
C++ Templates

Rémi Delcos

March 29, 2004

1 Introduction

The origin of templates in C++ goes back to the need to build a standard
library. A major issue with the languages was the lack of a general facility
to produce container classes. Two different approaches for providing such
classes were considered [1]:

1. The Smalltalk way of relying on dynamic typing and inheritance (no-
tably having a single root class hierarchy).

2. The Clu approach of using static typing and a facility for arguments
of type type.

The goal was to define a mechanism that is type-safe, has close to ideal
run-time and space requirements and has a convenient notation. Portability
and reasonably efficient compilation and linkage were the main constraints.
Building on the Clu approach, the resulting C++ templates mechanism not
only solved the container problem nicely but opened the door to a wealth
of new programming techniques.

2 Templates

Templates are classes or functions that have been written with one or more
types yet not defined [2]. When the template is used, the missing types are
passed, explicitly or implicitly, as template parameters. A template with a
given set of parameters is a specialization. When a specialization is used, for
example as the type in a variable declaration, it is instantiated. Templates
are the basis for generic programming or programming with types.

1



2.1 Class Template Definition

A class template’s declaration begins with the keyword template followed
by one or more arguments listed in angle brackets. The definition is similar
to the definition of a regular class except that the undefined types are rep-
resented by the template’s formal parameters. A template class can be part
of an inheritance hierarchy. Here is the class template definition for a stack:

template <typename T> class stack {
public:

//...

void push(T item) {array[top ++] = item;}
T pop() {return array[--top];}

};

2.2 Template Instantiation

When a template is used, and all its parameters are provided, it can be
instantiated. The compiler then generates a new class, indistinguishable
from a hand written class. Instantiation is usually done automatically by
the language implementation. The declaration of a pointer or reference to a
template class doesn’t cause instantiation.

stack <int > s; // implicit specialization for int instantiated

stack <long >* sp; // no instantiation

Errors that are not related to template arguments are checked at the
point of definition. Error related to arguments can be detected at the earliest
at the point of use also called the point of (first) instantiation. However,
the language implementation is allowed to postpone error checking until the
program is linked. As only the member functions that are actually used are
instantiated, a template can contain member functions that are legal only
with some template parameters.

Because each different set of template arguments causes a new instanti-
ation, using templates can lead to code replication or ”code bloat”. Several
techniques are available to the programmer for curbing code bloat, including
factoring out code that is common to all template instantiations. In addition
language implementations can coalesce template instantiations that might
share the same code (for example stack<int*> and stack<char*>).

2



2.3 Template Parameters

Template parameters can be type parameters, parameters of ordinary types
or template template parameters. Type parameters are preceded by either
typename or class. Both keywords have the same meaning in this context.
Ordinary type parameters must be compile time constants. Like function
parameters, template parameters are allowed default values.

template <typename T=int , int size=10> class stack {
//...

};

stack <> s1; // stack <int , 10>

stack <long > s2; // stack <long , 10>

stack <long , 20> s3; // stack <long , 20>

Here is an example of template template parameter usage:

template <typename T> class point {
//...

};

template <template <typename T> class P> class rect {
P<short > top_left;
P<short > bottom_right;
//...

};

rect <point > r; // instantiation

2.4 Explicit Specialization

If a template’s definition is not suitable or optimal for certain parameters,
it is possible to redefine the template for specific types. This is called user-
defined specialization or explicit specialization. A template can also be par-
tially specialized i.e. only part of the parameters are fixed. A partially
specialized template remains a template and needs the remaining arguments
for being instantiated. Explicit specializations must be declared before their
first use.

3



// general

template <typename T, typename U> class A {
//..

};

// explicitly specialized for int and void*

template <> class A<int , void*> {
//...

};

// partially specialized for int

template <typename U> class A<int , U> {
//...

};

// partially specialized for int and any pointer type

template <typename U> class A<int , U*> {
//...

};

2.5 Function Templates

In addition to classes, also free functions and class member functions can
be turned into templates. For example, a generic max() function can be
defined as follows:

template <typename T> T max(T arg1 , T arg2) {
return arg1 > arg2 ? arg1 : arg2;

}

Contrary to class templates, function templates can deduce type and
non-type arguments from a call. Types can be stated explicitly if the com-
piler does not instantiate the proper function using the types from type
deduction.

int i1 = 1;
int i2 = 2;
long l = 3;
int result = max(i1 , i2); // max <int > instantiated

result = max(i1 , l); // error , no max(int , long)

result = max <long >(i1 , l); // ok , max(long , long)

4



Instantiated template function are subject to the same rules as ordi-
nary functions. Especially they can participate with ordinary functions to
overloading resolution.

2.6 Source Code Organization

Template declarations and definitions are almost always stored in header
files. These headers are included in the source files that use the templates.
Because templates are often natural candidates for inlining, this model seems
all the more fitting. In some cases, for example with commercial libraries,
it can be desirable to provide only the template declarations as source code
and have the definitions as compiled binaries. To this end C++ defines the
export keyword which basically means ”accessible from another translation
unit”.

// file1.cpp

export template <typename T> twice(T t) { return t+t; }

// file2.cpp

template <typename T> twice(T t); // declaration only

int f(int i) { return twice(i); }

Unfortunately export is currently available only in one commercial compiler
(Comeau 4.3.x which uses the EDG 3.x front end), has proven to be very
hard to implement, and doesn’t actually solve the problems it was created
to solve [3].

2.7 Comparing Templates, Inheritance, and Composition

Templates can be seen as a way to re-use code along inheritance and com-
position. In C++ inheritance can express either a IS-A relationship (public
inheritance) or a re-use of implementation (private inheritance). Compo-
sition expresses the relation HAS-A. Private inheritance and composition
can be considered as solutions to similar problems. A template is a family
of implementations whose members differ by the types used in their shared
code.

Both inheritance and class templates work by creating new types. While
inheriting creates subtypes, classes generated from class templates have no
relationship type-wise. If inheritance and virtual functions allow run-time
polymorphism, templates can be said to provide compile-time polymorphism.

Inheritance and composition are possible without the compiler having
access to the class definition. When instantiating templates both the decla-

5



ration and the definition of the class template are needed (export notwith-
standing).

Unlike inheritance which incurs a run-time penalty due to virtual func-
tion dispatching, templates have no inherent run-time cost. If templates are
inlined, they can reveal further optimization opportunities leading to imple-
mentations that match the best hand written code while maintaining high
level structure and type safety.

3 Template Meta-programming

Meta-programming means building programs that create other programs.
Although originally templates were not designed for meta-programming, its
has been discovered that they allow the use of powerful meta-programming
techniques. It has even been shown that that any partial recursive function
can be computed at compile time using techniques based on templates [4].
C++ can viewed as a two level languages were the first level consists of
template programs that generates code for the second, conventional level.
Here is a simple meta-program that instantiates templates recursively to
generate factorials. Template specialization is used to end the recursion:

template <int N> class Factorial {
public:

enum {value=N*Factorial <N-1>:: value};
};
class Factorial <1> {

public:
enum{value =1};

};

void main() {
std::cout << Factorial <5>:: value; // prints 120

}

If-else constructs can be expressed as follows:

template <bool C> class Condition { };

class Condition <true > {
public: static inline void f() { statement1; }

}

6



class Condition <false > {
public: static inline void f() { statement2; }

}

void main() {
// if condition ==true generates statement1 else statement2

Condition <condition >::f();
}

4 Notable Template Libraries

The template mechanism was added to C++ as a tool for building libraries.
Originally it was meant mainly for defining container classes and generic
functions. With the discovery of template meta-programming completely
new kinds of application became possible.

4.1 STL

The most widely used C++ template library is the STL which is part of
the C++ standard library. It offers containers (strings, lists, vectors, sets,
maps), algorithms in the form of function templates and utilities.

4.2 Blitz++

One of the challenges of programing languages is to offer high level constructs
to allow working on the proper abstraction level while maintaining good
performance when needed. In the domain of numerical computing Fortran
has been unsurpassed due to its highly optimized libraries. Blitz++ is a
C++ library for scientific computing that using template techniques achieves
performances on par with Fortran [5].

4.3 Spirit

Spirit [6], part of the Boost libraries, is a recursive-descent parser generator
framework. Traditionally grammars have been expressed in a separated
language which has been then translated into C/C++ code for inclusion into
the target application. Spirit allows the programmer to write the grammar
directly in C++, using a notation that approximated the Extended Backus-
Normal Form (EBNF). This EBNF grammar of a simple calculator:

7



group ::= ’(’ expression ’)’
factor ::= integer | group
term ::= factor ((’*’ factor) | (’/’ factor))*
expression ::= term ((’+’ term) | (’-’ term))*

can be expressed in C++ using Spirit:

group = ’(’ >> expression >> ’)’;
factor = integer | group;
term = factor >> *((’*’ >> factor) | (’/’ >> factor ));
expression = term >> *((’+’ >> term) | (’-’ >> term ))*;

The production rule expression is an object that has a member function
parse.

4.4 FC++

FC++ brings Haskell like functional programming facilities to C++. FC++’s
implementation relies heavily on templates and the C++ types system [7].

References

[1] Bjarne Stroustroup, The Design and Evolution of C++, Addison Wesley,
1994

[2] Bjarne Stroustroup, The C++ Programming Language, Special Edition,
Addison Wesley, 2000

[3] Herb Sutter, Tom Plum, Why We Cant Afford Export,
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1426.pdf

[4] Martin Böhme, Bodo Manthey, The Computational Power of C++,
http://www.tomasoberg.com/pdf/compchem 030207.pdf

[5] Blitz++, http://www.oonumerics.org/blitz/

[6] Spirit, http://spirit.sourceforge.net/

[7] FC++, http://www.cc.gatech.edu/ yannis/fc++/

8


