
On the Positive-Negative Partial Set Cover

Problem

Pauli Miettinen

Helsinki Institute for Information Technology, Department of Computer Science,
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Abstract

The Positive-Negative Partial Set Cover problem is introduced and its complexity,

especially the hardness-of-approximation, is studied. The problem generalizes the

Set Cover problem, and it naturally arises in certain data mining applications.
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1 Introduction1

The Positive-Negative Partial Set Cover (±psc) problem is a generalization of2

the Red-Blue Set Cover (rbsc) problem [2], which, for one, is a generalization3

of the classical Set Cover (sc) problem. The rbsc problem is, however, much4

harder than sc admitting the strong inapproximability property [6]. In this5

paper we will prove the strong inapproximability of ±psc. The reductions6
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used will also lead to an approximation algorithm for ±psc, and to results7

about its parameterized complexity.8

1.1 Notation and Problem Definitions9

In rbsc, we are given disjoint sets R and B of red and blue elements, re-10

spectively, and a collection S = {S1, . . . , Sn} ⊆ 2R∪B. The goal is to find11

a collection C ⊆ S that covers all blue elements, i.e., B ⊆ ∪C, while mini-12

mizing the number of covered red elements. The cost of a solution C is de-13

fined as costrbsc(R, C) = |R ∩ (∪C)|, where ∪C is the union over C’s sets14

(i.e., ∪C =
⋃

C∈C C); a shorthand we use throughout this paper. We will use15

costrbsc(C) when R is clear from the context. Finally, let ρ = |R| and β = |B|.16

In ±psc, the requirement of covering all blue elements is relaxed; instead, the17

goal is to find the best balance between covering the blue elements and not18

covering the red ones. In the context of ±psc, the red and blue elements are19

called negative and positive elements, respectively.20

An instance of ±psc is a triplet (N, P,Q) with |N | = ν, |P | = π, and Q =21

{Q1, . . . , Qm} ⊆ 2P∪N . A solution of a ±psc instance is a collection D ⊆ Q,22

and its cost is defined to be23

cost±psc(N, P,D) =
∣∣∣P \

(
∪ D

)∣∣∣ +
∣∣∣N ∩

(
∪ D

)∣∣∣ , (1)

namely the number of uncovered positive elements plus the number of covered24

negative elements. Again we will omit N and P when they are clear from the25

context.26
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1.2 Related Work27

The rbsc problem was presented by Carr et al. [2] who also gave two hardness-28

of-approximation results to it: (i) unless NP ⊆ DTIME(npolylog(n)), there exist29

no polynomial-time approximation algorithms to approximate rbsc to within30

a factor of 2(4 log n)1−ε
for any ε > 0, and (ii) there are no polynomial-time31

approximation algorithms to approximate rbsc to within 2log1−(log log β)−c
β for32

any constant c < 1/2 unless P = NP. The first result was independently33

proved by Elkin and Peleg [4], and the latter result was based upon a result34

by Dinur and Safra [3]. The best upper bound for rbsc is due to Peleg [6],35

who recently presented a 2
√

n log β-approximation algorithm for it.36

To the best of the author’s knowledge, there are no previous hardness results37

for the ±psc problem, nor any approximation algorithms for it. The problem38

itself appears in some data mining applications (e.g., [1]), but its complexity39

and the existence of efficient approximation algorithms for it have not been40

studied previously.41

2 Results42

The main result of this paper relates the upper and lower bounds for the43

±psc’s approximability to the respective bounds for rbsc.44

Theorem 1 rbsc is approximable to within a factor of f(ρ, β, n) if ±psc45

is approximable to within a factor of f(ρ, β/ρmax, n), where ρmax is the max-46

imum number of red elements in any set of the rbsc instance. Vice versa,47

±psc is approximable to within a factor of g(ν + π, π, m + π) if rbsc can be48
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approximated to within a factor of g(ν, π, m).49

Theorem 1 and the results from Section 1.2 provide the following corollaries.50

Corollary 2 For any ε > 0, (i) there exists no polynomial-time approxima-51

tion algorithm for ±psc with an approximation factor of Ω(2log1−ε m4
) unless52

NP ⊆ DTIME(npolylog(n)), and (ii) there exists no polynomial-time approxi-53

mation algorithm for ±psc with an approximation factor of Ω(2log1−ε π) unless54

P = NP.55

Corollary 3 There exists a polynomial-time approximation algorithm for ±psc56

that achieves an approximation factor of 2
√

(m + π) log π.57

The first part of Corollary 2 follows from the result by Carr et al. [2], and58

Corollary 3 follows from Peleg’s algorithm [6]. The second part of Corollary 259

follows from a result by Dinur and Safra [3] applied to rbsc: there exists60

an instance of rbsc where ρmax = O
(
2log1−(log log β)−c′

β(log log β)c′
)

for some61

constant c′ < 1/2, and unless P = NP there are no polynomial-time approx-62

imation algorithms for it with an approximation factor of 2log1−(log log β)−c
β for63

any constant c < 1/2. Thus, if we let gc(x) = 2log1−(log log x)−c
x for all c < 1/2,64

then assuming that P 6= NP, there exists no polynomial-time approximation65

algorithm to ±psc achieving an approximation factor of gc

(
π

O(gc′ (π)(log log π)c′ )

)
,66

which is Ω(2log1−ε π) for all ε > 0.67

Theorem 1 is proved in the following two subsections, while Section 2.3 studies68

the parameterized complexity of ±psc. Notice that both rbsc and ±psc have69

instances that have an optimal solution with zero cost. However, there are70

trivial polynomial-time algorithms to identify such instances and to find their71

optimal solutions. It is thus to be understood that henceforth all instances are72
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such that the cost of their optimal solution is at least 1.73

2.1 From rbsc to ±psc74

Consider an instance of rbsc, i.e., a triplet (R,B,S). We map this instance to75

an instance of ±psc. Let the negative elements be exactly the red elements,76

N = R. For each blue element bi, create ρmax = maxS∈S |R ∩ S| positive77

elements in P . Create the set collection Q so that all negative elements belong78

to the same subsets Qj as their corresponding red elements, and all positive79

elements corresponding to a blue element bi belong to the same subsets as bi.80

Let D be a solution of this instance of ±psc. If D covers all positive elements,81

then the same subsets also cover all blue elements in rbsc, and D is a feasible82

solution of (R,B,S). Moreover, cost±psc(D) = costrbsc(D), i.e., D induces83

same costs in both problems. If, on the other hand, there exists a positive84

element p not covered by D, then there must be at least ρmax positive elements85

not covered by D. Thus we can add any set S with p ∈ S to D without86

increasing the cost of the solution, as we cannot cover more than ρmax negative87

elements with any S. If C is the (possibly extended) solution to rbsc induced88

by D, we see that cost±psc(D) ≥ costrbsc(C).89

Finally, it is clear that the optimal solution of a ±psc instance will cover90

exactly the negative elements corresponding to the red elements covered by91

the optimal solution of rbsc, i.e., the costs of the optimal solutions are equal.92

Denoting the optimal solutions to the instances of ±psc and rbsc by D∗
93

and C∗, respectively, we see that cost±psc(D)
cost±psc(D∗) ≥

costrbsc(C)
costrbsc(C∗) , and thus if we can94

approximate ±psc to within a factor of f(ρ, β/ρmax, n), then we can approx-95
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imate rbsc to within a factor of f(ρ, β, n). This concludes the proof of the96

first part of Theorem 1.97

2.2 From ±psc to rbsc98

Consider an instance of ±psc: (N, P,Q). For each ni ∈ N , let there be a red99

element r−i ∈ R, and for each pi ∈ P , let there be a blue element bi ∈ B and100

a red element r+
i ∈ R. For each set Qj ∈ Q, let there be a set S+

j ∈ S and for101

each positive element pi ∈ P , let there be a set S−
i ∈ S. Define these sets as102

S+
j = {r−k | nk ∈ Qj} ∪ {bk | pk ∈ Qj} and

S−
i = {r+

i , bi}.

Let C be a solution of the thus created rbsc instance. Create D, a solution of103

the ±psc instance, by adding each Qj to D if the corresponding set S+
j is in104

C.105

To show that this reduction preserves the approximability, we start by consid-106

ering the cost induced by D. First, let nk be a negative element in ∪D. That is,107

there is a set Qj so that nk ∈ Qj and Qj ∈ D. But this means that the corre-108

sponding set S+
j must be in C, and therefore the red element r−k corresponding109

to nk is in ∪C.110

Second, let pk be a positive element that is not in ∪D, so none of the sets Qj111

that contain pk are in D. This means that none of the sets S+
j that contain bk112

are in C. But as bk must be covered by C, it must be that S−
k is in C, and so113

r+
k is in ∪C. Hence cost±psc(D) ≤ costrbsc(C).114

Consider then D∗, the optimal solution of (N, P,Q). We show that the cost115
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of the optimal solution of the rbsc instance created from the ±psc instance116

is at most that of D∗. Create C so that S+
j is in C if Qj ∈ D∗. For all blue117

elements bi not yet covered by C, add S−
i in C. It is straightforward to see that118

cost±psc(D∗) = costrbsc(C) ≥ costrbsc(C∗). Therefore, costrbsc(C)
costrbsc(C∗) ≥

cost±psc(D)
cost±psc(D∗)

,119

so that if we can approximate rbsc to within a factor of g(ν, π, m), then we120

can approximate ±psc to within a factor of g(ν + π, π, m + π).121

2.3 Parameterized Complexity122

We denote the parameterized versions of ±psc and rbsc by p-±psc and123

p-rbsc. The parameter for both problems is the cost of the solution. The124

p-rbsc problem is W[2]-hard due to the results in [2] and [5].125

In the reduction from rbsc to ±psc (Section 2.1) the costs of the optimal126

solutions are equal, and in the reduction from ±psc to rbsc (Section 2.2) the127

cost of the optimal solution to rbsc is at most the cost of the optimal solution128

to ±psc. This proves that both reductions are indeed fpt-reductions [5], and129

gives rise to the following proposition.130

Proposition 4 The p-±psc problem is equivalent to the p-rbsc problem un-131

der the fpt-reductions; especially, the p-±psc problem is W[2]-hard.132

3 Conclusions133

This paper studied the ±psc problem, proving both upper and lower bounds134

for its approximability. In addition to being important results as such, these135

bounds also provide new insights into the hardness of certain data mining136
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problems. Bounding the approximability of ±psc (and rbsc) in terms of ν137

(and ρ) remains an open problem.138
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