Aspect Oriented Programming

Aleksi Kallio

Helsinki 19th April 2004
Principles of Programming Languages seminar

UNIVERSITY OF HELSINKI
Department of Computer Science

Contents

1 Abstract

2 Motivation for AOP
3 The Field of AOP

4 Aspect]

5 Synthesis

6 Summary

References

1 Abstract

Aspect Oriented Programming is a programming methodology that improves mod-
ularisation of crosscutting concerns in the program source code. By modularising
concerns into aspects programmer can improve the clarity and maintainability of
source code.

2 Motivation for AOP

The art of software engineering can be seen as a task of modeling a given problem
domain. Given the fact that real life problems often display a great variety of
possible points of view and multitude of related and unrelated concerns, it can be
argued that modeling tools must allow the programmer to separate different points
of view and unrelated concerns in the program source code.

In AOP terminology, a concern is a particular goal, concept or area of interest
[Lad02]. Unrelated concerns are often referred to as crosscutting concerns. This
reflects the way of seeing a piece of software as a multidimensional object, which can
be observed from different angles and where unrelated functionalities are thought to
be in an orthogonal setting. A good example of crosscutting concerns are application
logic and logging. Logging is usually just a way of documenting the high level
program execution and has no effect on the actual logic the application implements.
However in the low level program code execution the two concerns are tightly coupled
because all writes to log must happen immediatly after the actual action is executed.
It can be argued that because of low level coupling, many modern programming
languages also force to couple these two concerns in higher level, how unrelated
they may be.

Crosscutting concerns are a source of code tangling and code scattering [Lad02].
Code tangling means that often in a single point of source code many unrelated
concerns are present, making the code harder to understand. Code scattering, on
the other hand, refers to fact that crosscutting concerns by their nature are scat-
tered throughout the code, making code management very difficult. Tangling and
scattering cause poor traceability, lower productivity, less code resuse, poor code
quality and more difficult evolution [Lad02]. Aspect Oriented Programming was
introduced to better encapsulate crosscutting concerns and improve the clarity and
maintainability of source code.

Besides pragmatical benefits, AOP can also improve the design of the high level
program architecture. It has been argued that having one dominant programming
paradigm is not always beneficial, because of an effect called "the tyranny of the
dominant decomposition". Single method of decomposition cannot satisfy the de-
mands of a tough modeling task. Decomposition along a single dimension is often
inadequate, resulting in reusability and traceability problems [TOHJ99].

3 The Field of AOP

The field of aspect programming is still quite unstructured and non-matured. How-
ever it is widely agreed that two major mainstreams can be seen: program trans-
formers and composition filters. Composition filters are older than the concept of
AOQOP. They do not modify the source code of the program, but instead by using dif-
ferent dynamic mechanisms modify the messages that are passed between program
components. This kind of dynamic weaving was seen as the most promising method
for future aspect tools, but implementing it has proved to be surprisinly challenging.

Program transformers are aspect tools that instrument the original source code with
aspect code to produce the final program code. Such instrumentation is often cited
as weaving. Three main classes of program transformers are: builtin aspect struc-
tures, composition based transformers and reflexive transformers. Builtin aspect
structures can be found from non-aspect oriented languages, such as synchronized-
structure in Java language. Composition based transformers modify components
according to the demands of aspects. Examples of such tools are AspectJ and
D2?AL. D?AL is a programming methodology and aspect language that incorporates
UML based abstractions to create the distribution of components in a distributed
system. Aspect] is discussed in more detail later. Reflexive program transfomers
employ run-time reflexive operations to modify components. Example of such a
solution is SMove. SMove introduces so-called reflective components, which present
two kinds of interfaces: the base-interface that provides the primary functionality
and the meta-interface that allows the client application to negotiate aspects of how
the primary functionality is provided.

Another way to classify AOP tools is a division between black box and clear box
implementations [FF]. Black box AOP is approach where program components are
"black boxes" ie. their internal structure is invisible for the AOP tool. In clear box
AOP the internals of components are visible and subject to modification to AOP
tool. Of course there are varying levels of granularity, as it is advisable to hide the
lowest level details even in clear box AOP.

4 Aspect]

The best known aspect tool is AspectJ, a general purpose AOP implementation from
Xerox PARC [Lad02]. AspectJ is a composition based program transformer that uses
static weaving of aspect code into Java source code to produce final programs. The
core concepts of AspectJ are aspects, point cuts, join points and advice. Aspects
are encapsulated concerns, that crosscut the main program logic. Join points are
the points of main logic where control is passed to aspects. For example, poincut
can be the points of exiting from a method, where the logging aspect is given the
control. Advice is a code snippet to be executed in a pointcut. In the previous case,
advice would be simply a call to logging component.

Aspect uses a so-called weaver, which is an aspect compiler that compiles classes
and aspects into standard Java bytecode [Lad02]. In weaving the main logic is
instrumented with approriate calls to aspect logic.

As an example we present a source code of a counting aspect implemented with
AspectJ. Purpose of this aspect is to modularise the concern of counting calls to
database query methods. Aspect introduces one pointcut called findCall, which cap-
tures all points in the program code where Database-methods with a name beginning
with find are called. Aspect includes also an advice, which calls Counter-class before
database queries.

aspect CountFinds {
pointcut findCall(): call(* Database.find*(..));

before() returning: findCall()
Counter.increaseFindCount () ;

3

Aspects acts a the basic unit of modularisation. Inside it, there is a definition for
a pointcut called findCall. Tt is defined to consists of call to methods that have the
following properties: return type can be anything, the method is in class Database,
the name begins with find and the parameter list can be anything. Aspect introduces
also one advice that executes before given pointscuts, just calling counting logic.

Besides method calls, also execution of method bodies, execution of exception han-
dler, type of executing object and location in relation to other pointcuts can be used
for defining pointcuts. Pointcuts can also be handled similarly to sets. If we wanted
to capture calls that begin with query or executeQuery, we could have defined the
pointcut in the following manner.

aspect CountFinds {

pointcut findCall():
call(* Database.query*(..)) ||
call(* Database.executeQuery*(..));

before() returning: findCall() {
Counter.increaseFindCount () ;

}

We can also capture the context of the pointcut in the advice. The next example
demonstrates it, and also uses after-advice, which is executed after the pointcut.

aspect CountFinds {

pointcut findCall(String query):
call(* Database.find*(String)) &&
args(query) ;

before() returning: findCall() {
Log.add ("making query: " + query);
}

before(String query) returning: findCall(query) {
Log.add("made query: " + query);
}

Advice can gain information about the active pointcut by using a special variable
called thisJoinPoint. Aspects in AspectJ are singletons by default. However, also
per-object aspects can be used. They associate a unique aspect instance for each
object. The system automatically looks up the aspect instance associated to the
object, and uses the instance as the execution context.

5 Synthesis

The intent of AOP is to modularise something that would otherwise be scattered and
tangled into source code: "AOP can be understood as the desire to make quantified
statements about the behaviour of programs, and to have these modifications hold
over programs written by oblivious programmers" [FF]. Using this definition, many
methods that have no AOP roots also qualify as aspect tools: for example mixins
with multiple inheritance and event based publish and subscribe [FF].

In a high level AOP can be described as creating independent but crosscutting com-
ponents and composing the unified program. Composition is matching units that
describe the same concent, reconciliating the differences in descriptions and inte-
grating the units to produce the unified whole [TOHJ99]. Thus the main difference
between traditional programming and AOP is that components can be crosscutting
and therefore the process of composition is much more demanding.

AOQOP is used successfully at least with web application architectures. For example
authentication and authorisation can be implemented effectively with AspectJ. In
general, aspects are at their best in distributed environments, where many more-or-
less related concerns have effect on software design and where the maintainability
of source code is exceedingly important.

6 Summary

The purpose of AOP is to allow modularisation of functionality that is tangled and
scattered into program source code. The motivation is that by using quantified
statements, aspects can be weaved into main program logic and implementers of
main logic need not be concerned with aspect functionality. This is how AOP
enhances modularisation and code readability and traceability.

References

FF Filman, R. and Friedman, D., Aspect-oriented programming is quan-
tification and obliviousness. Workshop on Advanced Separation of Con-
cerns, OOPSLA 2000.

Lad02 Laddad, R., I want my AOP! (part 1) - Separate software concerns
with aspect-oriented programming. Java World. URL http://www.
javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.%html.

TOHJ99 Tarr, P. L., Ossher, H., Harrison, W. H. and Jr., S. M. S.; N de-
grees of separation: Multi-dimensional separation of concerns. Interna-
tional Conference on Software Engineering, 1999, pages 107-119, URL
citeseer.ist.psu.edu/tarr99degrees.html.

