state. Comparing figures 3 and 4 shows how adding a simple new layer of

functionality to the model quickly increased the total size of the model.

In the case of exclusion, some information is simply left out the model. This may

include excluding a large subset the total functionality from one model, and instead
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Standard mode,
not running

Standard mode,
running

Scientific mode,
not running

Start Start ExitExit

Enter scientific

Enter standard
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Oct mode Bin mode

Scientific mode, running

Enter standard

Enter scientific

Figure 4: Windows Calculator, with scientific mode state explained using a lower

level model (transition labels omitted for clarity)

placing it in an own, separate model. It’s evident, that a lot of functionality has

been excluded in both examples presented above, which of course should be included

in some other tests.

5 Creating and executing the tests

After the model has been created, it’s structural validity should be checked before

generating the abstract test suite. Binder [Bin99] presents a checklist which can be

followed when validating the model. Things that should be checked include verifying

that the model has a unique initial state, no duplicate states and that all states are

reachable in the model.

The test cases generated from models are in the form of sequences of inputs, and

expected resulting states. When the model is done as finite state machines, a test

case can be any valid path in the model. What kind of paths to choose in the test

case depends on the wanted coverage in the model. An abstract test generated from

the Windows Calculator model in figure 3 is displayed in table 1.
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# Action Expected state

1 Start Standard mode, running

2 Enter standard Standard mode, running

3 Enter scientific Scientific mode, running

4 Enter scientific Scientific mode, running

5 Exit Scientific mode, not running

6 Start Scientific mode, running

7 Enter standard Standard mode, running

8 Exit Standard mode, not running

Table 1: Test case with full state and transition coverage of the model in figure 3

5.1 Test coverage

Binder [Bin99] lists possible levels of coverage that can be aimed for when designing

a test suite with the help of a model:

• All states coverage is achieved when the test reaches every state in the model

at least once. This is usually not a sufficient level of coverage, because behavior

faults are only accidentally found. If there is a bug in a transition between a

specific state pair, it can be missed even if all states coverage is reached.

• All transitions coverage is achieved when the test executes every transition in

the model at least once. This automatically entails also all states coverage.

Reaching all transitions coverage doesn’t require that any specific sequence is

executed, as long as all transitions are executed once. A bug that is revealed

only when a specific sequence of transitions is executed, is missed even in this

coverage level. The coverage can be increased by requiring All n-transition

coverage, meaning that all possible transition sequences of n or more transi-

tions are included in the test suite.

Because a finite state machine is basically just a directed graph, the test cases can

be generated using well-known graph traversal algorithms [RR00]. Examples of

algorithms used are the Chinese Postman and Shortest Path First algorithms. The

paths can be restricted by forcing the test to start and end in the same starting

state, limiting the number of loops in the path, or the number of states that the

path must visit, depending on the test needs.
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5.2 Test execution

The generated abstract test suite is simply a set of different paths in the model.

If the test are perfomed manually by a person, the generated tests are sufficient

guidelines for how the test should be performed and what the expected results

are. The generated test suite is usually too large for manual execution, and a key

point in model-based testing is the frequent regeneration and re-running of the test

suite whenever the underlying model is changed. Consequently, achieving the full

potential of model-based testing requires automated test execution.

Test automation is too wide a subject to be even superficially covered here. Model-

based testing requires that there is some programmable interface for executing the

software under test, such as an API or an GUI test automation interface. The

abstract test suite is translated into an executable test script using the software’s

available testing interface. The translation of abstract tests to executable tests can

be performed after the original test suite is generated, or alternatively the translation

can be embedded already into the procedure where the original abstract test suite is

generated. Finally, the executable test suite is run through a test harness or driver

and the actual results are compared against the model [RR00, EFW01].

An alternative way for creating and executing model-based tests is on-the-fly testing,

described by Veanes et al [VCSK05]. On-the-fly testing integrates the derivation of

test steps from a model and executing the test into a single process. The algorithm

for traversing the model is combined with translating the abstract test steps into

executable test inputs and the oracle evaluating the results. Every time a previously

untried transition is found in the model, it can immediately be executed in the

system. This is particularly useful when a bugs are found during testing. The test

driver can be programmed to continue, even after detecting a bug, by excluding the

faulty state or transition from the model, and attempting to reach coverage in the

rest of the model.

6 Conclusion

Model-based testing, in all its simplicity, appears to be a useful and efficient test-

ing method for quickly reaching large test coverage in a system, without enormous

testing costs. Because model-based testing implies radical changes in the software

design and testing processes, a full scale adoption of the technique requires thorough
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evaluation of its benefits and drawbacks, before seriously attempting to take it into

use. Even though radical benefits and savings and even ten-fold productivity im-

provements have been reported in the academics [AD97, RR00], the reality may be

different. In Hartman’s [Har06] experience of model-based testing in the industry,

many attempts at model-based testing resulted in outright failures, or were aban-

donded and never used again in the future, even after partial success in previous

projects.

As long as modeling is performed one way or another in software projects, model-

based testing will continue to have a certain appeal, simply because of the reuse

value provided by existing design models. Another appeal of model-based testing

is its flexibility, allowing a vast number of tests, with different objectives and levels

of coverage, to be developed with low cost and effort, once the model is ready. An

increasing number of software vendors have recently released their own, commercial

model-based testing tools to the market, indicating that there might yet be a bright

future for model-based testing.
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