
Lua

Jani Kajala (jani.kajala@helsinki.fi)

Helsinki 27th March 2004

Principles of Programming Languages -course seminar

HELSINKI UNIVERSITY
Computer science department

i

Lua

Jani Kajala (jani.kajala@helsinki.fi)

Principles of Programming Languages -course seminar

Computer science department

Helsinki University

27th March 2004, 3+7 pages

This seminar paper describes properties of Lua programming language. Lua is a

scripting language well suited for extending C/C++ and other applications with

scriptable functionality.

Computing Reviews (1998): D.3.1, I.7.2

Key words: programming languages, scripting languages, Lua

ii

Contents

1 Introduction 1

2 Lexical conventions 1

3 Types and values 2

4 Statements 3

5 Expressions 5

6 Functions 5

References 6

1

1 Introduction

Lua is a small language especially well suited for extending C/C++ applications

to be scriptable. Its origins are in data definition language designed in 1993 for

automating task of data input to simulations in Brazilian oil industry.

2 Lexical conventions

Lexical conventions match closely to most other common languages. Identifiers

and key words are case-sensitive. Identifiers need to begin with alphabetic char-

acter or underscore, and any alphanumeric character can follow. Only single-line

comments are supported; comments start with −− (two dashes). String literals

can be created with C-like " " pair and contain escape sequences like \n (new-

line). Lua supports also optionally multiline string literals in form of [[]] pair, for

example:

a = [[this is

multiline string

literal]]

String literals created with [[]] pair can span multiple lines but espace sequences

are not expanded inside the pair.

To conform Unix scripting conventions, if chunk starts with # character the first

line is skipped. Chunk is the unit of execution in Lua – more abount chunks in

section 4.

2

3 Types and values

Lua is dynamically typed language, as most scripting languages are. Basic types

in Lua are nil, boolean, number, string, table, function and userdata.

Boolean and number have value semantics. Strings have internally reference se-

mantics, but strings are immutable, so they actually appear to user as having

value semantics. Nil is special type which roughly matches C NULL value. Func-

tion instantiations, closures, are first-class variables in Lua and they have reference

copy semantics, as well as tables and userdata.

Lua relies heavily on associative arrays, that is arrays which can be accessed by

any type except nil. Associative arrays are implemented with table type in Lua.

Tables can also be heterogeneous, they can contain values of all types except nil.

Tables are the only data structuring mechanism in Lua. In addition to named

record access using array[”name”], Lua provides syntactic sugar array.name and

iteration over table elements using next(array, key) returns key and value of next

array element.

Userdata is special data type which can be modified only from C code. This guar-

antees integrity when extending C application by scripting as the scripts cannot

modify the value of userdata. Userdata has reference semantics, as do have tables

and functions. Metatables can be used to define operations on userdata values,

which allows Lua to be extended with custom types. Every table has metatable,

which defines behaviour of the original table. For example in in addition Lua

calls __add member of the metatable.

Lua is not object oriented language, but it does support object oriented program-

ming by the usage of tables. Lua tables can contain associations to functions and

the table itself can be passed as first parameter to the function by using : operator.

For example a : f() calls function f of table a and passes the table as an argument

3

to the function.

Lua provides coercion between strings and numbers in run-time. This is applied

so that any arithmetic operation tries to convert a string to number. Also when a

string is expected a number is converted to string automatically.

4 Statements

As Lua was intended for extending applications, it has no concept of main() func-

tion. Basic unit of execution is chunk. Chunk is sequence of Lua statements, which

are optionally followed by semicolon. Chunks are interpreted as anonymouys

function, so chunks can have local variables and chunks can return values.

In addition to traditional assignment, Lua supports assignment of multiple val-

ues. For example

a,b,c = 1,2,3

assigns a=1, b=2 and c=3. Parameters to assignment are evaluated applicatively

so that

x,y = y,x

performs swap operation correctly between x and y.

Lua as controls structures similar to other common imperative languages. For

example following code prints odd positive numbers below 100:

local n = 1

local odd = true

while n < 100 do

if odd then

4

print(n)

end

odd = not odd

n = n + 1

end

In addition to while, Lua has repeat and for loops. Repeat has the form

repeat block until exp

for loop has two forms, numerical and generic. Numeric form is

for i=first,increment,last do block end

and generic form is

for v1,...,vn in explist do block end

Generic for form is shorthand for the code below. Note that v1, v2..., vn are all

locals inside for loop.

do

local _f, _s, v1 = explist

local v2, ... , vn

while true do

v1, ..., vn = _f(_s, v1)

if v1 == nil then break end

block

end

end

5

Lua has also return and break statements. return is used to return value from

block and break is used to break iteration inside loop. Lua’s return statement

supports multiple return values. The other difference to C language return se-

mantics is that return and break can only be executed as the last statement of

their (inner) blocks.

5 Expressions

Lua expressions are similar to C expressions. In arithmetic operators the main

difference is power operator ∧, which is only present as pow standard library

function in C. Relational operators are also similar to C, with the difference of

inequality which is ∼= in Lua. Logical operators are expressed in written form:

and, not, or. Booleans are true and false, but they are quite recent addition to Lua

and so nil is still considered false as well as in versions preceding Lua 5.

String concatenation is done with .. operator. Due to coercion rules, numbers can

be concatenated to strings with this as well.

Precedence order in Lua is similar to other common languages like C. Concate-

nation comes after arithmetic but before relational operators.

6 Functions

Lua functions are first-class variables with reference copy semantics. Function is

defined by

function f(parameters)

...

end

6

This is actually syntactic sugar for

f = function(parameters)

...

end

which more properly shows what is happening when Lua executes the definition.

When Lua executes a function definition, the function is closed. Different function

instances, closures, can have different running environment, if they refer to parent

block local variables. For example

f = function(a, b)

return function() a+b end

end

creates a function which returns value of a + b at the time when function f was

called. As introduced in section 4, functions can return multiple values using

return with multiple parameters separated with comma. As previous example

suggested, Lua also supports anonymous and non-global functions. Variable

number of arguments is supported by defaulting all arguments to nil. Lua also

supports proper tail recursion, in other words recursion at the end of the function

re-uses the same stack space for the call, so that tail recursion can have unlimited

depth.

References

Ier03 R. Ierusalimschy, L. H. de Figueiredo, W. Celes, Lua 5.0 Reference

Manual. Technical Report MCC-14/03, PUC-Rio, 2003.

7

Sco00 Scott, M., Programming Language Pragmatics. Morgan Kauffman,

2000.

