Extending type systems for intermodule error
handling and optimization

Einar Karttunen

April 19, 2004

Abstract

Functional programming is a programming paradigm that empha-
sises the evaluation of expressions. Many functional languages are
pure, which means that expressions behave like mathematical func-
tions. If the expressions are pure the order of evaluation is not sig-
nificant and it can be performed only when needed i.e. lazily. This
paper represents alternative ways of optimising lazy, statically typed
languages.

Common problems include trivial update problem and intermodule
optimisations in face of separate compilation. We use a Hindley-Milner
type system extended with rank-2 polymorphic types, but the ideas
could be applied to much wider scale of languages.

Contents
1 Evaluating a lazy language

2 Type attributes
2.1 Termination
22 Aliasing e

3 Lazy Evaluation

4 Monads
4.1 Haskell ST Monad
4.2 Haskell IO Monad L.

5 Uniqueness typing
6 Automatic analysis

7 Deforestation

1 Evaluating a lazy language

Lazy statically typed functional languages are usually compiled to a small
core language containing few primitives. These include top-level bindings,
let, case, constructors and a lambda expression form. The core language
is compiled for an abstract machine. Values are either builtins e.g. inte-
gers, unevaluated thunks or evaluated values. Some representations like the
Spineless Tagless G-machine[Jon92] use a common representation for both
evaluated and unevaluated values.

Usually values are evaluated only if they are needed in a case statement.
Using this approach naively can lead to space leaks. Functional languages
usually add annotations for the programmer to mark parts of the programs
as strict, which is needed to get good performance in many corner cases.

2 Type attributes

Marking behaviour of code inside the language has several benefits. Inter-
face descriptions are portable across compilers and foreign functions can be
annotated. Marking them only inside the compiler gives no real benefit and
simpler compiler implementations can ignore them.

2.1 Termination

Normally when evaluating a purely functional program thunks are replaced
with black holes at the beginning of the evaluation. This can be optimised by
marking black holes from the update list only upon garbage collection|Jon92].
Black holes are marked to discover nonterminating computation, which can
then be flagged as | and the evaluation continued.

If we knew which computations would terminate blackholing them would
be unnecessary. This would make also the update stack much smaller.

It is in general impossible to know whether a given function will terminate
or not. We do know it however for many functions. A function will terminate
if it calls only functions that are known to terminate. This naive definition
fails for (mutually) recursive functions, higher order functions and so on.
Even more functions could be labelled as terminating with more extensive
program analysis and specialisation .

Also terminating values can always be evaluated strictly which in turn
makes other optimisations possible.

le.g. generating different versions of HOFs based on arguments

2.2 Aliasing

Even more important than flagging termination with type attributes is mark-
ing how values are aliased. The interesting question is “How many references
does the result have to the parameter or parts of it”. This is enough because
the functions are pure i.e. they have no side effects. As the language is lazy
all function applications potentially create a thunk with a reference to the
parameters.

A classic problem in functional languages is the trivial update problem. A
large datastructure is modified in a trivial way which results in an expensive
copy-operation. What if we knew when it would be safe to actually update
the structure in place? Other uses include releasing memory that is not
needed anymore in a precise matter. This should reduce heap usage and
garbage collection overhead.

The uniqueness types in Clean are an explicit version of this. They are
limited to only expressing whether a value is unique or shared. Even this
opens a can of worms and creates subtly complex rules for attribute propa-
gation.

3 Lazy Evaluation

Lazy evaluation makes many optimisations possible. For example concate-
nating lists becomes effectively O(1). This is possible as we can defer the
actual evaluation. In practise concatenation produces a “list of lists” which
is then used automatically.

This makes many seemingly inefficient solutions quite efficient and makes
it possible to express algorithms in simple forms, while still retaining good
performance.

While laziness gives some performance with deferred operations, it also
causes very many problems. In practise one is forced to mark sections of
programs to be evaluated strictly to avoid space leaks.

4 Monads

Haskell’s solution to the trivial update problem are monads. A monad is a
construct from category theory following a set of monad laws. They specify
how different values of a monadic type may be combined. In haskell all
destructive operations are performed with monads.

Monads are used for input/output, statefull computations, parsers and
even lists can be thought of as monads. The monads we are interested in

wrap a computation that can be handled in an abstract matter.

4.1 Haskell ST Monad

Haskell implementations provide means of modelling state with the ST monad.
This can be done transparently inside functions as [LJ94] suggests, but needs
a rank-2 polymorphic type. This is needed to safely encapsulate the state
transformer. The ST monad is supported in both most popular haskell im-
plementations: GHC and Hugs.

Although the code using ST monad is clean from outside, the code inside
needs to be imperative and is quite tedious to write. Also interleaving monads
is quite hard. It can be done with monad combinators, but is nontrivial and
leads to quite complicated code 2.

Future work may make code using monad transformers a very viable
alternative but currently they lack maturity and ease of use.

4.2 Haskell 10 Monad

All haskell code interfacing with the outside world, be it FFI with state,
real IO, or concurrency uses [O. Most of the mutable data structures in the
haskell standard library use 10 to keep reference of state. All modern haskell
implementations use 10 as the whole input/output system is based on it.

IO can be thought as a special case of ST, but unlike ST it cannot be
contained inside a function. All code using IO will have a tainted type
signature. 3

IO is used instead of ST mainly because mixing the monads is thought
to be complex. This has the unfortunate effect that the monadic signatures
spread further then they would need.

Using a simple dictionary from the IO monad is quite simple. All the
operations return a monadic value and are thus “tainted”.

data HashTable key val

new :: (key -> key -> Bool) -> (key -> Int32) -> I0 (HashTable key val)
insert :: HashTable key val -> key -> val -> I0 ()

delete :: HashTable key val -> key -> I0 ()

lookup :: HashTable key val -> key -> I0 (Maybe val)

2Some may argue that the code is elegant, but it is very hard to understand in practise
3Haskell does provide unsafe functions for this like unsafePerformI0: I0 a — a,
both those are generally frowned upon.

stuff ht key = do val <- Data.HashTable.lookup ht key
case val of
Nothing -> return O
(Just a) -> return a

The example just looks up a key in dictionary and returns the value if
found, 0 otherwise. This is safe as one generally cannot get rid of the 10
type and it forces correct sequencing of all the operations.

5 Uniqueness typing

Clean uses type attributes to properly interleave statefull and functional
computations. A value with an unique type must be used always once.

Uniqueness typing makes it easy to make state local inside a given func-
tion without any trace of it outside it. Combining unique values of different
kinds is easy and the system seems easy and intuitive at the first glance.
Uniqueness typing solves the trivial update problem when the datastructure
is not shared.

Uniqueness grows usually to outside. This is needed to keep the system
safe as aliasing a structure containing the unique value would break the
uniqueness property.

However the type attributes make the system more complex forcing com-
plicated rules on resolving typing with higher order functions and polymor-
phism. Also the use of uniqueness typing for e.g. files may not be the best
approach. The mathematical models for uniqueness typing seem also more
complex than monads, which have a very sound mathematical foundation.

ScaleArrayElem:: *{#Real} Int Real -> .{#Real}
ScaleArrayElem ar i factor

(elem,ar) = ar!'[i]

= {ar & [i] = elem*factor}

This Clean example takes an unique array, an index and a scale factor
as parameters and scales one array element. This can be implemented using
destructive updates as the input is unique. Even in this simple case the type
signature is nontrivial. Automatically inferred uniqueness typing information
would seem like a very powerful tool.

6 Automatic analysis

A more transparent system than either monads or uniqueness typing would be
necessary to make the optimisations easy for novice programmers. Monadic
code, while useful for other purposes is clearly too convoluted for solving the
update problem.

Various automatic optimisation schemes have been suggested. They usu-
ally rely on rewrite sequences using few primitive operations which are used
to define library functions. These optimisations usually rely on specific code
transformations and are thus quite brittle to changes in the code. A small
insignificant change may alter the performance of an algorithm significantly
based on optimiser decisions.

Recursive definitions are often quite hard of the optimisations. This is
a large problem as functional languages use recursion for very many tasks.
Also the efficiency of library functions is very sensitive for their definitions.

For example to calculate the sum of the elements one could define the
following functions:

-- builtin way
sumO :: [Int] -> Int
sum0 xs = sum XS

-- fold with builtin
suml :: [Int] -> Int
suml xs = foldr (+) 0 xs

-- fold with lambda
sum2 :: [Int] -> Int
sum2 xs = foldr (\a b -> a + b) 0 xs

-- recursive

sum3 :: [Int] -> Int

sum3 [] =0

sum3 (x:xs) X + sum3 xs

-- foldri
sum4 :: [Int] -> Int
sum4 xs = foldrl xs

All the definitions should produce code that performs adequately. In
reality their performance might vary drastically from implementation to im-

7

plementation. This is clearly unacceptable. With e.g. GHC 6.2.2 sum1 is
the fastest with a quite wide margin. Some of the implementations are even
ten times slower than suml. If the types are left for the compiler to infer it
uses a wider type (Num) and actually produces faster code for sum2, which
was ten times slower than sum1 with the added type signature.

7 Deforestation

Deforestation means removing intermediate structures from a program with-
out changing semantics. This is particulary easy in non-strict functional
languages. Calculating the sum of the cubes of the numbers from 1 to n
could be expressed in haskell as:

cube_sum n = sum [i*i | i <- [1..n]]

The code constructs a list containing the numbers from 1 to n, and from
that produces a list containing the cube of each element. Finally the elements
are summed together. The goal is to create a program transformation which
removes the intermediate lists.

In practise the techniques employed today are quite rudimentary and in
many cases dependent on using builtin list folding (foldr*) and build func-
tions. As all library functions use them this is quite painless, but making
the transformations for recursive definitions is hard. Let and case constructs
need to be pushed outside the fold /build, but this is a worhwile optimasation
in itself.

A simple rewriting system is introduced in [GJ94|. It is based on two
primitive operations: foldr and build. Build is a simple list constructor with
a naive definition and inferred type:

build :: ((a -> [a] -> [a]) -> [b] -> ¢c) -> ¢
build x = x (:) [I

To remove the structures we define a rewriting rule:
foldr f z (build g) =g f =z

This is clearly works only if g uses it’s arguments, this can be forced
with a rank-2 typing °. This requirement is essentially the same as the one
required for the ST monad.

4foldr:: (a->b->b)->b->[a] ->Db
5This gives the typing system more power, without making inference harder than with
Hindley-Milner. In this case we need the non-toplevel universal quantifier.

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
build x = x (:) []

This allows the transformation to be performed safely iff the left hand
side of the rewriting rule is well typed. Deforestation makes it more easy
to provide clean functional interfaces without sacrificing performance. The
optimisations can be applied even in intermodule contexts, but special care
must be taken to interleave inlining and deforestation in the right order.

Deforestation has been implemented in the Glasgow Haskell Compiler and
detailed analysis can be found in [Gil96]. Test results show that simple de-
forestation With cheap deforestation compile times rose 4% on average. The
resulting binaries were 6% smaller than the original ones. The optimisation
dropped the instruction counts and heap allocation and residency by 5%,
while growing maximum stack usage.

References

[Gil96]

[GJ94]

[Jon92]

[L.J94]

A. Gill. Cheap Deforestation for Non-strict Functional Languages.
PhD thesis, Glasgow University, Glasgow, Scotland, UK, 1996.

Andrew J. Gill and Simon L. Peyton Jones. Cheap deforestation in
practice: An optimiser for haskell. 1994.

Simon L. Peyton Jones. Implementing lazy functional languages on
stock hardware: The spineless tagless g-machine. Journal of Func-
tional Programming, 2(2):127-202, 1992.

John Launchbury and Simon L. Peyton Jones. Lazy functional state
threads. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 24-35, 1994.

10

